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Abstract 

Protein language models (pLMs) trained on a large corpus of protein sequences have shown 
unprecedented scalability and broad generalizability in a wide range of predictive modeling 
tasks, but their power has not yet been harnessed for predicting protein-nucleic acid binding 
sites, critical for characterizing the interactions between proteins and nucleic acids. Here we 
present EquiPNAS, a new pLM-informed E(3) equivariant deep graph neural network 
framework for improved protein-nucleic acid binding site prediction. By combining the 
strengths of pLM and symmetry-aware deep graph learning, EquiPNAS consistently 
outperforms the state-of-the-art methods for both protein-DNA and protein-RNA binding 
site prediction on multiple datasets across a diverse set of predictive modeling scenarios 
ranging from using experimental input to AlphaFold2 predictions. Our ablation study 
reveals that the pLM embeddings used in EquiPNAS are sufficiently powerful to 
dramatically reduce the dependence on the availability of evolutionary information without 
compromising on accuracy, and that the symmetry-aware nature of the E(3) equivariant 
graph-based neural architecture offers remarkable robustness and performance resilience. 
EquiPNAS is freely available at https://github.com/Bhattacharya-Lab/EquiPNAS.  
 

Introduction 

Interaction of protein with Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA) 
underpins a wide range of cellular and evolutionary processes such as gene expression, 
regulation, and signal transduction 1-4. The identification of the interaction sites between  
proteins and nucleic acids (i.e., binding sites) is important for determining protein functions 
5 and novel drug design 6.  A number of computational methods for predicting protein-DNA 
and protein-RNA binding sites have been developed to overcome the challenges of lengthy 
and expensive nature of experimental characterization of protein-nucleic acid binding sites. 
Such computational methods can be broadly categorized into two categories: sequence-
based and structure-aware methods. Sequence-based methods such as SVMnuc 7, 
NCBRPred 8, DNAPred 9, DNAgenie 10, RNABindRPlus 11, ConSurf 12, TargetDNA 13, 
SCRIBER 3, and TargetS 14 exploit readily available and abundant protein sequence 
information to predict binding sites. However, these methods lack structural information, 
which can limit their prediction accuracy. To overcome the challenge, structure-aware 
methods such as COACH-D 15, NucBind 7, DNABind 16, DeepSite 17, aaRNA 18, NucleicNet 19, 
GraphBind 20, and GraphSite 21 integrate available structural information for binding site 
prediction. While structure-aware methods usually achieve higher prediction accuracy than 
sequence-based methods, a vast majority of  structure-aware methods rely on known 
structural information from the Protein Data Bank (PDB) 22 that are not as abundant as 
sequence information, limiting their large-scale applicability.  
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Promisingly, the recent breakthrough of AlphaFold2 23,24 has enabled highly accurate 
prediction of single-chain protein structures from sequence information, providing new 
opportunities for replacing the experimentally solved structures with AlphaFold2-predicted 
structural models as input for binding site prediction at scale, without compromising on 
accuracy. While a recent protein-DNA binding site prediction method, GraphSite 21, has 
successfully used AlphaFold2-predicted protein structural models, effective utilization of 
predicted structures from AlphaFold2 for protein-RNA binding site prediction is yet to be 
explored. Alongside the AlphaFold2 breakthrough, a significant advancement has been 
made in pre-trained protein language models (pLM) 25-30 powered by attention-based 
transformers networks 31. pLMs have proven highly successful in various predictive 
modeling tasks including protein structure prediction 28,30, protein function prediction 26,29, 
and protein engineering 27,32,33. Despite their usefulness, the potential of pLMs in protein-
DNA and protein-RNA binding site prediction tasks remains to be unlocked. Given the 
recent progress, a natural question arises: can we develop a generalizable computational 
framework that can harness the power of pLMs while leveraging the predicted structural 
information by AlphaFold2 for accurate prediction of protein-DNA and protein-RNA 
binding sites at scale? 

Here, we present EquiPNAS, a new pLM-informed equivariant deep graph neural network 
framework for accurate protein-nucleic acid binding site prediction. EquiPNAS effectively 
leverages the pLM embeddings derived from the ESM-2 model 30 for improved protein-
DNA and protein-RNA binding site prediction. The core of EquiPNAS consists of an E(3) 
equivariant graph neural network architecture 34, employing symmetry-aware graph 
convolutions that transform equivariantly with translation, rotation, and reflection in 3D 
space. Such an architecture has recently been shown to offer substantial accuracy gain while 
exhibiting remarkable robustness and performance resilience in our work on protein-protein 
interaction site prediction 35. Inspired by the notable successes of pLMs 32,36-38, here we 
integrate pLM embeddings from the encoder-only transformer architecture of ESM-2 to 
refine our sequence-based node features using the E(3) equivariant graph-based framework. 
By doing this, we are able to significantly reduce the dependence on the availability of 
evolutionary information which is not always abundant such as with orphan proteins or 
rapidly evolving proteins, thus enabling us to build generalizable and scalable models. In 
addition, our translation-, rotation-, and reflection-equivariant deep graph learning 
architecture provides richer representations for molecular data compared to invariant 
convolutions, offering robustness for graph structured data and particularly suitable when 
predicted protein structures are used as input 35. 

Our method, EquiPNAS, consistently outperforms the state-of-the-art methods in several 
widely used benchmarking datasets for both protein-DNA and protein-RNA binding site 
prediction tasks. EquiPNAS exhibits remarkable robustness with only a minor performance 
decline when switching from experimental structures to AlphaFold2 predicted structural 
models as input, enabling accurate prediction of protein-DNA and protein-RNA binding 
sites at scale. The pLM embeddings used in EquiPNAS are sufficiently powerful that can 
dramatically reduce the dependence on the availability of evolutionary information, leading 
to a generalizable framework. In addition, the symmetry-aware nature of the E(3) 
equivariant graph-based neural architecture of EquiPNAS offers remarkable robustness and 
performance resilience, as verified directly through our ablation study. An open-source 
software implementation of EquiPNAS, licensed under the GNU General Public License v3, 
is freely available at https://github.com/Bhattacharya-Lab/EquiPNAS.    
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Materials and methods 

Overview of EquiPNAS Framework  

Fig. 1 illustrates our EquiPNAS method for protein-nucleic acid binding site prediction 
consisting of graph representation and featurization, E(3) equivariant graph neural network 
leveraging  the coordinate information extracted from the input monomer together with 
sequence- and structure-based node and edge features as well as pLM embeddings from the 
ESM-2 model, and performing graph node classification to predict the probability of every 
residue in the input monomer to be a protein-nucleic acid binding site. 

 

Fig 1. Illustration of the EquiPNAS method for protein-nucleic acid binding site prediction. (a) A set 
of node and edge features are generated from the input protein monomer. (b) E(3)-equivariant graph 
convolutions are employed on the featurized graph representation of the input. (c) Graph node 
classification is performed for residue-level binding site prediction. 

 

Graph Representation and Feature Generation  

Input Protein Graph Representation. We represent the input protein monomer as a graph 𝒢 = 
(𝒱, ℰ), where each node v ∈ 𝒱 represents a residue, and each edge e ∈ ℰ represents an 
interacting residue pair. We consider a residue pair to be interacting if their Cα-Cα Euclidean 
distance is within 14Å for protein-DNA binding site prediction and 15Å for protein-RNA 
binding site prediction. The specific distance cut-offs are chosen through independent cross-
validations for the protein-DNA and protein-RNA binding site tasks (Supplementary Table 
1, 2). We additionally use a minimum sequence separation of 6 for the interacting residue 
pairs to focus on longer-range interactions.  

Feature Generation. We use a number of standard sequence-derived node features including 
amino acid residue type, position specific scoring matrix (PSSM), multiple sequence 
alignment (MSA), and combine them with protein language model-based features from 
ESM-2 pLM. Additionally, we extract structure-derived node features from the input protein 
monomer, using either the experimentally solved structure or AlphaFold2-predicted 
structural model, including secondary structure (SS), relative solvent accessibility (RSA), 
local geometry, residue orientations, relative residue positioning, residue virtual area, and 
contact count. 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2023. ; https://doi.org/10.1101/2023.09.14.557719doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.14.557719
http://creativecommons.org/licenses/by-nd/4.0/


 4 

Sequence-based Node Features. An overview of sequence-based node features and the 
corresponding shape can be found in Table 1. We use one-hot encoding to represent each of 
the 20 amino acid residue types (aa) as a binary vector with 20 entries. We run PSI-BLAST 39 
to obtain position specific scoring matrix (PSSM). We then extract the first 20 columns of the 
PSSM and normalize the values using the sigmoidal function. We additionally generate 
multiple sequence alignment (MSA) from the input amino acid sequence by  running 
ColabFold 40 pipeline, which uses MMseq2 41 for MSA generation. The generated MSA is 
then fed to the EvoFormer blocks of AlphaFold2 as implemented in the ColabFold pipeline, 
resulting in a distilled MSA representation encoded as a dictionary. We extract the first row 
of the distilled MSA representation (‘msa_first_row’ from the dictionary) to be used as our 
MSA feature. We also use protein language model-based features from the pretrained ESM-2 
model, having 15B parameters 30. Specifically, we use the ‘representations’ embeddings as 
pLM features by supplying the amino acid sequence to the ESM-2 model. 

 

Table 1.  Sequence-based node features. The shape of the corresponding type for a protein with L 
residues is shown next to each feature. 

Features [shape] Description 

aa [L, 20] One-hot encodings of 20 amino acid residue types. 

PSSM [L, 20] Normalized position specific scoring matrix (PSSM). 

MSA [L, 256] Multiple sequence alignment (MSA) representation distilled 
through ColabFold’s EvoFormer blocks. 

pLM [L, 5120] pLM embeddings from ESM-2 with 15B parameters. 

 

Structure-based Node Features. Our structure-based node features and the corresponding 
shape can be found in Table 2. We use one-hot encoding to represent both 3-state and 8-
state secondary structures (SS). Additionally, we use one-hot-encodings to represent both 2-
state relative solvent accessibility (RSA) features using an RSA cut-off of 50 and finer-
grained 8-state RSA features by discretizing the RSA value into 8 bins with the following 
ranges: 0-30, 30-60, 60-90, 90-120, 120-150, 150-180, 180-210, and >210. We also extract local 
geometric features directly from the input protein monomer. These include the cosine angle 
between the C=O of consecutive residues, normalized virtual bond and torsion angles 
formed between consecutive Cα atoms, and normalized backbone torsion angles of the 
polypeptide chain. Inspired by the recent GVP-GNN study 42, we adopt two types of residue 
orientation features in our study: (1) unit vectors pointing towards Cα

(i+1) − Cα
i and Cα

(i−1) − 
Cα

i, and (2) unit vectors indicating the imputed direction of Cβi − Cα
i, which is computed 

assuming tetrahedral geometries and normalization. We use two types of relative residue 
positioning features for the ith residue of the input protein monomer: (1) the relative 
sequence position captured by the inverse of i, and (2) the relative spatial positioning 
captured by the inverse of the Euclidean distance between the centroid of the input protein 
monomer and the Cα atom of the ith residue. We additionally conceptualize an amino acid 
residue as a virtual convex hull that is constructed by its constituent atoms and quantify the 
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virtual surface area of the convex hull and calculate its inverse to use as a feature. Finally, 
we include the normalized contact count as a structure-driven feature, defined as the 
number of spatial neighbors of each residue (i.e., residues that are in contact) where two 
residues are considered to be in contact if the Euclidean distance between their Cβ atoms is 
less than 8Å.  

 

Table 2. Structures-based node features. The shape of the corresponding type for a protein with L 
residues is shown next to each feature. 

Features [shape] Description 

SS [L, 11] One-hot encodings of 3- and 8-state secondary structure. 

RSA [L, 10] One-hot encodings of 2- and 8-state relevant solvent 
accessibility. 

Local geometry [L, 11] Cosine angle between the C=O of consecutive residues, 
normalized values of virtual bond and torsion angles, and 
normalized peptide backbone torsion angles. 

Residue orientation [L, 9] Unit vectors pointing towards the directions of Cα
(i+1) − Cα

i, 
Cα

(i−1) − Cα
i and Cβ

i − Cα
i. 

Relative residue positioning [L, 2] Two types of relative positional features for the ith residue: (1) 
inverse of i representing the relative sequence position, and 
(2) inverse of the Euclidean distance of Cα atom from the 
centroid representing the relative spatial positioning. 

Residue virtual surface area [L, 1] Virtual surface area of the conceptual convex hull constructed 
by the atoms in a residue. 

Contact count [L, 1] The number of spatial neighbors of each residue.  

 

Edge Features. As the edge feature for the graph 𝒢 = (𝒱, ℰ), we use the ratio of the logarithm 
of the absolute difference between the indices of the two residues (log |i-j|) in the primary 
sequence and their Euclidean distance. The numerator of the ratio measures how far apart 
the two residues are in the primary sequence, while the denominator measures their spatial 
distance in 3D space. 

Coordinate Features. We obtain coordinate features from the Euclidean coordinates (x, y, and 
z) of the Cα atoms in input protein monomers. 
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Network Architecture  

Our network architecture consists of deep E(3)-equivariant graph neural networks (EGNNs), 
independently trained for protein-DNA and protein-RNA binding site prediction tasks. The 
input to the EGNNs includes the node and edge features described above as well as 
coordinate features based on the Cartesian coordinates of the Cα atoms in the input protein 
monomer. The EGNN architecture consists of a stack of equivariant graph convolution 
layers (EGCL), performing a series of transformations of its input by updating the 
coordinate and node embeddings using the edge information and the coordinate and node 
embeddings from the previous layer. A linear transformation is first applied to the input 
node features (ℎ!"), which results in a transformed set of node embeddings (ℎ!#). These 
embeddings, along with input coordinates (𝑥!") and edge information (𝑎!$) are passed to the 
subsequent EGCL layers. The EGCL operation attains equivariance by changing the 
standard message passing to equivariant message passing and by introducing coordinate 
updates. Unlike off-the-shelf graph neural networks that aggregate messages only from the 
neighboring nodes, equivariant graph neural networks aggregate messages from the whole 
graph. Additionally, an attention embedding is employed through a linear transformation 
on the aggregated message embedding, followed by a sigmoidal non-linear transformation. 
Finally, a linear transformation is applied to squeeze the hidden dimension of the last EGCL 
for condensing the learned information into a single scalar value, followed by a sigmoidal 
function to obtain the node-level classification to predict the likelihood of every residue in 
the input monomer to be a protein-nucleic acid binding site. The architecture of our EGNN 
consists of 12 EGCL layers with hidden dimensions of 768. The size of hidden dimensions 
and the number of layers are selected through 5-fold cross-validation (see Supplementary 
Table 1, 2). To mitigate the risk of overfitting, we apply dropout regularization to the node 
embeddings of each EGCL layer with a dropout rate of 0.1, determined through 5-fold cross 
validation (see Supplementary Table 1, 2). Our EquiPNAS models are implemented using 
PyTorch 1.12.0 43 and the Deep Graph Library (DGL) 0.9.0 44. During training, we use the 
binary cross-entropy loss function and a cosine annealing scheduler from the Stochastic 
Gradient Descent with Warm Restarts (SGDR) algorithm 45. We also utilize the ADAM 
optimizer 46, with a learning rate of 1e-4 and a weight decay of 1e-16. The training process 
consists of at most 40 epochs on an NVIDIA A40 GPU. In addition to the full-fledged version 
of EquiPNAS, we train baseline models for both protein-DNA and protein-RNA binding site 
prediction using the same hyperparameters and features as EquiPNAS, but without 
equivariant updates, that is, invariant baseline networks with the coordinate updates of the 
equivariant graph convolution layers turned off, enabling us to verify the importance of 
equivariance used in our model. 

Datasets and Performance Evaluation 

For a fair performance comparison of our method against the state-of-the-art methods for 
protein-DNA and protein-RNA binding site prediction, we use widely recognized public 
datasets as follows. 

Protein-DNA Benchmarking Dataset. To evaluate the performance of protein-DNA binding 
site prediction method, we use train (Train_573) and test (Test_129) datasets from the 
published work of GraphBind 20, which contain a total of 573 and 129 protein chains, 
respectively. Additionally, we use another test set consisting of 181 protein chains (Test_181) 
from the published work of GraphSite 21. These datasets are originally curated from the 
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public BioLiP database 47 that contains precomputed protein-DNA and protein-RNA 
binding sites from known protein-DNA and protein-RNA complexes after filtering out 
protein chains with > 30% sequence similarity among the datasets, by applying CD-Hit 48 to 
ensure non-redundancy. The training dataset (Train_573) was released before 6 January 2016 
whereas the Test_129 set was released between 6 January 2016 to 5 December 2018, and 
Test_181 was more recently released between 6 December 2018 to August 2021. The binding 
(and non-binding) residue count for Train_573, Test_129, and Test_181 are 14,479 (and 
145,404), 2,240 (and 35,275), and 3,208 (and 72,050), respectively. 

Protein-RNA Benchmarking Dataset. To evaluate the performance of protein-RNA binding site 
prediction method, we use the Train_495 set for training and the Test_117 set for testing, also 
from the published work of GraphBind 20, which contain a total of 495 and 117 protein 
chains, respectively. These datasets are also extracted from the BioLiP database 47 and pre-
processed to ensure non-redundancy between the train and test sets, using CD-Hit 48 to filter 
out protein chains with >30% sequence similarity. The Train_495 set contains 14,609, and 
122,290 binding, and non-binding residues, respectively, while in the Test_117 set, 2,031, and 
35,314 residues are binding, and non-binding residues, respectively.  

Evaluation metrics and competing methods. We assess the performance of our method using 
two widely recognized metrics: the area under the Receiver Operating Characteristic curve 
(ROC-AUC) and the area under the Precision-Recall curve (PR-AUC) scores. Both ROC-
AUC and PR-AUC are threshold-independent metrics, thereby providing a comprehensive 
and robust view of the performance of a model across the full range of possible classification 
thresholds. 

We compare our protein-DNA interaction site prediction method against eight existing 
methods. Three of the methods, SVMnuc 7, NCBRPred 8, and DNAPred 9, are sequence-
based methods, while the other five methods, COACH-D 15, NucBind 7, DNABind 16, 
GraphBind 20, and GraphSite 21 are structure-aware methods. SVMnuc is a support vector 
machine (SVM)-based method that utilizes features from PSI-BLAST 39, PSIPRED 49, and 
HHblits 50. NCBRPred employs bidirectional Gated Recurrent Units (BiGRU) 51 with multi-
label sequence labeling. DNAPred is a two-stage ensembled hyperplane-distance-based 
support vector machine (E-HDSVM) 9 for predicting protein-DNA binding sites. COACH-D 
is a consensus-based approach incorporating four different template-based and one 
template-free prediction methods. NucBind integrates the ab initio SVMnuc and template-
based COACH-D for higher accuracy prediction. DNABind is a hybrid method combining 
machine learning with template-based predictions. GraphBind proposes hierarchical graph 
neural networks, while GraphSite employs graph transformer neural networks. Among 
these competing methods, GraphBind and GraphSite are the most recent and represent the 
state-of-the-art for protein-DNA binding site prediction. 

We compare our protein-RNA binding site prediction method with seven existing methods. 
Two of the methods RNABindRPlus 11 and SVMnuc 7 are sequence-based methods, while the 
other five methods, COACH-D 15, NucBind 7, aaRNA 18, NucleicNet 19, and GraphBind 20 are 
structure-aware methods. SVMnuc, COACH-D, NucBind, and GraphBind are the methods 
we also compared against on protein-DNA binding tasks, as discussed earlier. 
RNABindRPlus is a hybrid method that combines sequence-homologs and support vector 
machine (SVM)-based predictions. aaRNA is a both sequence- and structure-based method 
that utilizes homology modeling to extract structural features along with various sequence-
based features. NucleicNet is a deep learning framework that extracts physiochemical 
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characteristics of the protein surface by quantifying it with grid points.  Among these 
methods, GraphBind is currently the top-performing method for protein-RNA binding site 
prediction. 

Results 

Test Set Performance 

Table 3 shows the performance of EquiPNAS for protein-DNA (on Test_129 and Test_181 
sets) and protein-RNA (on Test_117) binding site prediction tasks using AlphaFold2 
predicted structural models as input compared to two closest competing methods: 
hierarchical graph neural network-based method GraphBind for protein-DNA and protein-
RNA binding site prediction 20 and graph transformer-based method GraphSite for protein-
DNA binding site prediction 21 (see Supplementary Table 3 and Supplementary Table 4 for 
comprehensive performance comparison against all competing methods). The results 
demonstrate that EquiPNAS attains the highest scores in all three test datasets. The 
performance gain of EquiPNAS over the state-of-the-art methods is particularly noteworthy 
considering PR-AUC, a stringent and rigorous evaluation metric. For example, EquiPNAS 
yields 56.9% relative PR-AUC gain over GraphBind for protein-RNA binding site prediction; 
and 14.5%-21.1% relative PR-AUC gains over GraphBind and 4.1%-4.6% relative PR-AUC 
gains over GraphSite for protein-DNA binding site prediction. In summary, EquiPPIS 
improves upon the state-of-the-art accuracy of both protein-DNA and protein-RNA binding 
site prediction using AlphaFold2 predicted structural models by consistently attaining better 
performance than the existing approaches. 

 

Table 3. Protein-DNA and protein-RNA binding site prediction performance of EquiPNAS against 
the top-performing methods on the test datasets using AlphaFold2 predicted structural models as 
input. Values in bold represent the best performance.  

 

 

 

Protein-DNA 

Datasets Methods ROC-AUC PR-AUC 

 

Test_129 

GraphBind* 0.916 0.497 

GraphSite* 0.934 0.544 

EquiPNAS 0.940 0.569 

 

Test_181 

GraphBind* 0.893 0.317 

GraphSite* 0.917 0.369 

EquiPNAS 0.918 0.384 

 

Protein-RNA 

 

Test_117 

GraphBind 0.793 0.204 

EquiPNAS 0.886 0.320 

Note: * results are obtained directly from the published work of GraphSite. 
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Fig 2 presents 12 representative examples from the test datasets comparing the protein-DNA 
and protein-RNA binding site predictions using EquiPNAS against the second-best 
predictors: 4 from protein-DNA Test_129 (Fig 2 a), 4 from protein-DNA Test_181 (Fig 2b), 
and 4 from protein-RNA Test_117 (Fig 2c). The first two examples represent two human 
protein-DNA interactions: Transcription of Homo sapiens, Mus musculus (PDB ID: 5nj8, 
chain A), and Hydrolase/DNA of Homo sapiens, DNA launch vector pDE-GFP2 (PDB ID: 
5t4i, chain B) as shown in Fig 2a. GraphSite fails to predict the vast majority of protein-DNA 
binding sites as reflected in its low F1-score, Matthew's Correlation Coefficient (MCC) and 
PR-AUC in these two targets. In contrast, EquiPNAS achieves reasonably accurate 
prediction, with a remarkable gain of 0.506 and 0.417 points in F1-score, 0.458 and 0.357 
points in MCC, and 0.381 and 0.381 points in PR-AUC, respectively. The third and the fourth 
examples, Splicing of Caenorhabditis elegans, synthetic construct (PDB ID: 5tkz, chain A) 
and Transcription of Escherichia coli (PDB ID: 5ond, chain A), both show inaccurate binding 
site prediction by GraphSite, resulting in predicting 5 (out of total 89 residues), and 25 (out 
of total 135 residues) false positives, respectively, which are noticeably high. EquiPNAS 
accurately predicts these binding sites, with only 1 (out of total 89 residues) and 7 (out of 
total 135 residues) false positives, respectively. GraphSite also generates inaccurate 
predictions for DNA binding protein/DNA in Escherichia coli (PDB ID: 6nua, chain A) and 
for Mycolicibacterium smegmatis MC2 155, Mycolicibacterium smegmatis (PDB ID: 6iod, 
chain A), with 28 (out of total 227 residues), and 32 (out of total 212 residues) false positives, 
respectively; whereas EquiPNAS achieves a much better overall prediction performance 
with only 3 (out of total 227 residues) and 9 (out of total 212 residues) false positives, 
respectively. Interestingly, EquiPNAS attains perfect prediction with both ROC-AUC and 
PR-AUC values of 1.0, as well as an F1-score and MCC of approximately 0.93 for a smaller 
target (73 residues), a transcription protein in Mycobacterium tuberculosis (PDB ID: 7kuf 
chain A). In contrast, GraphSite's prediction is contaminated by several false positives, 
resulting in F1-score and MCC values of less than 0.65. Additionally, for an RNA binding 
protein/DNA in Homo sapiens (PDB ID: 7csz, chain A), our method still outperforms 
GraphSite, with a performance gain of 0.27 points in PR-AUC, 0.187 points in F1-score, and 
0.216 points in MCC, whereas GraphSite fails to identify majority of binding site residues, 
particularly for DNA chain C, resulting in a high number of false negatives. The RNA 
binding protein example in Danio rerio and Caenorhabditis elegans (PDB ID: 6fq3, chain A) 
provides a remarkable demonstration of the superior performance of EquiPNAS in 
predicting protein-RNA binding sites, as compared to the closest competing method 
GraphBind. While GraphBind fails to accurately detect any binding site, with PR-AUC, F1-
score, and MCC of 0.024, 0, and -0.017, respectively, EquiPNAS performs reasonably 
accurate predictions with much better PR-AUC, F1-score, and MCC of 0.732, 0.545, and 0.555, 
respectively. Furthermore, EquiPNAS shows highly accurate prediction for the transcription 
factor in Saccharomyces cerevisiae (PDB ID: 5o1y, chain A), exceeding GraphBind by 0.351 
points in F1-score, 0.382 points in MCC, and 0.303 points in PR-AUC. Additionally, in 
comparison to EquiPNAS, GraphBind exhibits suboptimal performance due to both false 
positive and false negative predictions for the binding sites of OXIDOREDUCTASE/RNA in 
Escherichia coli (PDB ID: 5hr7, chain B) and Hydrolase/RNA Methanococcus maripaludis 
C5, Methanococcus maripaludis (PDB ID: 4z7l, chain A).  
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Fig 2. Representative examples of protein-DNA and protein-RNA binding site predictions using 
EquiPNAS and the closest competing methods compared to the experimental observation. For targets 
from the Test_129 (a) and Test_181 (b) sets, protein-DNA binding site prediction using GraphSite vs. 
EquiPNAS are shown. For targets from the Test_117 set (c), protein-RNA binding site prediction 
using GraphBind vs. EquiPNAS are shown. True Positive (TP), False Positive (FP), and False Negative 
(FN) binding sites are represented in green, red, and yellow, respectively. 

 

In the above experiments, all methods use AlphaFold2 predicted structural models as input 
with EquiPNAS consistently delivering improved performance for both protein-DNA and 
protein-RNA binding site prediction tasks. However, structure-aware protein-nucleic acid 
binding site prediction methods traditionally rely on experimentally solved structures as 
input. Intuitively, using experimental structures as input, whenever available, should lead to 
better performance than using predicted structural models as input. Consequently, a natural 
question to ask is: How much performance decline do these methods suffer from when 
switching from experimental input to prediction? Not surprisingly, as shown in 
Supplementary Table 3 and Supplementary Table 4, using experimental input leads to 
better accuracy in almost all cases. Promisingly, the performance decline of EquiPNAS when 
switching from experimental input to AlphaFold2 prediction is much smaller compared to 
other methods. For instance, EquiPNAS loses only ~2.3% of PR-AUC points when using 
AlphaFold2 predictions as input instead of experimental ones for protein-DNA binding site 
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prediction, whereas GraphBind experiences a higher PR-AUC drop of 4.4%-6.9% PR-AUC 
points. EquiPNAS also demonstrates robustness in protein-RNA binding site prediction 
with a negligible drop in ROC-AUC (0.1%) when using AlphaFold2 predictions as input, 
whereas GraphBind shows a much higher ROC-AUC drop (7.7%). That is, EquiPNAS 
exhibits a minor performance decline when switching from experimental input to prediction 
while outperforming both GraphBind and GraphSite regardless of the use of predicted or 
experimental structures, demonstrating its robustness and generalizability and enabling 
accurate prediction of protein-DNA and protein-RNA binding sites at scale using 
AlphaFold2 predicted structural models. 

In the context of large-scale protein-nucleic acid binding site prediction using AlphaFold2 
predicted structural models, a related question is: Is there any relationship between the self-
estimated accuracy of AlphaFold2 predicted structural models and the accuracy of 
EquiPNAS binding site prediction? We examine the self-estimated accuracy of AlphaFold2 
predicted structural models using the AlphaFold2 predicted local distance difference test 
(pLDDT) and the ROC-AUC and PR-AUC of EquiPNAS binding site prediction resulting 
from the predicted structure. Using a pLDDT threshold of 0.85, we divide the targets in the 
test sets into two roughly equal groups: moderate confidence predictions with pLDDT 
values ≤ 0.85 and high confidence predictions with pLDDT values > 0.85. Supplementary 
Fig 1 shows the ROC-AUC and PR-AUC distributions for the two groups. Across the test 
datasets, high confidence predictions lead to better ROC-AUC and PR-AUC values 
compared to moderate confidence predictions, with the ROC-AUC and PR-AUC 
distributions resulting from the high confidence predictions skewed towards higher 
accuracy binding site prediction. Furthermore, we observe a noticeable difference in binding 
site prediction accuracy in terms of mean ROC-AUC and PR-AUC values resulting from the 
moderate confidence predictions versus the high confidence predictions (see 
Supplementary Table 5), indicating that the self-estimated accuracy of AlphaFold2 
predicted structural models can inform the accuracy of EquiPNAS binding site prediction in 
the absence of any experimental information in that highly confident AlphaFold2 
predictions tend to yield more accurate binding site prediction 

Ablation Study 

Contribution of the pLM embeddings. EquiPNAS utilizes pLM embeddings from the pretrained 
ESM-2 model 30 as part of the sequence-based features. To evaluate the relative contribution 
of the protein language model-based features compared to the evolutionary features such as 
PSSM and MSA, we conduct a feature ablation study by excluding protein language model-
based features or the evolutionary features from the full-fledged EquiPNAS feature set. Fig 3 
displays the 5-fold cross-validation performance of the ablated variants of EquiPNAS in 
terms of ROC-AUC and PR-AUC values for protein-DNA and protein-RNA binding site 
prediction. The results demonstrate that excluding pretrained protein language model-based 
features (no pLM) results in the worst performance with a relative PR-AUC drop of 18.5% 
(Fig 3b) and 15.4% (Fig 3d) for protein-DNA and protein-RNA binding site predictions, 
respectively. Such a significant performance drop highlights the importance of using pLM 
embeddings for our prediction. In contrast, we observe only minor performance drops when 
one or both evolutionary features were discarded. Even discarding both the evolutionary 
features (No (PSSM+MSA)) results in a relative PR-AUC drop of only 2.8% and 2% for 
protein-DNA and protein-RNA binding site predictions, respectively. Overall, compared to 
the relatively minor but positive contribution of evolutionary features, protein language 
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model-based features have a major contribution to the improved performance of the new 
EquiPNAS model. 

 

Fig 3. Feature ablation study. For protein-DNA binding site prediction, bar charts representing the 
performance of the ablated variants in terms of (a) ROC-AUC and (b) PR-AUC obtained using 5-fold 
cross validation are shown. For protein-RNA binding site prediction, bar charts representing the 
performance of the ablated variants in terms of (c) ROC-AUC and (d) PR-AUC obtained using 5-fold 
cross validation are shown. 

 

Recognizing the major contribution of pLM features compared to the relatively minor 
impact of the evolutionary features, we investigate the performance of our method utilizing 
the pLM embeddings, but without using any evolutionary information. Specifically, we 
discard the PSSM and MSA features and retrain our method on the full training set, and 
evaluate the performance on the test sets for both protein-DNA and protein-RNA binding 
site prediction tasks. As reported in Table 4, We find that for protein-DNA binding site 
prediction, EquiPNAS without PSSM or MSA (denoted by “EquiPNAS w/o (PSSM+MSA)”) 
outperforms GraphBind, and performs comparably to GraphSite; with only a slight 
performance decline compared to the full-fledged version of EquiPNAS. For example, in 
Test_129, EquiPNAS w/o (PSSM+MSA) achieves a ROC-AUC of 0.936 and a PR-AUC of 
0.544, which is comparable to GraphSite (ROC-AUC of 0.934 and PR-AUC of 0.544) and 
much higher than GraphBind (ROC-AUC of 0.916 and PR-AUC of 0.497). We observed a 
similar trend in Test_181. In contrast, the state-of-the-art GraphSite experiences a noticeable 
performance drop without using any of evolutionary features. As reported in the published 
work of GraphSite, PR-AUC drops from 0.544 down to 0.452 without using its MSA-derived 
features (-AF2 Single). For protein-RNA binding site prediction (Test_117), EquiPNAS w/o 
(PSSM+MSA) achieves a ROC-AUC of 0.877 and a PR-AUC of 0.299, which is noticeably 
better than GraphBind (ROC-AUC of 0.793 and PR-AUC of 0.204). Collectively, the results 
demonstrate the robustness of EquiPNAS over the state-of-the-art methods in that 
EquiPNAS is able to significantly reduce the dependence on the availability of evolutionary 
information which is not always abundant such as with orphan proteins or rapidly evolving 
proteins. Even without using any evolutionary information, and thus at a much lower 
computational overhead required for MSA and PSSM feature generation, our method 
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performs comparably (in the case of protein-DNA), even superior (in the case of protein-
RNA) to the full-fledged state-of-the-art protein-DNA and protein-RNA binding site 
prediction methods. In summary, EquiPNAS enables to build generalizable and scalable 
models. 

Table 4. Protein-DNA and protein-RNA binding site prediction performance of EquiPNAS variant 
trained without any evolutionary information (w/o MSA + PSSM) against the top-performing 
methods on the test datasets using AlphaFold2 predicted structural models as input. Values in bold 
represent the best performance.  

 

 

 

 

Protein-DNA 

Datasets Methods ROC-AUC PR-AUC 

 

Test_129 

GraphBind* 0.916 0.497 

GraphSite* 0.934 0.544 

EquiPNAS w/o 
(MSA+PSSM) 

0.936 0.544 

 

Test_181 

GraphBind* 0.893 0.317 

GraphSite* 0.917 0.369 

EquiPNAS w/o 
(MSA+PSSM) 

0.917 0.364 

 

Protein-RNA 

 

Test_117 

GraphBind 0.793 0.204 

EquiPNAS w/o 
(MSA+PSSM) 

0.877 0.299 

Note: * results are obtained directly from the published work of GraphSite. 

 
Contribution of equivariance. EquiPNAS delivers robust and improved performance across 
various datasets and predictive modeling scenarios. In order to understand the reasons 
behind such improved performance and verify that it is connected to the equivariant nature 
of the model, we perform an ablation study by isolating the effect of the equivariant graph 
convolutions used in EquiPNAS. In particular, we train a family of baseline graph neural 
networks for protein-DNA and protein-RNA binding site prediction tasks after turning off 
the coordinate updates of the equivariant graph convolution layers, thus making it an 
invariant network. Both the equivariant (the full-fledged version of EquiPNAS) and 
invariant counterparts are trained on the same training datasets using the same set of input 
features and hyperparameters as the full-fledged version of EquiPNAS. Fig 4 shows the the 
performance of the equivariant and invariant networks using both experimentally 
determined (native) and AlphaFold2 predicted structures. The results demonstrate that 
equivariant networks used in the full-fledged version of EquiPNAS consistently outperform 
the invariant baseline networks regardless of the use of predicted or native structures as 
input. Strikingly, the invariant baseline models even using the native structures perform 
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worse than the equivariant models using the AlphaFold2 predicted structures, let alone the 
equivariant models using the experimental structures. For instance, in the Test_129 set, the 
baseline invariant model attains ROC-AUC (and PR-AUC) of 0.938 (and 0.565) using the 
native structures, whereas the equivariant model attains ROC-AUC (and PR-AUC) of 0.940 
(and 0.569) using AlphaFold2 predicted structures, and 0.943 (0.582) using native structures. 
A similar trend is also overserved in test sets Test_181 and Test_117. Overall, the results 
highlight the performance contribution and remarkable robustness of the equivariant 
networks used in EquiPNAS, attaining better accuracy with AlphaFold2 predicted structural 
models than what an invariant counterpart can achieve even with experimental structures 
for both protein-DNA and protein-RNA binding site prediction tasks.  

 

Fig 4. The performance of equivariant networks used in the full-fledged version of EquiPNAS 
compared against the invariant baseline networks using both experimental (native) and AlphaFold2 
predicted structures as input. ROC-AUC and PR-AUC for protein-DNA test set Test_129 are 
presented in (a, b); ROC-AUC and PR-AUC for protein-DNA test set Test_181 are presented in (c, d); 
ROC-AUC and PR-AUC for protein-RNA test set Test_117 are presented in (e, f). 
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Discussion 

This work presents EquiPNAS, a new pLM-informed equivariant deep graph neural 
network framework for accurate protein-nucleic acid binding site prediction. We 
demonstrate that EquiPNAS consistently outperforms the state-of-the-art methods on both 
protein-DNA and protein-RNA binding site prediction tasks. A major contribution of our 
work is the successful utilization of protein language model (pLM) embeddings, a 
previously unexplored avenue in the context of protein-DNA and protein-RNA binding site 
predictions. Our ablation study reveals that the pLM embeddings are sufficiently powerful 
that can dramatically reduce the dependence on the availability of evolutionary information 
which is not always abundant such as with orphan proteins or rapidly evolving proteins, 
enabling us to build generalizable models. Moreover, despite being trained on experimental 
structures as input, our method exhibits remarkable robustness and performance resilience 
by attaining high predictive accuracy even when AlphaFold2 predicted structural models 
are used as input, dramatically enhancing the scalability of protein-nucleic acid binding site 
prediction without compromising on accuracy. Through controlled experiments, we directly 
verify that the symmetry-aware nature of the E(3) equivariant graph-based framework is a 
major driving force behind the improved performance of EquiPNAS, particularly when 
predicted structures are used as input. 

While this work focuses on partner-independent protein-nucleic acid binding site prediction, 
that is, predicting the binding sites based only upon the surface of an isolated protein 
without any prior knowledge about the interacting nucleic acid partner; incorporating 
additional information regarding the DNA or RNA molecules interacting with the protein 
may lead even more accurate binding sites prediction. Beyond the realm of binding site 
prediction, a promising direction for future work is to develop accurate, robust, and scalable 
computational approaches for protein-DNA or protein-RNA complex structure modeling, 
capturing protein-DNA and protein-RNA interactions at the atomic level. In this regard, the 
predicted protein-nucleic acid binding sites can serve as additional restraints, alongside 
physics- and/or knowledge-guided force fields, to facilitate more efficient and accurate 
protein-DNA or protein-RNA complex structure modeling. The predicted binding site 
information can complement and supplement the existing force fields as an additional 
scoring term to efficiently navigate the conformational space accessible to protein-nucleic 
acid complexes, leading to improved predictive modeling. 

Data Availability 

The raw data used in this study, including the datasets for train, test and validation are 
collected from publicly available sources and freely available at 
http://www.csbio.sjtu.edu.cn/bioinf/GraphBind/ and https://github.com/biomed-
AI/GraphSite.  

Code Availability 

An open-source software implementation of EquiPNAS, licensed under the GNU General 
Public License v3, is freely available at https://github.com/Bhattacharya-Lab/EquiPNAS.  
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