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Abstract 
Mechanisms of protein-DNA interactions are involved in a wide range of biological activities and processes. Accurately identifying 
binding sites between proteins and DNA is crucial for analyzing genetic material, exploring protein functions, and designing novel 
drugs. In recent years, several computational methods have been proposed as alternatives to time-consuming and expensive traditional 
experiments. However, accurately predicting protein-DNA binding sites still remains a challenge. Existing computational methods 
often rely on handcrafted features and a single-model architecture, leaving room for improvement. We propose a novel computational 
method, called EGPDI, based on multi-view graph embedding fusion. This approach involves the integration of Equivariant Graph Neural 
Networks (EGNN) and Graph Convolutional Networks II (GCNII), independently configured to profoundly mine the global and local node 
embedding representations. An advanced gated multi-head attention mechanism is subsequently employed to capture the attention 
weights of the dual embedding representations, thereby facilitating the integration of node features. Besides, extra node features from 
protein language models are introduced to provide more structural information. To our knowledge, this is the first time that multi-view 
graph embedding fusion has been applied to the task of protein–DNA binding site prediction. The results of five-fold cross-validation 
and independent testing demonstrate that EGPDI outperforms state-of-the-art methods. Further comparative experiments and case 
studies also verify the superiority and generalization ability of EGPDI. 

Keywords: protein–DNA binding site prediction; protein language models; multi-view graph embedding fusion; equivariant graph 
neural network; gated attention mechanism 

Introduction 
The interactions between proteins and deoxyribonucleic acid 
(DNA) are essential for diverse biological activities and processes 
[1, 2], including gene expression and regulation, DNA replication, 
repair, and signal transduction [3, 4]. Accurate identification 
of protein–nucleic acid interactions is of great significance for 
understanding protein molecular mechanisms, exploring protein 
functions [5, 6], and identifying potential drug targets for new drug 
design [7, 8]. Traditional experimental methods, including X-ray 
crystallography [9], fast ChIP [10],  and electron microscopy [11], 
are designed to identify the binding modes between proteins and 
nucleic acids. However, these methods are often time-consuming 
and expensive. Consequently, there is a strong impetus to develop 
efficient and accurate computational methods for identifying 
protein–DNA binding sites. 

Existing computational methods for protein–DNA binding site 
prediction can be broadly classified into two categories, sequence-
based methods and structure-based methods, based on the data 
types utilized. Sequence-based methods primarily learn local pat-
terns of DNA binding from protein sequences before feeding them 
into various classifiers for prediction. TargetS [12] predicts ligand-
binding sites from primary protein sequences using a ligand-
specific strategy. SCRIBER [13] uses hidden Markov models to cap-
ture long-term dependency characteristics of protein sequences. 
TargetDNA [14] extracts evolutionary conservation information 
and predicted solvent accessibility from protein sequences, using 
a sliding window strategy to learn local patterns of DNA binding. 
NCBRPred [15] predicts nucleic acid binding residues in proteins 
using bidirectional Gated Recurrent Units (BiGRUs) [16] to capture  
global interactions among residues. Although sequence-based
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methods can be applied to any protein, their lack of crucial 
protein spatial structure information results in limited prediction 
accuracy. 

In contrast, structure-based methods yield more accurate 
predictive results by integrating available structural information, 
and can be categorized into three types: template-based 
approaches, machine-learning-based approaches, and hybrid 
approaches. Reliable templates of target proteins are searched 
using alignment or comparison algorithms, enabling template-
based approaches to learn rich genetic information. For instance, 
COACH-D [17] identifies reliable templates for the query protein 
from the BioLip dataset. TM-SITE [18] is devised by comparing 
the structure of consistently distributed subsets of residues, 
linking them to the binding pockets identified in both the queried 
and template proteins. COFACTOR [19] identifies template 
proteins with similar folds and functional sites by threading 
the target structure through three representative template 
libraries. Machine learning-based approaches typically rely on 
protein sequence and spatial structure information to construct 
computational models. In GraphBind [20], the secondary structure 
and atomic spatial position information of proteins are encoded 
into node and edge features of graphs. GraphSite [21] introduces a 
single representation of the protein generation model AlphaFold2 
[22] to predict protein–DNA binding sites. GLMSite [23] utilizes a  
geometric vector perceptron-based graph neural network (GVP-
GNN) to address the protein–DNA binding site prediction task. 
EquiPNAS [24] employs an equivariant graph neural network as 
protein encoder. Hybrid approaches meld template-based and 
machine learning-based approaches. For instance, DNABind [25] 
combines machine learning methods with template methods, 
enhancing the accuracy of predicting binding sites. NucBind 
[26] combines predictions from the template-based method 
COACH-D and the machine learning-based method SVMnuc [26]. 
NABind [27], combines deep learning and template modules using 
sequence and structural descriptors, accurately predicting DNA-
and RNA-binding residues. However, template-based methods 
are heavily dependent on the quality of templates, making them 
susceptible to inaccuracies. Hybrid-based methods are encum-
bered by high computational complexity. Furthermore, current 
computational methods use single-feature representation and 
single encoder, limiting their ability to extract comprehensive 
information from complex proteins. Therefore, the accurate 
identification of protein–DNA binding sites remains an ongoing 
challenge. 

Considering the significant impact of both sequences and 
local patterns of tertiary structures on protein functional sites 
[28]. Designing handcrafted features requires sufficient biological 
knowledge and may lose critical information. Deep learning 
techniques have demonstrated potential in learning intricate 
binding patterns from proteins, presenting a solution to the 
limitations in manual features design [29]. Recently, pretrained 
protein language models [30–33] have been widely used to 
generate embeddings for various downstream tasks, such as 
protein structure prediction [31, 33] and function prediction 
[30, 32]. Additionally, recent advancements in EGNN [34] have  
demonstrated its ability to handle spatial translation and 
rotation invariance of molecules. As an illustration, FABind 
[35] incorporates an E(3) equivariant graph neural network 
into the encoder, enhancing the performance of protein and 
ligand docking prediction. EQGAT [36] confirmed that EGNN 
outperforms traditional graph neural networks in representing 
protein structures. Furthermore, the gated attention mechanism 

[37], dynamically adjusts attention weights and has enhanced the 
performance of the multi-head attention mechanism [38]. 

In this work, we propose a novel computational method, EGPDI, 
aimed at identifying protein–DNA binding sites based on multi-
view graph embedding fusion. By converting the binding site 
prediction task into a graph node classification problem, we map 
each protein sequence into a graph representation, with amino 
acids serving as nodes. Node features are enriched by amalga-
mating handcrafted features with diverse embeddings derived 
from protein language models. The graph’s topology is articu-
lated through a distance matrix, established by calculating the 
Euclidean distance between amino acids, subsequently trans-
lated into an adjacency matrix. The deeper information extrac-
tion process employs both the GCNII module and the EGNN 
module to extract local and global embeddings, respectively. To 
tackle the vanishing gradient issue in multi-layer graph neu-
ral networks, we innovatively apply initial residual connections 
and identity mapping in the EGNN module. Finally, an advanced 
gated multi-head attention mechanism is applied to integrate 
these embeddings efficiently, capturing important information 
while addressing the challenge of strong heterogeneity. To our 
knowledge, this is the first time that multi-view graph embed-
ding fusion has been applied to the task of protein–DNA binding 
site prediction. Besides, we comprehensively evaluate EGPDI on 
benchmark datasets and independent test set, and the results 
show that EGPDI outperforms existing methods. The datasets and 
the source code of EGPDI are freely available at https://github. 
com/HaaZheng/EGPDI. 

Materials and methods 
Benchmark datasets 
To compare with existing methods, we utilize three widely recog-
nized public datasets. They are the training set (DNA_573_Train) 
and test set (DNA_129_Test) from GraphBind, which contain 573 
proteins and 129 proteins, respectively. And the independent test 
set (DNA_181_Test) from GraphSite, which contains 181 proteins. 
The average protein length in DNA_181_Test is about 415 amino 
acids, compared to 290 in DNA_129_Test. DNA_129_Test has no 
proteins over 1000 amino acids while DNA_181_Test contains 18 
such proteins. A DNA-binding site is defined when the smallest 
atomic distance between the DNA molecule and the target residue 
is less than 0.5 Å. Datasets were obtained by selecting proteins 
with potentially similar biological functions from multiple DNA-
protein complexes. Additionally, CD-HIT [39] was used to ensure 
that no redundant protein with >30% sequence identity within 
the training set and between the training and test sets. The details 
of these public datasets are shown in Table 1. 

Problem formalization 
In this work, the DNA binding site prediction problem is treated 
as a graph node classification problem. Each protein sequence is 
represented as a graph, which is defined as G = (X, E, A). X = 
{xi}i=1,...,N and xi ∈ RL×6524 denote the node feature matrix and the 
node feature vector of node i, respectively, where L represents the 
length of protein sequence. A is defined as an adjacency matrix 
with the shape of N × N. And edge feature matrix is defined as 
E = {

eij|Aij = 1
}
, where  eij ∈ R2 stands for the edge feature vector 

between node i and node j. Aij = 1 if the centroid of residue side-
chain between node i and node j is less than 17 Å, otherwise, 
Aij = 0. This particular distance threshold is derived from the 
results of our independent cross-validation experiments.
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Table 1. Summary of the benchmark datasets 

Dataset Proteins Binding residues Nonbinding residues PNratio 

DNA_573_Train 573 14 479 145 404 0.100 
DNA_129_Test 129 2240 35 275 0.064 
DNA_181_Test 181 3208 72 050 0.045 

Table 2. Summary of node features 

Features [shape] Description 

PSSM [L,20] Normalized position-specific scoring matrix (PSSM) 
HMM [L,30] Normalized Hidden Markov Models Matrix (HMM) 
One-hot encoding [L,20] One-hot encodings of 20 amino acid residue types 
Atomic features [L,7] Atomic features of residues (AF) 
SS [L,14] Secondary structure profiles (SS) 
MSA [L,256] Multiple sequence alignment (MSA) 
ESM-2 [L,5153] pLM embeddings from ESM-2 with 15B and 3B parameters 
ProtTrans [L,1024] pLM embeddings from ProtTrans 

Table 3. Summary of edge features 

Features [shape] Description 

Euclidean distance [de,1] The Euclidean distance between two nodes in three-dimensional space. 
Cosine value of angle [de,1] The cosine values of the angle between two residues 

Node representations 
Summarize all node feature representation strategies and obtain 
a final 6524-dimensional feature matrix. The details of these node 
features are shown in Table 2. 

Edge representations 
For edge features on the graph, two different types of position 
encodings are computed. The details of these node features are 
shown in Table 3, where  de denotes the number of edges. Specif-
ically, for each amino acid in the target protein, Euclidean coor-
dinates in three-dimensional space are captured as coordinates 
features, dedicated to the EGNN module. 

The architecture of EGPDI 
In this work, we propose EGPDI, a protein–DNA binding site pre-
diction method based on a multi-view graph fusion framework 
that aggregates multi-source information. The overall architec-
ture of EGPDI is shown in Fig. 1. Initially, handcrafted features are 
combined with the protein language models (pLMs) features as 
node features, distance matrix and two types of edge features are 
calculated to construct the topology of the graph. Subsequently, 
the graph data are separately passed to the GCNII and EGNN 
modules, which introduce identity mapping and initial residual 
connection ideas. 

Therefore, we obtain two different deeper graph embeddings. 
An improved gated multi-head attention mechanism is adopted 
to effectively combine two embeddings, and these embeddings are 
transmitted to the MLP module to obtain the protein–DNA binding 
site classification result. 

Graph convolutional networks II 
Graph Convolutional Networks (GCN) [40] and their variants, 
notably GCNII, have shown significant success in graph node 
classification tasks in recent years. GCNII extends GCN by 

introducing initial residual connections and identity mapping 
to effectively tackle the over-smoothing issue [41]. It maintains 
the core message-passing mechanism, using adjacency and 
node feature matrices for efficient information propagation 
and prioritizes neighboring nodes to capture local information 
effectively in graph embeddings. 

In this work, our GCNII module comprises four layers with a 
hidden dimension of 128. 

Equivariant graph neural network 
Equivariant Graph Neural Network (EGNN) is a variant of GNN [42] 
that introduces coordinate features, distinguishing it from tradi-
tional GNNs. By implementing coordinate equivariant transfor-
mations, EGNN can capture translation-, rotation-, and reflection-
equivariant characteristics within three-dimensional molecules. 
Therefore, utilizing EGNN to extract protein features can acquire 
more structural properties. Another distinction from traditional 
GNNs is EGNN’s capability to process both equivariant and invari-
ant features simultaneously. Multiple equivariant graph convolu-
tion layers (EGCL) are stacked to form EGNN. EGCL updates the 
coordinate features xl+1 

i and node features hl+1 
i of the next layer 

based on the coordinate features xl 
i, node features hl 

i, and edge 
features eij input from the previous layer. The update rule of node 
coordinate features in EGCL is defined as follows: 

mij = Φe

(
hl 

i, hl 
j,

∥∥∥xl 
i − xl 

j

∥∥∥2 
, eij

)
(1) 

C = 
1 

M − 1 
, mij ∈ M (2) 

xl+1 
i = xl 

i + C
∑
j �=i

(
xl 

i − xl 
j

)
Φx

(
mij

)
(3) 

Initially, the relative distance between node i and node j, edge  
features eij and their node features hl 

i, hl 
j are aggregated through
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Figure 1. The overall architecture of EGPDI. (1) Feature extraction. PSSM, HMM, one-hot encoding, MSA, ESM-2 embeddings, and ProtTrans embeddings 
are extracted from protein sequences, while SS and atomic features are extracted from protein structure, collectively forming the node features. Edge 
features are composed of two types of position encodings, and an adjacency matrix is also generated. (2) Structural context extraction. The structural 
context of a target residue is determined by a sliding sphere of a predefined radius (r = 17 Å) centered at the residue. (3) Graph construction. The node 
features, edge features, and structural context of a target protein are aligned to construct graph data. (4) Network architecture. The graph data is fed into 
the GCNII module and the EGNN module, each incorporating initial residual connection and identity mapping. An improved gated multi-head attention 
mechanism is utilized to fuse two types of deep graph embeddings effectively. Finally, the fused embeddings are passed through the MLP module to 
obtain the prediction results. 

the MLP operation of edges Φe. C denotes a constant factor chosen 
as 1/M − 1, where  M is the number of graph nodes. 

The aggregated information mij is processed by Φx, an  MLP  
operation of nodes. The node features of node i from the previous 
layer and the sum of its relative coordinate differences with all 
the other nodes are taken into account for updating the node in 
the next layer. 

In addition to incorporating the entire graph nodes when 
updating coordinate features, EGNN also integrates the entire 
graph information in node features and edge features. Unlike 
GCNII, which tends to capture local information, EGNN tends 
to capture global information. The aggregated information mi of 
node i is collected from all the other nodes. Φh denotes the MLP 
operation of node. The updating process of node features is as 
follows: 

mi =
∑
j �=i 

mij (4) 

hl+1 
i = Φh

(
hl 

i, mi

)
(5) 

In this work, our EGNN module comprises two layers with a 
hidden dimension of 512. 

EGNN with initial residual and identity mapping 
Increasing the number of layers in the model may lead to over-
fitting in GCN. However, reducing the depth of the model can 
result in insufficient features extracted from neighbors. Inspired 
by GCNII, we introduced the concept of initial residual connection 
and identity mapping to EGNN. The update rule of EGCL is defined 
as follows: 

H(l+1) = σ
((

(1 − α) PH(l) + αH(0)
) (

(1 − βl) In + βlW(l)
))

(6) 

βl = log
(

λ 
l 

+ 1
)

(7) 

where α, β are hyperparameters, P is the normalized adjacency 
matrix. H(l), H(0) denote the node feature matrix of the lth layer and 
the initial node feature matrix, respectively. Based on EGNN, two 
improvements are implemented: (i) Initial residual connection:
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adding the initial node feature matrix H(0) and smoothing matrix 
PH(l). (ii) Identity mapping: adding the weight matrix of the lth 
layer W(l) with an identity map In.  In this way,  even if stack  multi-
ple layers of EGCL, at least part of the original node features can 
be retained in the final feature embedding, effectively mitigating 
overfitting. 

Improved gated multi-head attention module 
To focus on more important features, we introduce the attention 
mechanism [38] to fuse the two graph embeddings from the GCNII 
module and EGNN module. Initially, the graph embeddings from 
different perspectives are merged. The combined graph embed-
dings f ∈ RL×640 are treated as the query matrix Q, key matrix 
K, and value matrix V. However, the self-attention mechanism 
may overly focus on itself; hence, to distribute attention across 
different feature spaces, a multi-head attention mechanism is 
employed. By calculating the attention weight for each head, the 
attention distribution in each feature space is determined. 

The attention weight is calculated as shown: 

Attentioni = softmax 

⎛ 

⎝
(
QWQ 

i

) (
KWk 

i

)
√

dk 

⎞ 

⎠ (8) 

headi = Attentioni
(
VWv 

i

)
(9) 

WQ 
i , Wk 

i , Wv 
i represent the learnable matrices for the query, key, 

and value matrices, respectively. And Attentioni denotes the 
attention matrix with a size of L × L, where  i = 1, . . . , H. In this 
work, H = 16. In order to further dynamically adjust the output 
of global information, a gated mechanism [37] similar to LSTM 
[43] is introduced on the multi-head attention mechanism. The 
implementation of the gated mechanism is shown as follows: 

G = σ
(
fWG + bG)

(10) 

hgated 
i = G e headi (11) 

hgated = concat
(
hgated 

i , L, hgated 
H

)
W (12) 

Through the gated mechanism, the output information hgated 

is obtained, where WG, bG, W are all learnable parameters, and
� represents the vector element product. However, due to the 
high complexity of protein structure, a single-gated multi-head 
attention mechanism may not capture adequate information. 
Therefore, the outputs of multiple independent gated multi-head 
attention mechanisms are concatenated to obtain a more com-
prehensive representation. The final output of the gated multi-
head attention mechanism module is calculated as shown, where 
N = 8 and H ∈ RL×640×8. 

H = concat
(
hi 

gated

)
, i = 1, K, N (13) 

Results and discussion 
The proposed method undergoes objective evaluation using five-
fold cross-validation (5-CV), and repeats 10 times to ensure reli-
able predictive results. To assess and compare model perfor-
mance objectively, widely used performance evaluation metrics 
including Specificity, Precision, Recall, F1-score (F1) and Matthews 
correlation coefficient (MCC) are employed, the formulas are 
calculated in the supplementary material. 

Feature ablation experiments 
To determine the optimal feature combination, feature combi-
nation methods are divided into three categories: handcrafted 
features, pLMs features and merged features. The experimental 
results are shown in Table 4. 

Handcrafted features consist of PSSM, HMM, One-hot encoding, 
SS and AF, while pLMs features include ESM-2 embeddings, Prot-
Trans embeddings, and MSA. Merged features represent a fusion 
of handcrafted features and pLMs features. Table 4 illustrates 
that, with the exception of Specificity, which exhibits no improve-
ment, other metrics for merged features show enhancements. 
Specially, compared to handcrafted features and pLMs features, 
the model utilizing the merged features demonstrates an increase 
in MCC by 24% and 6.4%, AUC by 10% and 1.8%, and AUPR by 
26.7% and 6.4%, respectively. This notable improvement can be 
attributed to the diverse functional and structural properties cap-
tured by pLMs features derived from large protein datasets and 
the rich genetic information contained in handcrafted features. 

Effectiveness of basic modules 
In this section, we conducted a comprehensive evaluation of the 
basic modules in EGPDI. The results of the experiment are shown 
in Fig. 2 and Table 5 below. 

Table 5 presents the comprehensive performance of the GCNII 
module, EGNN module and EGPDI across all evaluation metrics. 
EGPDI demonstrates superior performance across multiple eval-
uation metrics compared to EGNN and GCNII. Interestingly, GCNII 
module alone yields inferior results compared to utilizing the 
EGNN module alone. This difference can be attributed to the 
inherent characteristics of each module: GCNII primarily cap-
tures local information through neighbor node sampling, while 
EGNN comprehensively captures global information by sampling 
the entire graph. The integrated approach of EGPDI leverages 
the strengths of both modules, resulting in enhanced predic-
tive performance. As depicted in Fig. 2A and B, EGPDI achieves 
better performance on both the ROC curve and PR curve. The 
confusion matrix in Fig. 2D reveals that for the DNA_573_Train 
dataset, EGPDI accurately predicts 151 161 sites, surpassing EGNN 
by 2121 and GCNII by 4301. Furthermore, the visual analysis in 
Fig. 2E demonstrates that EGPDI reduces the blue coverage in 
the three- dimensional map, while reducing the gray area in the 
residue position diagram, further supporting the effectiveness 
of EGPDI in reducing false positives and enhancing prediction 
accuracy. Moreover, the examination of the number of indepen-
dent gated multi-head attention mechanisms in Fig. 2F shows 
that employing multiple independent gated multi-head attention 
mechanisms can effectively enhance model performance. The 
optimal performance was achieved when the number reaches 8. 

Effectiveness of different embedding fusion 
In this section, we validated the superiority of the EGPDI model 
architecture based on multi-view graph embedding fusion on the 
test sets. The superior performance of the EGPDI model archi-
tecture is confirmed, as shown in Table 6. To further validate 
the fusion of multi-view graph embedding between the EGNN 
module and the GCNII module, we designed three methods and 
conducted a comparative analysis with EGPDI on both test sets. 
The comparative results are depicted in Fig. 3. 

BiLSTM [44], a widely utilized model in predicting protein– 
DNA binding sites, is employed as the baseline for our compar-
ative analysis with GCNII and EGNN. To systematically compare 
the performance of EGPDI, we developed three variants. BiLSTM
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Table 4. Performance of different features on training set using five-fold cross-validation 

Dataset Features Spe Rec Pre F1 MCC AUC AUPR 

DNA_573_Train Handcrafted features 0.936 0.460 0.445 0.447 0.391 0.856 0.423 
pLMs features 0.969 0.571 0.651 0.608 0.573 0.938 0.626 
Merged features 0.964 0.677 0.668 0.666 0.637 0.956 0.690 

Note: AlphaFold2 predicted protein structures used for evaluation. Bold fonts are the best results. 

Figure 2. The effectiveness analysis of the basic modules in EGPDI. The ROC curve (A) and PR curve (B) illustrate the performance of the EGNN module, 
GCNII module and EGPDI on the training set. Additionally, the MCC histogram (C) and confusion matrix (D) provide further insights. An illustrative 
example of protein–DNA site prediction is depicted in (E). Moreover, the impact of the number of independent gated multi-head attention mechanisms 
on model performance is analyzed in (F). 

Table 5. Performance of different modules on training set using five-fold cross-validation 

Dataset Module Spe Rec Pre F1 MCC AUC AUPR 

DNA_573_Train GCNII 0.942 0.667 0.540 0.599 0.559 0.921 0.570 
EGNN 0.935 0.741 0.533 0.615 0.584 0.929 0.593 
EGPDI 0.964 0.677 0.668 0.666 0.637 0.956 0.690 

Note: Values in bold represent the best performance. 
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Table 6. Performance of EGPDI on two test sets 

Dataset Specificity Recall Precision F1 AUC MCC 

DNA_129_Test 0.961 0.612 0.503 0.549 0.941 0.522 
DNA_181_Test 0.952 0.558 0.346 0.424 0.914 0.407 

Figure 3. Performance of EGPDI and three variants: BiLSTM, EGNN & BiLSTM, GCNII & BiLSTM on test sets DNA_129_Test and DNA_181_Test. 

Table 7. Performance comparison with state-of-the-art methods on two test sets 

Dataset Method Specificity Recall Precision F1 AUC MCC 

DNA_129_Test COACH-D 0.955 0.328 0.318 0.323 0.712 0.279 
NucBind 0.964 0.322 0.366 0.343 0.809 0.304 
GraphSite 0.950 0.566 0.423 0.441 0.912 0.425 
GLMSite 0.816 0.848 0.287 0.405 0.918 0.412 
EquiPNAS 0.956 0.516 0.471 0.462 0.919 0.443 
EGPDI 0.961 0.612 0.503 0.549 0.941 0.522 

DNA_181_Test COACH-D 0.971 0.239 0.266 0.251 0.668 0.220 
NucBind 0.959 0.288 0.240 0.262 0.798 0.227 
GraphSite 0.958 0.454 0.343 0.345 0.892 0.332 
GLMSite 0.805 0.829 0.209 0.311 0.899 0.334 
EquiPNAS 0.958 0.436 0.346 0.366 0.907 0.353 
EGPDI 0.952 0.558 0.346 0.424 0.914 0.407 

Note: The results of other methods come from the paper NABind [27 ] proposed by Zhen et al. Values in bold represent the best performance. 

model comprises two bidirectional LSTM layers, only utilizing 
node features to calculate the probability of binding sites. The 
second variant, EGNN & BiLSTM, passes the node features to a 
two-layer BiLSTM and feeds the graph data to an EGNN module 
with four EGCL layers Similarly, the third variant, GCNII & BiL-
STM, processes the node features through BiLSTM and feeds the 
graph data to GCNII individually to acquire different embeddings. 
Notably, all other components of the model architecture remain 
consistent across all variants. 

As shown in Fig. 3, on DNA_129_Test, the GCNII & BiLSTM 
variant exhibits a decrease in performance across multiple met-
rics, including Rec, F1, AUC, and MCC. Additionally, the EGNN & 
BiLSTM variant consistently demonstrates inferior performance 
across all evaluation metrics compared to EGPDI. The experimen-
tal results of DNA_181_Test exhibit similar trends, as detailed 
in Supplementary Table S1. Overall, the experimental results 
indicate that the fusion of BiLSTM-based and graph-based embed-
dings does not lead to performance improvement. The proposed 
method outperforms all variants across key metrics. By obtaining 
two graph-based embeddings from multiple perspectives, EGPDI 
effectively mitigates potential heterogeneity and redundancy in 
information among different types of embeddings. 

Performance comparison with other methods 
We compare EGPDI with five existing methods on test set 
DNA_129_Test and independent test set DNA_181_Test. Table 7 
records the detailed experimental results. 

EGPDI demonstrates significant improvements in key met-
rics, such as F1, AUC, and MCC, on both DNA_129_Test and 
DNA_181_Test compared to the suboptimal method. Specifically, 
on DNA_129_Test, EGPDI shows enhancements of 8.7%, 2.2%, and 
7.9% in F1, AUC, and MCC, respectively, while on DNA_181_Test, 
improvements of 5.8%, 0.7%, and 5.4% are observed. The perfor-
mance of EGPDI on the MCC metric on the two test sets is shown 
in Supplementary Fig. S2. However, the performance of EGPDI on 
the Spe and Rec metrics appears to be average, possibly due to 
their high sensitivity to threshold selection. It is worth noting 
that the COACH-D method and the NucBind method suffer from 
poor prediction performance when reliable templates are unavail-
able, and the GraphSite method which uses graph transformer 
architecture cannot handle proteins with complex structures well 
and loses important structural prior knowledge. Additionally, the 
GLMSite method only uses ProtTrans embeddings as node fea-
tures, which leads to incomplete protein characterization. EGPDI’s 
success in overcoming these limitations and achieving superior
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Figure 4. The three-dimensional map and residue position diagram of protein 6g1t_A (A) and 6fwr_A (B). 

performance lies in its template-independent approach and com-
prehensive characterization of proteins through diverse repre-
sentation features. Additionally, the incorporation of the EGNN 
module enables the retention of crucial structural prior knowl-
edge, while the enhanced gated multi-head attention mechanism 
efficiently fuses graph embeddings, further improving the perfor-
mance of model. 

Case studies 
In this section, we conduct case studies to verify EGPDI’s 
capability to recognize unknown protein–DNA binding sites. 
Protein 6g1t_A and 6fwr_A are chosen from DNA_129_Test and 
DNA_181_Test, respectively. These two representative examples 
of protein–DNA site prediction made by EGPDI and EquiPNAS 
are plotted in Fig. 4. Protein 6g1t_A consists of 115 residues, 
while protein 6fwr_A consists of 699 residues. Figure 4A shows 
that EGPDI accurately predicts six more residues on protein 
6g1t_A compared to EquiPNAS. Figure 4B demonstrates that 
EGPDI accurately predicts 68 more residues on protein 6fwr_A 
compared to EquiPNAS. These findings indicate the efficacy 
of EGPDI in enhancing the prediction performance of binding 
sites. Moreover, a detailed analysis of the sequence diagrams 
indicates a notable reduction in the number of false positives (FP) 
when employing the proposed method. The three-dimensional 
images of proteins6g1t_A and 6fwr_A illustrate the distribution 
of prediction results for EquiPNAS and EGPDI. Specifically, in the 
three-dimensional image of EGPDI, the blue and pink regions 
exhibit smaller areas, whereas the red region appears more 
prominent. 

Conclusion 
Accurately identifying binding sites between proteins and DNA is 
essential for designing novel drugs and understanding biological 
processes. Owing to the limitations in protein feature representa-
tion and encoder design, current methods still have the potential 
for prediction improvement. In this study, we propose a novel 
computational method called EGPDI for predicting protein–DNA 

binding sites. Firstly, we encode protein molecules into graphs, 
incorporating both handcrafted features and pLMs embeddings as 
node features. Additionally, we calculate the Euclidean distance 
and the cosine values of the angles between adjacent nodes as 
edge features. Subsequently, we utilized the EGNN module and 
the GCNII module, both incorporating initial residual connections 
and identity mapping mechanisms, to independently learn graph 
embeddings. Then, the acquired graph embeddings are integrated 
using an enhanced gated multi-head attention mechanism and 
then forwarded to the MLP module to compute the probabilities 
of nodes being binding sites. Experimental results on two test 
sets show the significant superiority of EGPDI over existing meth-
ods. Further ablation experiments and case studies also validate 
the generalization ability of our approach. We summarize that 
the superiority of EGPDI is mainly attributed to the following 
reasons: (i) the combination of handcrafted features and pLMs 
embedding enables a more comprehensive characterization of 
protein sequences and structural information from different per-
spectives. (ii) The EGNN module enables to capture global infor-
mation and preserves the translation-, rotation-, and reflection-
equivariant characteristics of protein. In addition, the GCNII mod-
ule, which learns local information, is integrated with the EGNN 
module to extract global features from different perspectives. 
(iii) Utilizing multiple independent gated multi-head attention 
mechanisms for graph embedding fusion allows EGPDI to con-
centrate on more important features and diminish information 
redundancy. 

Despite the promising results achieved by our method, it still 
has some shortcomings. Firstly, our approach is influenced by the 
predictive quality of AlphaFold2. However, this impact has been 
somewhat alleviated by adding manually designed sequence-
based features and pLMs embeddings. Secondly, only using scalar 
edge features may not fully capture the complex geometric prop-
erties of protein molecules. To address this issue, future work will 
explore the incorporation of vector-based edge features. Thirdly, 
we will consider collecting DNA information, because numerous 
studies have also shown that DNA structural information plays 
a crucial role in predicting these binding sites [45–47]. Lastly, 
we expect to extend our feature representation and multi-view
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graph embedding fusion strategy to other binding site prediction 
problems. 

Key Points 
• EGPDI is a protein–DNA interaction site predictor based 

on multi-view graph embedding fusion, which treats 
protein–DNA interaction site prediction as a classifica-
tion task of graph nodes. 

• The combination of handcrafted features and pLMs 
embedding enables a more comprehensive characteriza-
tion of proteins. 

• The basic EGNN module with initial residual and iden-
tity mapping captures high-order translation-, rotation-
equivariant characteristics within proteins by introduc-
ing coordinate equivariant transformations. 

• GCNII primarily captures local information through 
neighbor node sampling, while EGNN comprehensively 
captures global information by sampling the entire 
graph. 

• An advanced gated multi-head attention mechanism is 
applied to integrate these embeddings efficiently, captur-
ing extensive information while addressing the issue of 
information redundancy. 

Supplementary data 
Supplementary data is available at Briefings in Bioinformatics 
online. 
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