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ABSTRACT: Identifying protein−ligand binding sites is an important process in
drug discovery and structure-based drug design. Detecting protein−ligand binding
sites is expensive and time-consuming by traditional experimental methods. Hence,
computational approaches provide many effective strategies to deal with this issue.
Recently, lots of computational methods are based on structure information on
proteins. However, these methods are limited in the common scenario, where both
the sequence of protein target is known and sufficient 3D structure information is
available. Studies indicate that sequence-based computational approaches for
predicting protein−ligand binding sites are more practical. In this paper, we employ a novel computational model of protein−
ligand binding sites prediction, using protein sequence. We apply the Discrete Cosine Transform (DCT) to extract feature from
Position-Specific Score Matrix (PSSM). In order to improve the accuracy, Predicted Relative Solvent Accessibility (PRSA)
information is also utilized. The predictor of protein−ligand binding sites is built by employing the ensemble weighted sparse
representation model with random under-sampling. To evaluate our method, we conduct several comprehensive tests (12 types
of ligands testing sets) for predicting protein−ligand binding sites. Results show that our method achieves better Matthew’s
correlation coefficient (MCC) than other outstanding methods on independent test sets of ATP (0.506), ADP (0.511), AMP
(0.393), GDP (0.579), GTP (0.641), Mg2+ (0.317), Fe3+ (0.490) and HEME (0.640). Our proposed method outperforms earlier
predictors (the performance of MCC) in 8 of the 12 ligands types.

■ INTRODUCTION

Detection of protein−ligand binding sites is important for
understanding the function of protein and drug discovery.
Experimental methods are of high cost, and lots of 3D
structures (proteins) are unknown. BioLiP2 indicated that
about 40% of proteins did not have relevant Ligand-Binding
Site (LBS) information in the Protein Data Bank (PDB).1

Many computational methods have been developed to provide
complementary information for traditional methods.3−34 The
ligand-binding site predictor can be classified into sequence-
based, structure-based and hybrid (integrated sequence and
structure informatin) methods.
The sequences of proteins can be utilized for identifying

protein−ligand binding sites. Rate4Site14 and ConSurf31

employed Multiple-Sequence Alignment (MSA) (alignment-
based) to detect hot spots. SVMPred13 and NsitePred15 utilized
sequence information, evolutionary profiles (Position Specific
Scoring Matrix (PSSM)), predicted secondary structure and
solvent accessibility (based on sequence) built prediction
model via Support Vector Machine (SVM).35 TargetS12 used
the PSSM of protein and predicted protein secondary structure
to built an improved AdaBoost model, which is based on
random under-sampling and ensemble scheme. TargetAT-
Psite16 employed image sparse representation to extract feature
from PSSM. And an ensemble SVM was used as the predictor.
TargetATP17 also utilized PSSM as input feature and a
modified AdaBoost ensemble scheme as model to predict

protein−ATP binding sites. Meta DNA Binding Site (Meta-
DBSite)11 integrated the prediction result from six available
online web servers: DNA Interaction Sites Identified from
Sequence (DISIS),36 DNA Binding Residues (DNABindR),37

BindN,38 BindN Random Forest (BindN-RF),39 DNA Protein-
Binding (DP-Bind)40 and DNA Binding Sites Prediction (DBS-
PRED),41 and it solely used sequence information on proteins.
DNA Binding Residues (DNABR)20 used the Random Forest
(RF) classifier and sequence-based features (physicochemical
properties of amino acids) built prediction model. University of
Tokyo Proteins (UTProt) Galaxy6 calculated PSSM profile of
the protein sequence as the feature vector, and constructed
Machine Learning (ML) model to predict binding sites. They
also compared the predictive performance of SVM, Neural
Network and RF, respectively.
The structure-based methods containing Ligands-binding

Sites detection (LIGSITE),23 Computed Atas of Surface
Topography of proteins (CASTp),24 POCKET,26 Fpocket,27

SURFNET,25 SITEHOUND29 and Q-SiteFinder28 et al. Above
methods utilized the protein 3D information to detect the
potential pockets. LIGSITE23 identified binding site with a
series of simple operations on a cubic grid. CASTp24 can
located and measured pockets and voids on 3D protein
structures. POCKET26 used a modification of the marching
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cubes algorithm modeled surfaces of these pockets. Fpocket
used Structure Based Virtual Screening (SBVS) approaches to
detect pocket and cavity on protein surfaces. The SURFNET25

generated molecular gaps and surfaces between surfaces from
3D PDB-format file. SITEHOUND29 detected regions of
ligand binding sites by a probe molecule. Q-SiteFinder28

located energetically favorable binding sites via the interaction
energy between a simple van der Waals probe and the protein.
FunFOLD18 employed only a 3D model and list of templates
to detect binding sites. CHED19 was based on the structure of
the apo state. The transition metal-binding sites were identified
with a selectivity more than 95%. Most methods (above
structure-based methods) are used to identify the pocket of
target protein.
Also, some methods integrated sequence and structure

information to improve the performance of prediction. For
example, Consensus Approach (COACH)10 derived LBSs from
structure-related templates and evolution information on
proteins. LIGSITEcsc32 extended the LIGSITE23 by integrating
the degree of involved surface residues. SURFNET-ConSurf34

also combined evolution information with pocket detection.
ConCavity33 combined evolutionary information on sequence
with structure information for detecting the cavities of protein
surface. HemeNet22 and HemeBind21 combined the structure-
based and sequence-based models, which is significantly better
than the individual classifier alone for specifically predicting
HEME binding residues.
Although prediction accuracies of structure-based and hybrid

methods are better than sequence-based approaches. The
hybrid and structure-based are limited in the sufficient 3D
structure. Hence, sequence-based methods are more practical.
In this study, we focus on sequence-based methods for
detecting protein−ligand binding sites.
Inspired by previous work,16,42−46,55 we use the Discrete

Cosine Transform (DCT)44 to extract compressed features
from PSSM. The PSSM of sequence is the major information
for predicting the binding sites. The conservation or variation
of sequence is determined by many factors (including
preserving the 3D structure and stability, reducing amyloid
aggregation, and also conservation of functions) during
evolution. These factors influence protein binding with partners
of other proteins, nucleotides, ions, lipids, or nutrients etc.
Hence, the PSSM (containing evolutionary information) may
pickup the signals/features important for ligand binding.
Predicted Relative Solvent Accessibility (PRSA) information
is also utilized to improve the accuracy of prediction. The
number of ligand-binding residues (minority class) is
significantly fewer than that of nonbinding residues (majority
class). Sample rescaling is the most straightforward strategy for
dealing with the issue of class imbalance. To handle the
imbalanced problem, we employ the ensemble weighted sparse
representation model with random under-sampling. The
performance of our method is evaluated on 12 different types
of ligands, containing 5 types of nucleotides, 5 types of metal
ions, DNA and HEME. The 12 types of ligands both include
training sets and independent testing sets. Experiments of
independent testing show that our proposed method obtains
better results compared with other methods.

■ METHOD
In order to detect protein−ligand binding sites by Machine
Learning (ML) approaches, the main challenge is to extract the
crucial information on protein−ligand binding sites. The

identification of protein−ligand binding sites could be regarded
as a traditional binary classification problem. The binding
residue is not isolated, we consider w contiguous residues as a
window, including the target residue and (w − 1)/2
neighboring residues on both sides of the target residue. We
utilize PSSM to represent the evolutionary conservatism of
protein sequence. And we apply the DCT44,45 to extract feature
from PSSM of each residue. For this subsequence of w residues,
encoding with a multidimensional vector can be built on the
PSSM and predicted relative solvent accessibility. At last, the
ML is used to build prediction model for detecting protein−
ligand binding sites.

Extracting Feature from PSSM. The evolutionary profiles
of protein sequence could be described by PSSM, which is
generated by PSI-BLAST47 (BLAST+48 options: -num_itera-
tions 3 -db nr -inclusion_ethresh 0.001). The PSSM is a matrix
of dimensions L × 20 (L rows and 20 columns), formulated as
follows:
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Then, we extract the attribute of a target residue s (1 ≤ s ≤ L,
the out of bounds value, replaced by 0) via a window with w
residues, and obtain a total of w × 20 original PSSM scores,
formulated as follows:
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Inspired by previous work,42−46 we use the DCT44 to extract
compressed feature from PSSMs of target residue s. The DCT is
a separable transformation for converting a discrete signal into
elementary frequency components. Moreover, the DCT is
widely used in lossy data compression for its capability to
concentrate information into a small number of coefficients.
Here, we use 2 dimensions DCT (2D-DCT) to compress
PSSMs. Given an input matrix = ∈ ℜ ×Mat PSSMs

w 20, its 2D-
DCT transformation is defined as

∑ ∑α α π
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where 0 ≤ i < M, 0 ≤ j < N.
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A major characteristic of DCT is the conversion of
information density from evenly to unevenly distribution.
Most of natural signals (PSSM) are concentrated in the low-
frequency part of the compressed PSSM, which distribute in the
upper left corner. In our work, the final PSSM-DCT descriptor
is obtained by retaining the first k rows for k × 20 coefficients.
The schematic diagram of PSSM-DCT is shown in Figure 1.
Predicted Relative Solvent Accessibility. Solvent

accessibility is particularly significant, and it is closely related
to the spatial features and protein folding. In fact, there is an
inseparable relationship between solvent accessibility and
protein−ligand interactions. Moreover, Ahmad et al.49 has
demonstrated the important role of solvent accessibility to
residues in predicting protein−DNA interactions. We utilize
the Solvent Accessibility prediction by Nearest Neighbor
method (SANN)50 program (downloaded at http://lee.kias.
re.kr/newton/sann/) to obtained the Predicted Relative
Solvent Accessibility (PRSA) characteristics of each residue
by the corresponding sequence.
Weighted Sparse Representation based Classifier.

With the development of Compressed Sensing (CS) theory,
most researchers have recently paid attention to sparse
representation51 in pattern recognition and image processing.
The Sparse Representation based Classification (SRC)52,53

utilizes training samples to represent a new testing sample. To

represent testing samples, SRC builds a linear combination of
training set via computing sparse representation matrix. Then,
it calculates reconstruction residuals of each class by above
sparse representation matrix. At last, the test sample would be
determined to the class with minimal reconstruction error.
Related SRC methods have been applied to some biological
problems, such as prediction of protein−protein interac-
tions.54,55

There are C classes training samples, and nc training samples
a r e f r o m t h e c - t h c l a s s ( c o l u m n s o f

= ∈ ℜ ×X XX [ , ..., ]c c
n
c m n

1 c
c). The m is the dimension of

sample. So, we get the matrix of training sample
( = ∈ ℜ ×X X X[ , ..., ]C m n1 ). n = ∑c = 1

C nc is the total number
of training samples. The new (test) sample y from the same
class will approximately lie in the linear span of the training
samples associated with class c as follows:

α=y Xc c c
0 (4)

Though c is unknown, the linear representation of y can be
rewritten in terms of whole training set representation as
follows:

α=y X 0 (5)

where coefficient vector α0 = [0,α0
c ,0]T, the nonzero coefficients

associate with the c-th class.

Figure 1. Schematic diagram for extracting PSSM-DCT feature.
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The SRC aims to search the α vector, which can satisfy both
eq 5 and minimize the l0-norm as follows:

α α̂ = arg min0 0 (6a)

α=y Xsubject to (6b)

But the problem (6a) of finding the sparsest solution of
linear equations is NP-hard. The CS reveals that if the solution
α is sparse enough, solving the convex l1-minimization problem
is approximate to l0-minimization as follows:

α α̂ = arg min1 1 (7a)

α=y Xsubject to (7b)

To deal with occlusion, eq 7a can be extended to the stable
l1-minimization problem as follows:

α α̂ = arg min1 1 (8a)

α− ≤ ϵy Xsubject to 2 (8b)

where ϵ > 0 denotes to the tolerance of reconstruction error.
The algorithm of classifier assigns the test sample y to class c

as follows:

α= − ̂r y y Xmin ( )c c
c

1 2 (9)

where rc(y) denotes the residuals between itself (y) and Xα1̂
c

(class c), c = 1, ..., C. SRC assigns it (y) to the class which has
minimal residuals.
Lu et al.56 present the Weighted Sparse Representation based

Classification (WSRC) method. They used all the training data
as dictionary, and imposed the locality on the l1 regularization.
It solves the following weighted l1-minimization problem:

α α̂ = Warg min1 1 (10a)

α− ≤ ϵy Xsubject to 2 (10b)

=W y x y xdiag( ) [dist( , ), ..., dist( , )]C T
n1

1
c (10c)

where W is a block-diagonal matrix, dist(y ,xi
c) =

exp (−∥y − xi
c∥/2σ2), y, xic are two samples and σ is the

Gaussian kernel width. i is the sample index of training set in
class c.
The values of Gaussian Distance (GD) are calculated for the

weight of each training sample. The WSRC algorithm is listed
as follows:

For the classification problem (prediction of binding site is
the problem of binary classification), the WSRC does not
output the predictive probability of each class, but the output of
WSRC is only each residual of C classes. If we want to get
probability of each class, it is not available. Because minimal
residuals of class has more possibility. To map result in the
range of [0,1], we define three types of score value for binding
sites prediction as follows:

= −
+

r

r r
y

y

y y
score ( ) 1

( )

( ) ( )1 binding
binding

nonbinding binding (11a)

= −yscore ( ) 2 r ry y
2 binding

( )/ ( )binding nonbinding
(11b)

=
+ − −yscore ( )

1
1 e r ry y3 binding ( ( ) ( ))nonbinding binding (11c)

where rbinding(y) and rnonbinding(y) are the reconstruction error of
WSRC assigning the test sample y to binding and nonbinding
site (in this study, C = 2, so r1(y) = rbinding(y) and r2(y) =
rnonbinding(y)), respectively. We will evaluate the performance of
above three types of probability mapping functions.

Figure 2. Overview of the Ensemble Classifier.
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Ensemble Classifier and Random Under-Sampling. To
handle the imbalanced classification problem, we employ
ensemble classifier.57,58 The number of nonbinding examples
(majority class) is much more than that of binding examples
(minority class). The bootstrap resampling approach57,58 is
employed to improve the accuracy of prediction. The majority
class is repeatedly random under sampled (RUS) with m times,
and the size of subset is equal to the size of minority class.
Then, we could get m subsets from the set of nonbinding
examples. m new training sets are collected by combining m
subsets with the set of binding examples. Training m classifiers
{f(x)i}i = 1

m by using m new training sets. The final result of new
sample y is determined by averaging outputs of m classifiers.
We calculate the each probability value {score(y)binding

i }i = 1
m of

the m outputs and get the final score P(y) as follows:

∑= =
=

P
m

i my y( )
1

score( ) , 1, ...,
i

m
i

1
binding

(12)

where P(y) is the probability factor of new sample y,
score(y)binding

i is the probability value of i-th base classifier. All
of above feature vector should be normalized to a range of
[0,1], using the min−max normalization.
Figure 2 shows the overview of the proposed component

ensemble classifier. The method of Ensemble Classifier with
Random Under-Sampling (EC-RUS) can handle the imbal-
anced classification problem and improve the generalization
performance of model.

■ RESULTS
We evaluate our method on several protein−ligand binding
sites data sets, including five types of nucleotides (ATP, ADP,
AMP, GTP and GDP), five types of metal ions (Ca2+, Zn2+,
Mg2+, Mn2+ and Fe3+), DNA and HEME. First, we analyze the
performance of binding site features (such as PSSM, PSSM-
DCT and PRSA) and models (WSRC and SVM). In addition,
we compare our proposed method with other methods on the
training sets of above 12 types by 5-fold cross-validation. Then,
we use these training sets to construct models and predict the
corresponding independent data sets of 12 types, respectively.
Data sets of Protein−Ligand Binding Sites. Most

ligand-binding sites prediction methods use protein 3D
structures from Protein Data Bank (PDB)1 as templates.
Some studies2,59−61 filtered out the ligand-protein interaction
from the PDB and several other databases of purified ligand-

Table 1. Detailed Compositions of 12 Different Data Sets

Training Set Independent Test Set

Ligand Category Ligand Type No. of Sequences numP, numNa No. of Sequences numP, numNa Total No. of Sequences

Nucleotides ATP 221 3021, 72334 50 647, 16639 271
ADP 296 3833, 98740 47 686, 20327 343
AMP 145 1603, 44401 33 392, 10355 178
GDP 82 1101, 26244 14 194, 4180 96
GTP 54 745, 21205 7 89,1868 61

Metal Ions Ca2+ 965 4914, 287801 165 785, 53779 1130
Zn2+ 1168 4705, 315235 176 744, 47851 1344
Mg2+ 1138 3860, 350716 217 852, 72002 1355
Mn2+ 335 1496, 112312 58 237, 17484 393
Fe3+ 173 818, 50453 26 120, 9092 199

DNA 335 6461, 71320 52 973, 16225 387
HEME 206 4380, 49768 27 580, 8630 233

anumP and numN represent the numbers of positive (binding residues) samples and negative (nonbinding residues) samples, respectively.

Figure 3. MCC values (on independent testing set of GTP) of our
method with different values of window size w and first k rows (PSSM-
DCT) by EC-RUS (utilizing 7 WSRC models).

Figure 4. MCC values (on independent testing set of GTP) of our
method with different number of base classifiers (PSSM-DCT +
PRSA).
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protein interaction, including LigASite,59 FireDB,60 BioLiP2

and PDBbind.61 Yu et al.12 constructed training and
independent validation data sets based on the BioLip database2

rather than on PDB. Yu et al. considered 12 different types of
ligands, containing 5 types of nucleotides, 5 types of metal ions,
DNA and HEME. The 12 types of ligands both include training
sets and independent testing sets. We evaluate our method by
cross-validation on training sets. Moreover, independent test is
often utilized to test the generalization capability. Table 1
summarizes the detailed compositions of 12 different data sets.
The source code and all data sets are available at https://
github.com/6gbluewind/protein_ligand_binding_site.
Evaluation Measurements. There are some parameters

are employed to evaluate the performance: accuracy (ACC),
sensitivity (SN), specificity (Spec), Matthew’s correlation
coefficient (MCC), defined as follows:

= +
+ + +

ACC
TP TN

TP FP TN FN (13a)

=
+

SN
TP

TP FN (13b)

=
+

Spec
TN

TN FP (13c)

=
× − ×

+ × + × + × +

MCC
TP TN FP FN

(TP FN) (TN FP) (TP FP) (TN FN)
(13d)

true positive (TP) denotes the number of true protein−ligand
binding sites with predicted correctly; true negative (TN)
denotes the number of true nonbinding sites with predicted
correctly; false negative (FN) denotes the number of true
protein−ligand binding sites, which are assigned to be
nonbinding; false positive (FP) denotes the number of true
nonbinding sites, which are assigned to be binding sites.

Figure 5. Results for different probability mapping functions on
independent testing set of GTP. Type 1, 2 and 3 represent eqs 11a,
11b and 11c, respectively.

Table 2. Comparison of the Prediction Performance with Different Features and Classifiers on Independent Testing Set of GTP

EC-RUS Feature Threshold SN (%) Spec (%) ACC (%) MCC AUC

WSRC PSSM-DCT + PRSA 0.500 70.8 84.9 84.2 0.304 0.861
0.781a 61.8 98.7 97.0 0.641 0.861

PSSM-DCT 0.500 71.9 81.6 81.2 0.274 0.848
0.823a 53.9 99.1 97.1 0.622 0.848

PSSM+PRSA 0.500 76.4 82.9 82.6 0.310 0.832
0.841a 42.7 99.8 97.2 0.619 0.832

PSSM 0.500 74.2 79.2 79.0 0.263 0.818
0.817a 47.2 99.7 97.3 0.631 0.818

SVM PSSM-DCT + PRSA 0.500 74.2 83.8 83.3 0.309 0.824
0.869a 39.3 99.5 96.8 0.546 0.824

PSSM-DCT 0.500 70.8 80.5 80.1 0.259 0.814
0.822a 48.3 98.1 95.9 0.495 0.814

PSSM + PRSA 0.500 73.0 79.5 79.2 0.261 0.811
0.811a 43.8 98.8 96.3 0.513 0.811

PSSM 0.500 70.8 78.5 78.1 0.241 0.808
0.835a 42.7 98.8 96.2 0.490 0.808

aThreshold is identified by maximizing the MCC value of predictions on the independent testing set.

Figure 6. ROC (on independent testing set of GTP) of different
feature and classifiers.
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The Area Under the Receiver Operating Characteristic
(AUC) is an evaluation method for a predictor in a binary
classification system.
Experimental Environment. The simulation is carried out

on a computer with Windows operating system and 3.6 GHz 4-
core 8 threads CPU, 16 GB memory. In this study, we set two
WSRC parameters as σ = 1.5 and ϵ = 0.5, respectively.
Selecting Optimal Parameters of PSSM-DCT, Number

of Base Classifiers and Probability Mapping Function.
Under the imbalanced learning scenario, over pursuing the
overall accuracy is not appropriate and can be deceiving for
evaluating the performance of a predictor. Therefore, the MCC

provides the overall measurement of the quality of binary
prediction. We report the evaluation by choosing the Threshold
(T) of probability value, which maximizes the MCC value of
prediction. Different value of window size w and first k rows
(PSSM-DCT) may lead to different performance. We evaluate
value of k from 1 to w (size of sliding window) rows, with a step
of 1 row, on GTP data set by independent test validation. We
select the optimal value w and k by highest MCC value and find
that 17 and 7 are the best parameters of window size w and first
k rows, respectively. The result on GTP data set is shown in
Figure 3. On the curve, the MCC (w = 17) increases when
value increases from 1 to 7. But it slightly declines when size
increases from 7 up to 17. The best MCC is 0.622, when
window size w is 17 and k is 7 (first 7 rows of PSSM-DCT). So,
we select the optimal k as 7 in our study. And the optimal
dimension of PSSM-DCT is 7 × 20 = 140. In addition, the
classifier is EC-RUS (utilizing 7 WSRC models).
The number of base classifiers will also affect the perform-

ance of prediction. Therefore, we evaluate the MCC perform-
ance variations of an ensembled classifier on GTP data set by
independent test validation. Moreover, the feature include
PSSM-DCT and PRSA. The number of base classifiers (m) is
gradually varying from 1 to 29, with a step of 2. We select the
optimal number of base classifiers by highest MCC value, and
find that 19 is the best parameter of m. Figure 4 shows the
performance variation curves of MCC. The first maximum
MCC value is achieved when m = 19, and no improvement can
be observed with larger values of m. Hence, we select 19 as the
optimal m in our experiment.
To make a decision of temporary probability mapping

function (WSRC) from eqs 11a, 11b and 11c, we test above
functions on independent testing set of GTP. In addition, the
feature is PSSM-DCT + PRSA. The results of different
probability mapping functions on independent testing set of
GTP are shown in Figure 5. Obviously, the performance of
three different probability mapping functions are almost same.
However, the type 1 (0.641) function achieves better
performance of MCC than type 2(0.629) and 3 (0.599)
under maximizing the value of MCC. Thus, we select eq 11a as
the probability mapping function of WSRC.

Performance Analysis. To analyze the significance of
different features, we test the features of PSSM, PSSM-DCT
and PRSA combined with WSRC and SVM models,
respectively. Evaluation is carried out on the GTP data set,
which contains training and independent testing sets. We use
training set to build the model and test it on the independent
testing set. The prediction result is shown in Table 2 and Figure
6.
The AUC of PSSM-DCT + PRSA (WSRC), PSSM-DCT

(WSRC), PSSM + PRSA (WSRC) and PSSM (WSRC) are
0.861, 0.848, 0.832 and 0.818, respectively. The performance of
PSSM-DCT + PRSA (WSRC) is better than other feature by
the WSRC model. Because the DCT algorithm can compress
PSSM and remove some noise, the performance of PSSM-DCT
is better than that of PSSM. Moreover, the AUC values of
PSSM-DCT + PRSA (SVM), PSSM-DCT (SVM), PSSM +
PRSA (SVM) and PSSM (SVM) are 0.824, 0.814, 0.811 and
0.808, respectively. Obviously, the WSRC model achieves
better performance than SVM. In addition, the PSSM-DCT +
PRSA (WSRC) achieves the best performance (0.641) of
MCC.
Figure 7 shows the trend (including sensitivity, specificity,

accuracy and MCC) on different thresholds of probability.

Figure 7. Results for different thresholds of probability on
independent testing set of GTP.

Table 3. Performance of Single Classifier and Ensemble
Classifier on Independent Testing Set of GTP

Type Model
SN
(%)

Spec
(%)

ACC
(%) MCC AUC

single
subclassifier

WSRC,
T = 0.500a

78.6 78.7 78.7 0.280 0.852

WSRC,
T = 0.807a

58.4 98.5 96.7 0.599 0.852

SVM,
T = 0.500a

72.4 81.2 80.1 0.283 0.816

SVM,
T = 0.866a

37.2 98.4 95.5 0.497 0.816

EC-RUS EC-
RUS(WSRC,
T = 0.500)a

70.8 84.9 84.2 0.304 0.861

EC-
RUS(WSRC,
T = 0.781)a

61.8 98.7 97.0 0.641 0.861

EC-RUS(SVM,
T = 0.500)a

74.2 83.8 83.3 0.309 0.824

EC-RUS(SVM,
T = 0.869)a

39.3 99.5 96.8 0.546 0.824

single
classifier

WSRC,
T = 0.500a

56.8 99.6 97.6 0.618 0.856

WSRC,
T = 0.465a

58.4 99.5 97.7 0.621 0.856

SVM,
T = 0.500a

44.9 98.8 96.4 0.561 0.842

SVM,
T = 0.300a

48.9 98.0 96.6 0.583 0.842

aThe feature is PSSM-DCT + PRSA.
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Though the threshold of probability rises, values of specificity,
accuracy and MCC are synchronous rising. The trend of
sensitivity are opposite.
To evaluate the performance of ensemble classifier and

random under-sampling, we test the single subclassifier (once
random sampling), EC-RUS (repeatedly random sampling and
ensemble classifier) and single classifier (using whole training
set without random sampling) on independent testing set of
GTP. The results are listed in Table 3. The max MCC (WSRC)
of single subclassifier (once random sampling), EC-RUS
(repeatedly random sampling and ensemble classifier) and
single classifier (using whole training set without random
sampling) are 0.599, 0.641 and 0.621, respectively. Because
single classifier is built via whole training set, the performance
of single classifier is better than single subclassifier (once
random sampling). Obviously, the result of EC-RUS is the best.
The EC-RUS is trained by repeatedly random under-sampling
and ensemble classifier. The strategy of EC-RUS is useful to
improve performance of prediction.
Results on Training Sets. We test the performance of our

proposed method via 5-fold cross-validation on 12 training sets.
Our method is compared with TargetS,12 and results on the

training sets are listed in Table 4. TargetS chose thresholds
under maximizing the value of MCC. The MCC of our method
are 0.537, 0.610, 0.460, 0.676 and 0.562 on ATP, ADP, AMP,
GDP and GTP, respectively. TargetS achieves MCC values of
0.492, 0.591, 0.386, 0.644 and 0.506, respectively. Obviously,
the performance of the proposed method is better than TargetS
on nucleotides (ATP, ADP, AMP, GDP and GTP). Although
the values of MCC are decreased by 0.1, 0.029, 0.087, 0.103
and 0.117, the AUC values of our proposed method are
improved by 0.028, 0.041, 0.020, 0.018, and 0.20 compared
with TargetS on metal ions (Ca2+, Mg2+, Mn2+, Fe3+ and Zn2+),
respectively. In addition, our method achieves MCC values of
0.378 (improved by 0.016) on DNA and 0.591 (improved by
0.012) on HEME, respectively. The threshold of TargetS were
under maximizing the value of MCC.

Comparison with Existing Predictors on Independent
Test Sets. In this section, our proposed method is compared
with other existing methods on independent test sets of
nucleotides, as shown in Table 5. Existing methods are
proposed by Yu et al. (TargetS),12 Chen et al. (SVMPred,
NsitePred)13,15 and alignment-based baseline predictor, re-
spectively. It can be observed that the best MCC of 0.506

Table 4. Performance of Proposed Method on Training Sets of 12 Types of Ligands over 5-Fold Cross-Validation

Ligand Type Model Threshold SN (%) Spec (%) ACC (%) MCC AUC

ATP TargetS12 0.500 48.4 98.2 96.2 0.492 0.887
EC-RUSa 0.500 84.1 84.9 84.9 0.347 0.912
EC-RUSa 0.814 58.6 97.9 96.4 0.537 0.912

ADP TargetS12 0.500 56.1 98.8 97.2 0.591 0.907
EC-RUSa 0.500 87.8 87.7 87.7 0.395 0.939
EC-RUSa 0.852 62.2 98.6 97.3 0.610 0.939

AMP TargetS12 0.500 38.0 98.2 96.0 0.386 0.856
EC-RUSa 0.500 81.5 79.7 79.8 0.263 0.888
EC-RUSa 0.835 46.7 98.3 96.6 0.460 0.888

GDP TargetS12 0.430 63.9 98.7 97.2 0.644 0.908
EC-RUSa 0.500 86.1 89.8 89.7 0.435 0.937
EC-RUSa 0.816 67.2 98.9 97.6 0.676 0.937

GTP TargetS12 0.500 48.0 98.7 96.9 0.506 0.858
EC-RUSa 0.500 79.5 85.7 85.5 0.309 0.896
EC-RUSa 0.842 49.5 99.2 97.6 0.562 0.896

Ca2+ TargetS12 0.690 19.2 99.7 98.4 0.320 0.784
EC-RUSa 0.500 73.9 73.8 73.8 0.118 0.812
EC-RUSa 0.861 14.7 99.7 98.6 0.220 0.812

Mg2+ TargetS12 0.810 26.4 99.8 99.0 0.383 0.798
EC-RUSa 0.500 73.8 79.4 79.3 0.125 0.839
EC-RUSa 0.864 25.8 99.8 99.1 0.354 0.839

Mn2+ TargetS12 0.740 40.8 99.5 98.7 0.445 0.901
EC-RUSa 0.500 83.4 86.6 86.6 0.201 0.921
EC-RUSa 0.841 31.0 99.6 98.9 0.358 0.921

Fe3+ TargetS12 0.810 51.8 99.6 98.8 0.592 0.922
EC-RUSa 0.500 87.1 90.1 90.0 0.278 0.940
EC-RUSa 0.809 53.1 99.2 98.6 0.489 0.940

Zn2+ TargetS12 0.830 50.0 99.6 98.9 0.557 0.938
EC-RUSa 0.500 88.7 90.8 90.8 0.279 0.958
EC-RUSa 0.860 45.6 99.3 98.7 0.440 0.958

DNA TargetS12 0.490 41.7 94.5 89.9 0.362 0.824
EC-RUSa 0.500 81.9 71.8 72.3 0.259 0.852
EC-RUSa 0.763 48.7 95.1 92.6 0.378 0.852

HEME TargetS12 0.650 50.5 98.3 94.4 0.579 0.887
EC-RUSa 0.500 85.0 83.6 83.7 0.416 0.922
EC-RUSa 0.846 60.3 97.5 95.1 0.591 0.922

aThe EC-RUS model is built by WSRC and the feature is PSSM-DCT + PRSA.
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(ATP), 0.511 (ADP), 0.393 (AMP) and 0.641 (GTP) is
obtained from our proposed model (EC-RUS) WSRC)). And
the EC-RUS (SVM) obtains the best MCC of 0.587 on GDP.
Comparing with TargetS,12 our method achieves MCC
improvement of 0.004 (0.506 over 0.502), 0.004 (0.511 over
0.507), 0.034 (0.393 over 0.359), 0.029 (0.579 over 0.550) and
0.024 (0.641 over 0.617) on independent test sets of ATP,
ADP, AMP, GDP and GTP, respectively. The thresholds of
TargetS, NsitePred and SVMPred were under maximizing the
value of MCC.
We also evaluate our proposed method on independent test

sets of metal ions (Ca2+, Mg2+, Mn2+, Fe3+ and Zn2+), as shown
in Table 6. Existing methods are proposed by Yu et al.
(TargetS),12 Roche et al. (FunFOLD),18 Babor et al.
(CHED)19 and alignment-based baseline predictor, respec-

tively. FunFOLD and CHED are taken as ligand-specific
predictors for comparison on the five types of metal ion ligands.
Yu et al. retrained the FunFOLD and CHED on the data set of
each metal ion ligand. Although the MCC values are decreased
by 0.018 (0.243 to 0.225), 0.046 (0.449 over 0.403) and 0.09
(0.527 over 0.437) compared with TargetS on Ca2+, Mn2+ and
Zn2+, respectively. Obviously, the MCC value of the proposed
method is better than those of TargetS on Mg2+ (improved by
0.023) and Fe3+ (improved by 0.011). The reasons that
proposed method along with TargetS do not perform well on
Ca2+, Mn2+ and Zn2+ are as follows: (1) the volume of metal
ions are smaller compared to nucleotides, so the number of
binding residues are less; (2) the performance of PRSA is not
good on small volume ligands; (3) the TargetS constructed
ligand-specific model and helped to improve prediction

Table 5. Comparison with Existing Predictors on
Independent Test Sets of Nucleotides

Ligand
Type Model

SN
(%)

Spec
(%)

ACC
(%) MCC AUC

ATP TargetS12c 50.1 98.3 96.5 0.502 0.898
NsitePred15c 50.8 97.3 95.5 0.439 −d

SVMPred13c 47.3 96.7 94.9 0.387 0.877
alignment-basedc 30.6 97.0 94.5 0.265 −d

EC-RUS(WSRC,
T = 0.805)a

45.4 98.8 96.8 0.506 0.871

EC-RUS(SVM,
T = 0.841)b

44.3 98.2 96.2 0.443 0.876

ADP TargetS12c 46.9 98.9 97.2 0.507 0.896
NsitePred15c 46.2 97.6 96.0 0.419 −d

SVMPred13c 46.1 97.2 95.5 0.382 0.875
alignment-basedc 31.8 97.4 95.1 0.284 −d

EC-RUS(WSRC,
T = 0.811)a

44.4 99.2 97.6 0.511 0.872

EC-RUS(SVM,
T = 0.823)b

39.6 99.1 97.4 0.459 0.876

AMP TargetS12c 34.2 98.2 95.9 0.359 0.830
NsitePred15c 33.9 97.6 95.3 0.321 −d

SVMPred13c 32.1 96.4 94.1 0.255 0.798
alignment-basedc 19.6 97.3 94.5 0.178 −d

EC-RUS(WSRC,
T = 0.850)a

24.9 99.5 97.0 0.393 0.815

EC-RUS(SVM,
T = 0.865)b

33.9 98.6 96.3 0.353 0.814

GDP TargetS12c 56.2 98.1 96.2 0.550 0.896
NsitePred15c 55.7 97.9 96.1 0.536 −d

SVMPred13c 49.5 97.6 95.4 0.466 0.870
alignment-basedc 41.2 97.8 95.3 0.415 −d

EC-RUS(WSRC,
T = 0.870)a

36.6 99.9 97.1 0.579 0.872

EC-RUS(SVM,
T = 0.839)b

50.0 99.1 96.9 0.587 0.897

GTP TargetS12c 57.3 98.8 96.9 0.617 0.855
NsitePred15c 58.4 95.7 94.0 0.448 −d

SVMPred13c 48.3 91.7 89.7 0.276 0.821
alignment-basedc 52.8 97.9 95.9 0.516 −d

EC-RUS(WSRC,
T = 0.781)a

61.8 98.7 97.0 0.641 0.861

EC-RUS(SVM,
T = 0.869)b

39.3 99.5 96.8 0.546 0.824

aThe EC-RUS model is built by WSRC (the threshold under
maximizing the value of MCC) and the feature is PSSM-DCT +
PRSA. bThe EC-RUS model is built by SVM (the threshold under
maximizing the value of MCC) and the feature is PSSM-DCT +
PRSA. cResults excerpted from ref 12. d“−” means not available.

Table 6. Comparison with Existing Predictors on
Independent Test Sets of Metal Ions

Ligand
Type Model

SN
(%)

Spec
(%)

ACC
(%) MCC AUC

Ca2+ TargetS12c 13.8 99.8 98.8 0.243 0.767
FunFOLD18c 12.2 99.6 98.1 0.196 −d

CHED19c 18.7 98.2 97.1 0.142 −d

alignment-basedc 20.3 98.6 97.5 0.175 −d

EC-RUS(WSRC,
T = 0.839)a

17.3 99.6 98.7 0.225 0.779

EC-RUS(SVM,
T = 0.772)b

35.1 95.3 94.6 0.145 0.792

Mg2+ TargetS12c 18.3 99.8 98.8 0.294 0.706
FunFOLD18c 22.0 99.1 98.3 0.215 −d

CHED19c 14.6 98.3 97.3 0.103 −d

alignment-basedc 14.1 99.2 98.2 0.147 −d

EC-RUS(WSRC,
T = 0.870)a

20.1 99.8 99.1 0.317 0.780

EC-RUS(SVM,
T = 0.843)b

32.9 98.7 98.1 0.234 0.787

Mn2+ TargetS12c 40.1 99.5 98.7 0.449 0.888
FunFOLD18c 23.3 99.8 98.7 0.376 −d

CHED19c 35.0 98.1 97.3 0.253 −d

alignment-basedc 26.6 99.0 98.0 0.257 −d

EC-RUS(WSRC,
T = 0.829)a

35.8 99.6 98.9 0.403 0.888

EC-RUS(SVM,
T = 0.866)b

51.3 97.8 97.3 0.310 0.891

Fe3+ TargetS12c 48.3 99.3 98.7 0.479 0.945
FunFOLD18c 47.2 99.1 98.4 0.432 −d

CHED19c 49.2 97.0 96.3 0.279 −d

alignment-basedc 30.0 99.2 98.3 0.300 −d

EC-RUS(WSRC,
T = 0.832)a

44.3 99.6 99.0 0.490 0.936

EC-RUS(SVM,
T = 0.839)b

66.0 97.7 97.3 0.393 0.943

Zn2+ TargetS12c 46.4 99.5 98.7 0.527 0.936
FunFOLD18c 36.5 99.5 98.6 0.436 −d

CHED19c 37.9 98.0 97.1 0.280 −d

alignment-basedc 29.7 99.0 98.0 0.297 −d

EC-RUS(WSRC,
T = 0.855)a

48.9 99.2 98.6 0.437 0.958

EC-RUS(SVM,
T = 0.887)b

69.9 97.3 97.0 0.392 0.961

aThe EC-RUS model is built by WSRC (the threshold under
maximizing the value of MCC) and the feature is PSSM-DCT +
PRSA. bThe EC-RUS model is built by SVM (the threshold under
maximizing the value of MCC) and the feature is PSSM-DCT +
PRSA. cResults excerpted from ref 12. d“−” means not available.
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performance on metal ions. Moreover, the thresholds of
TargetS, FunFOLD and CHED were under maximizing the
value of MCC.
On independent test sets of DNA, we compare our method

with TargetS,12 MetaDBSite,11 DNABR20 and alignment-based
predictor, as shown in Table 7. Their prediction MCC values
are 0.377, 0.192, 0.185 and 0.190, respectively. And our
proposed method achieves 0.319 of MCC by EC-RUS(WSRC).
Although our performance of MCC is lower than that of
TargetS, it is better than those of MetaDBSite, DNABR and
alignment-based.

On independent test sets of HEME, we compare our method
with TargetS,12 HemeBind21 and alignment-based predictor, as

Table 7. Comparison with Existing Predictors on
Independent Test Sets of DNA

Ligand
Type Model

SN
(%)

Spec
(%)

ACC
(%) MCC AUC

DNA TargetS12c 41.3 96.5 93.3 0.377 0.836
MetaDBSite11c 58.0 76.4 75.2 0.192 −d

DNABR20c 40.7 87.3 84.6 0.185 −d

alignment-basedc 26.6 94.3 90.5 0.190 −d

EC-RUS(WSRC,
T = 0.787)a

31.5 97.8 95.2 0.319 0.814

EC-RUS(SVM,
T = 0.707)b

43.7 94.3 92.3 0.287 0.828

aThe EC-RUS model is built by WSRC (the threshold under
maximizing the value of MCC) and the feature is PSSM-DCT +
PRSA. bThe EC-RUS model is built by SVM (the threshold under
maximizing the value of MCC) and the feature is PSSM-DCT +
PRSA. cResults excerpted from ref 12. d“−” means not available.

Table 8. Comparison with Existing Predictors on
Independent Test Sets of HEME

Ligand
Type Model

SN
(%)

Spec
(%)

ACC
(%) MCC AUC

HEME TargetS(T = 0.65)c
12

49.8 99.0 95.9 0.598 0.907

TargetS(T = 0.18)c
12

69.3 90.4 89.1 0.426 0.907

HemeBind21c 86.2 90.7 90.6 0.537 −d

alignment-basedc 51.4 97.3 94.4 0.507 −d

EC-RUS(WSRC,
T = 0.500)a

83.5 87.5 87.3 0.453 0.935

EC-RUS(WSRC,
T = 0.859)a

55.8 99.0 96.4 0.640 0.935

EC-RUS(SVM,
T = 0.500)b

76.8 92.2 91.3 0.508 0.933

EC-RUS(SVM,
T = 0.821)b

57.6 98.7 96.2 0.632 0.933

aThe EC-RUS model is built by WSRC and the feature is PSSM-DCT
+ PRSA. bThe EC-RUS model is built by SVM and the feature is
PSSM-DCT + PRSA. cResults excerpted from ref 12. d“−” means not
available.

Table 9. Statistical Significance of the Differences among the
Predictive Performances (MCC) for Three Methods on 12
Independent Test Setsa

P values Accepted (h0/h1)b

TargetS ∼ our method 0.9470 h0
TargetS ∼ alignment-based 0.0032 h1
our method ∼ alignment-based 0.0055 h1

aThe P values are computed by t-test. bThe null hypothesis (h0) is
that the means of two samples are equal. The alternative hypothesis
(h1) is that the means of two samples are significance differences. The
significance level (alpha) is 0.05.

Table 10. Evaluation (under the threshold of training sets)
on the 12 Independent Test Data Sets

Ligand
Type Threshold

SN
(%)

Spec
(%)

ACC
(%) MCC AUC

ATP 0.814 43.4 98.9 96.8 0.497 0.871
ADP 0.852 38.3 99.4 97.6 0.486 0.872
AMP 0.835 25.8 99.4 96.9 0.383 0.815
GDP 0.816 38.7 99.7 97.0 0.559 0.872
GTP 0.842 49.4 99.4 97.1 0.616 0.861
Ca2+ 0.861 10.6 99.8 98.8 0.190 0.779
Mg2+ 0.864 21.2 99.8 99.1 0.311 0.780
Mn2+ 0.841 31.0 99.7 99.0 0.394 0.888
Fe3+ 0.809 46.2 99.2 98.6 0.417 0.936
Zn2+ 0.860 45.5 99.3 98.6 0.427 0.958
DNA 0.763 33.4 97.4 94.9 0.313 0.814
HEME 0.846 56.7 98.9 96.3 0.638 0.935

aThe model is built by EC-RUS(WSRC) and the feature is PSSM-
DCT + PRSA.

Figure 8. Representative protein−ligand complex: left is 4FCW-A,
right is 3QXB-A.

Table 11. Performance of Our Model via 5-Fold Cross-
Validation on 198 Drug−Target Pairs Data Set

Ligand
Type Model

SN
(%)

Spec
(%)

ACC
(%) MCC AUC

Drug EC-RUS(WSRC,
T = 0.500)a

81.1 82.1 82.1 0.379 0.889

EC-RUS(WSRC,
T = 0.738)a

62.5 95.0 92.9 0.504 0.889

EC-RUS(SVM,
T = 0.500)b

77.2 79.8 79.6 0.331 0.860

EC-RUS(SVM,
T = 0.688)b

49.8 95.4 92.4 0.423 0.860

aThe EC-RUS model is built by WSRC and the feature is PSSM-DCT
+ PRSA. bThe EC-RUS model is built by SVM and the feature is
PSSM-DCT + PRSA.

Table 12. Running Time (seconds) of Subclassifier and EC-
RUS(WSRC) on 12 Independent Test Sets

Data
Set

SSa

(WSRC)
EC-

RUS(WSRC) Data Set
SSa

(WSRC)
EC-

RUS(WSRC)

ATP 195.8 3720.2 Ca2+ 1112.7 21141.3
ADP 311.4 5916.6 Mg2+ 1432.3 27213.7
AMP 74.2 1409.8 Mn2+ 156.8 2979.2
GDP 29.9 568.1 Fe3+ 42.2 801.8
GTP 13.7 260.3 Zn2+ 942.2 17901.8
DNA 316.4 6011.6 HEME 128.6 2443.4

aThe SS denotes single subclassifier.
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shown in Table 8. Our method achieves MCC of 0.640 through
EC-RUS(WSRC). In addition to PSSM feature, the HemeBind
used several other types of 3D structure features such as
Relative Accessible Surface Area (RASA),62 Depth index
(DPX)63 and protrusion index (CX).64 So, the SN (86.2%)
of HemeBind is better than those of other methods.
We use two-sample t-test to evaluate the significance

differences of MCC performance. The null hypothesis (h0) is
that the means of two samples (2 sets of MCC values from two
methods) are equal. The alternative hypothesis (h1) is that the
means of two samples are significance differences. If h0 is
accepted, the differences of MCC is not significant, which
means the MCC performance of our method is not improved
significantly compared with other methods. If h1 is accepted,
the improvement of our method is significant. Moreover, the
significance level (alpha) is 0.05. The results of t-test are listed
in Table 9. The difference between TargetS and our method is
not significant (P value: 0.9470). Comparing with alignment-
based method, our method shows significantly better prediction
accuracy (P value: 0.0055). The reason for the difference
(between TargetS and our method) is not significant is that
TargetS constructed ligand-specific model and helped to
improve prediction performance on metal ions. The volume
of metal ions are smaller compared to other ligands. So, we will
take into account metal ion specificity in our further work.
Although the difference is not significant, our proposed method
outperforms TargetS (MCC values) in eight of the 12 ligands
types.
Tables 5, 6, 7 and 8 list the results of our model and other

outstanding methods under maximizing the value of MCC,
which is just a method of evaluation. In Yu’s study,12 those
methods (comparison) were all under maximizing the value of
MCC. In real prediction of binding sites, we could not know
the threshold of probability value (independent test data sets)
under maximizing the value of MCC. Thus, we could use the
threshold of training sets. In Table 10, we report the evaluation
by choosing the threshold (T) of training sets. Although the
values of MCC go down slightly (e.g., the MCC of ATP is from
0.506 to 0.497), the model is effective on independent test data
sets.
Examples of 4FCW-A and 3QXB-A belong to independent

test sets of ADP and Fe3+. We use corresponding training sets
to build models and predict two examples, respectively. They
are shown in Figure 8. The blue object is the protein sequence
(contain helix, fold and loop structures), and yellow object is
the ligand. The green region is the true prediction and the red
region is the false prediction. Our method can predict majority
protein−ligand binding sites.
The Performance of Drug Binding Site Prediction.

Zhang et al.65 used multiple computational approaches for
pocket prediction. They collected drug-target pairs from
DrugPort66 (http://www.ebi.ac.uk/thornton-srv/databases/
drugport/). They selected only one complex structure for
every drug-target pair (the single chain with ligands bound),
and obtained 217 drug-target pairs and 96 types of drug
molecules. CD-HIT program67 was used to removed the
redundancy of protein sequences with 40% similarity threshold
(abtained 198 drug-target complexes). We define the drug
binding sites with distance between target sites and drug
molecules (any heavy atom) less than 6 Å. We test our method
on this data set via 5-fold cross-validation. The results of our
model are listed in Table 11. The EC-RUS(WSRC) achieves
better performance of MCC (0.504).

Running Time. The running time (on 12 independent test
sets) of our model (WSRC) depends on the sizes of training set
and test set. To identify any test sample, we first calculate the
Gaussian distances between test and each training sample.
Moreover, the l1-minimization problem of linear sparse
coefficients also need to be solved. So, the running time of
WSRC is time-consuming (comparing with SVM). However,
the performance of prediction is better than SVM on most
ligand data sets. The results of running time are shown in Table
12. The items of table include running time of single
subclassifier and EC-RUS (19 subclassifiers). The EC-RUS is
carried out by serial program. In the future, EC-RUS will be
parallelization for reducing the running time.

■ DISCUSSION

Lots of computational methods have been developed for
detecting protein−ligand binding sites, but the effectiveness
and efficiency of previous methods could be improved. Many
methods did not take into account information compression,
therefore we propose PSSM-DCT feature and EC-RUS-
(WSRC) model. Although the performance of our proposed
method is lower than that of TargetS12 on independent test sets
of Ca2+, Mn2+, Zn2+ and DNA. The PSSM-DCT + PRSA
feature combined with EC-RUS (WSRC) model achieves the
best performance of MCC on independent test sets of
nucleotides (ATP, ADP, AMP, GDP and GTP), Mg2+, Fe3+

and HEME. The main reason is that TargetS constructed a
ligand-specific model to improve accuracy. We plan to develop
more effective ligand-specific features or employ the better
machine learning model (such as gradient boosting decision
tree or deep learning) for further improving protein−ligand
binding prediction performances in our future work.

■ CONCLUSIONS

In this paper, we employ a novel method to detect protein−
ligand binding sites using sequences of proteins. Our model is
constructed via EC-RUS(WSRC) model and ensemble feature
representation scheme (PSSM-DCT and PRSA). For the
evaluation, our method is tested on 12 different types of ligands
data sets. The result shows that our model obtains the best
MCC on independent test sets of ATP (0.506), ADP (0.511),
AMP (0.393), GDP (0.579), GTP (0.641), Mg2+ (0.317), Fe3+

(0.490) and HEME (0.640). Although our performance of
MCC is lower than that of TargetS, it is better than those of
other methods on Ca2+ (0.225), Mn2+ (0.403), Zn2+ (0.437)
and DNA (0.319). Compared with these state-of-the-art
methods, our method is able to achieve comparable or even
better prediction results on the data sets. Test results indicate
that our proposed method is useful for detecting protein−
ligand binding sites, thus it may reduce the cost of biological
experiments.
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■ NOTE ADDED AFTER ASAP PUBLICATION
The definition of matrix W below eq 10c has been updated in
the version published ASAP on November 21, 2017. The
corrected version was published ASAP on November 22, 2017.
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