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Abstract

Proteins with intrinsically disordered regions (IDRs) are common among eukaryotes. Many IDRs interact with nucleic acids and
proteins. Annotation of these interactions is supported by computational predictors, but to date, only one tool that predicts
interactions with nucleic acids was released, and recent assessments demonstrate that current predictors offer modest levels of
accuracy. We have developed DeepDISOBind, an innovative deep multi-task architecture that accurately predicts deoxyribonucleic
acid (DNA)-, ribonucleic acid (RNA)- and protein-binding IDRs from protein sequences. DeepDISOBind relies on an information-rich
sequence profile that is processed by an innovative multi-task deep neural network, where subsequent layers are gradually specialized
to predict interactions with specific partner types. The common input layer links to a layer that differentiates protein- and nucleic
acid-binding, which further links to layers that discriminate between DNA and RNA interactions. Empirical tests show that this multi-
task design provides statistically significant gains in predictive quality across the three partner types when compared to a single-
task design and a representative selection of the existing methods that cover both disorder- and structure-trained tools. Analysis of
the predictions on the human proteome reveals that DeepDISOBind predictions can be encoded into protein-level propensities that
accurately predict DNA- and RNA-binding proteins and protein hubs. DeepDISOBind is available at https://www.csuligroup.com/Dee
pDISOBind/
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Introduction
Intrinsically disordered regions (IDRs) lack stable tertiary
structures and form dynamic conformational ensembles
under physiological conditions [1, 2]. Recent bioinformat-
ics studies reveal that disorder is highly abundant in
nature [3], with about 20% of residues in eukaryotic pro-
teins estimated to be disordered [4]. Proteins with IDRs
are involved in a variety of cellular functions [5, 6]. Many
IDRs interact with partner molecules, including deoxyri-
bonucleic acid (DNA), ribonucleic acid (RNA) and proteins
[7–13]. More specifically, the version 8.1 of the DisProt
database [14], the primary repository of the intrinsic
disorder, includes 1652 interacting IDRs, which constitute
42% of the IDRs annotated in this resource. Close to
90% (1473 out of 1652) of the interacting IDRs bind to
proteins and nucleic acids. However, DisProt altogether

covers only about 1700 proteins, while millions of protein
sequences await annotation of the interacting IDRs.

Computational predictors of interacting IDRs assist
with closing this huge and growing annotation gap
[15]. Based on an extensive literature search [15–19],
we identified 22 predictors of the interacting IDRs.
Nearly all of them (19 out of 22) predict a subfamily
of the protein-binding IDRs called molecular recognition
features (MoRFs) [20]. MoRFs are short IDRs that undergo
folding upon interaction with protein partners. Some
of the popular MoRF predictors include MoRFpred [21,
22], fMoRFpred [20], DISOPRED3 [23], MoRFCHiBi [24],
MoRFCHiBiLight [25], OPAL+ (2018) [26] and SPOT-
MoRF [27]. The other three methods, ANCHOR [28],
DisoRDPbind [29, 30] and ANCHOR2 [31] predict a broad
family of the protein-binding IDRs that encompass

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/1/bbab521/6461158 by N

anjing Agricultural U
niversity user on 24 Septem

ber 2023

http://biomine.cs.vcu.edu/
https://orcid.org/0000-0002-0188-1394
https://orcid.org/0000-0002-7749-0314
https://www.csuligroup.com/DeepDISOBind/
https://www.csuligroup.com/DeepDISOBind/


2 | Zhang et al.

MoRFs. Moreover, DisoRDPbind is the only current tool
that predicts IDRs that interact with DNA and RNA.
These tools are frequently used to guide experimental
studies and reveal novel functional insights. Just as an
example, DisoRDPbind was recently used to study the
SARS-CoV-2 proteome [32], decipher functions of genes
from animal pathogens [33] and investigate specific
proteins, such as CS-like zinc finger (FLZ) [34], spindle-
defective protein 2 (SPD-2) [35], mixed lineage leukemia
4 [36] and heat shock factor 1 [37], some of which
are associated with cancers and neurodegenerative
diseases. The importance of these predictors is further
underscored by the fact that Critical Assessment of
protein Intrinsic Disorder (CAID) experiment, which is an
equivalent of Critical Assessment of protein Structure
Prediction, but for the disordered proteins, included
assessment of methods that predict interacting (in a
partner-agnostic way) IDRs [38]. The top performing
tools in the recent CAID were ANCHOR2, DisoRDPbind
and MoRFCHiBiLight, but the organizers also noted
that ‘substantial room for improvement remains’ [38],
suggesting the need to develop more accurate predictors
of the interacting IDRs.

The methods that offer the most relevant and accurate
predictions of the interacting IDRs, ANCHOR2 and
DisoRDPbind, rely on relatively simple predictive models.
DisoRDPbind utilizes logistic regression, while ANCHOR2
uses biophysics-based scoring functions. Moreover,
DisoRDPbind that predicts interactions with proteins,
DNA and RNA applies three independent/concurrent
regressors. This way, it misses the opportunity to model
relations between the three types of interactions. For
instance, residues that bind nucleic acids and proteins
have higher relative solvent accessibility compared
to the non-binding residues, while the nucleic acid-
binding residues are often positively charged and
more evolutionarily conserved than the protein-binding
residues [39]. The fact that DisoRDPbind is the only
tool that predicts nucleic acid-binding IDRs, combined
with modest accuracy of the current predictors of
interacting IDRs, motivate the development of more
accurate solutions.

Furthermore, we note that some protein- and nucleic-
interacting residues are located in the structured protein
regions. Numerous methods target the prediction of
structured interacting regions and they rely on the
training data extracted from Protein Data Bank [39–
45]. Recently published structure-trained tools include
SPRINT [46], SSWRF [47], EL-SMURF [48] and SCRIBER [49],
which predict protein-binding residues; RNABindRPlus
[50] and FastRNABindR [51] which predict RNA-binding
residues; TargetDNA [52] and DNAPred [53] which predict
DNA-binding residues; DRNApred [54], NCBRPred [55]
and BindN+ [56] which predict interactions with RNA and
with DNA; and ProNA2020 [57] and MTDsites [58] which
identify protein, DNA- and RNA-interacting regions.
Interestingly, recent study reveals that the structure-
trained predictors of protein-binding regions perform

poorly when used to predict protein-binding IDRs [59].
We further investigate this finding by evaluating the
results produced by several recent and well-performing
structure-trained predictors of the protein, DNA- and
RNA-interacting residues on the corresponding disor-
dered binding regions.

We introduce DeepDISOBind, a custom-designed
multi-task deep neural network that accurately pre-
dicts DNA-, RNA- and protein-binding IDRs. Multi-task
learning aims to improve predictive performance by
using shared representations (i.e. common parts of the
model) to predict related learning tasks (i.e. binding
to different partners) [60, 61]. Recently, the multi-task
models were shown to improve the predictive quality
for bioinformatics problems, including prediction of
cleavage sites [62] and inter-residue distances [63],
when compared to the single-task models. We devise
the multi-task architecture where subsequent layers
progressively specialize to predict interactions with
different partner types. We empirically compare this
topology against a single-task implementation and a
representative selection of the existing predictors. We
compare DeepDISOBind against representative methods
that predict protein and nucleic acid-binding IDRs as
well as the structure-trained methods. We also assess
the DeepDISOBind’s predictions on the human proteome
and release our tool as a convenient webserver.

Methods
Datasets
We source the data for training and comparative assess-
ment of our predictive model from DisProt [14]. DisProt
annotates proteins with the experimentally validated
IDRs, including IDRs that interact with proteins, DNA and
RNA. We manually checked IDRs that were annotated in
DisProt as nucleic acids, DNA- and RNA-binding using
the underlying publication data listed in DisProt in order
to classify them as DNA- and/or RNA-binding. This
annotation work follows from parsing DisProt for a recent
comparative survey [64]. We divide these proteins into
three subsets that constitute training, validation and test
datasets. We ensure that sequences in each dataset share
low (<30%) similarity with the other datasets. We use
training and validation datasets to design and optimize
the predictive model and the set-aside (during design and
optimization) test dataset to comparatively assess this
model against other solutions. Using protocol from [64],
we cluster the original set of proteins with CD-HIT [65] at
30% sequence similarity and we place the entire protein
clusters into training, validation and test datasets. The
test and combined training/validation datasets share
similar size, while the training dataset is set to be
twice the size of the validation dataset. This procedure
adheres to the commonly used practice in this field [64]
and ensures a proper level of separation between the
training/validation and test datasets (<30% sequence
similarity). Detailed statistics, which cover distribution of
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Table 1. Summary of datasets

Dataset Number of
proteins

Number of disordered residues Number of
all residues

Protein-
binding

DNA-
binding

RNA-binding All disordered

Training 238 15 341 (14.5%) 2913 (2.7%) 1437 (1.4%) 27 304 (25.9%) 105 601
Validation 118 6464 (14.7%) 1284 (2.9%) 608 (1.4%) 11 716 (26.8%) 43 776
Test 394 17 540 (8.4%) 2377 (1.1%) 1518 (0.7%) 46 041 (22.2%) 207 743

RNA-/DNA-/protein-binding residues in the three datasets,
are shown in Table 1. The datasets, including annotations
of the DNA-, RNA- and protein-interacting IDRs, are
freely available at https://www.csuligroup.com/DeepDI
SOBind/. We note that these datasets are larger than the
datasets that are used to train and test DisoRDPbind [29]
and are on par with the size of datasets utilized in CAID
[38].

Evaluation criteria
DeepDISOBind and other related tools produce putative
propensities for the disordered DNA-, RNA- and protein-
binding interactions for each residue in the input
protein sequences. These real-valued propensities are
accompanied by binary predictions, i.e. residues are
classified as either DNA-/RNA-/protein-interacting or
non-DNA-/RNA-/protein-interacting. The binary predic-
tions are derived from the propensities by thresholding,
i.e. residues with propensities greater than threshold
are assumed to interact, while the remaining residues
are assumed not to interact. Following related works
[29, 59], we calibrate the thresholds for all consid-
ered predictors such that their binary predictions
produce to the same specificity = 0.8. Specificity is
the rate of predictions of the interacting residues
among the native non-interacting residues. We select
0.8 since it approximates the combined rate of the
interacting residues across the three partner types.
This calibration facilitates direct comparison of the
binary predictions across different methods. Moreover,
Table 1 reveals that the rates of the DNA- and RNA-
interacting residues are much smaller than the rates
of the protein-interacting residues. Thus, we further
calibrate the evaluation between the three partner types
by randomly undersampling the non-binding residues
when evaluating performance for the RNA and DNA
interactions so that their rate is the same as for the
protein interactions. We assess the binary predictions
with two popular metrics: F1 = (2∗TP)/(2∗TP + FN + FP)
and sensitivity = TP/(TP + FN), where TP is the number
of correctly predicted protein-/RNA-/DNA-interacting
residues, TN is the number of correctly identified
non-protein-/RNA-/DNA-interacting residues, FN is the
number of protein-/RNA-/DNA-interacting residues
incorrectly predicted as non-interacting and FP is the
number of the non-interacting residues incorrectly

predicted as protein-/RNA-/DNA-interacting. We assess
the predicted propensities with a commonly used area
under the receiver operating characteristics (ROC) curve
(AUC) that plots sensitivity against FPR = FP/(FP + TN).
Higher values of the three metrics (F1, sensitivity and
AUC) indicate better predictive quality. In addition, since
some residues interact with more than one partner, we
evaluate predictors that provide protein-, DNA-, and
RNA-binding predictions with the macro-average and
micro-average metrics which are used in related multi-
label predictions’ studies [66–68]:

micro − sensitivity = TPavg

TPavg + FNavg
,

micro − F1 = 2 ∗ TPavg

2 ∗ TPavg + FPavg + FNavg
,

macro − sensitivity = 1
N

∑ TPi

TPi + FNi
,

macro − F1 = 2
N

∑
TPi/TPi + FNi ∗ ∑

TPi/TPi + FPi∑
TPi/TPi + FNi + ∑

TPi/TPi + FPi
,

where TPavg is the average number of correctly identified
protein-, DNA- and RNA-interacting residues, FNavg is
the average number of protein-/RNA-/DNA-interacting
residues incorrectly predicted as non-interacting, FPavg

is the average number of the non-interacting residues
incorrectly identified as protein-/DNA-/RNA-interacting,
TPi is the number of correctly predicted protein-,
DNA- or RNA-binding residues, FNi is the number
of protein-/RNA-/DNA-interacting residues incorrectly
predicted as non-interacting, FPi is the number of
incorrectly identified as protein/DNA/RNA interactions
and i represents RNA, DNA and protein interaction
labels.

The DeepDIOSBind predictor
DeepDISOBind is a multi-task deep neural network
that concomitantly predicts IDRs that interact with
proteins, DNA and RNA (Figure 1). We use a custom-
defined sequence profile that is extracted directly from
the protein sequence as the input. Subsequent layers
of the DeepDISOBind’s network progressively specialize
to predict interactions with different partner types.
Correspondingly, the network is composed of five major
elements (Figure 1): the common layer, the nucleic acid-
binding layer, the protein-binding layer, the DNA-binding
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Figure 1. The multi-task topology of the DeepDISOBind predictor.

layer and the RNA-binding layer. Following, we provide
a more detailed description of the sequence profile and
network topology.

Sequence profile

Inspired by other recent models in this area [23, 27,
29, 69], the input protein sequence is first converted
into a multi-dimensional profile. The profile covers the
sequence itself together with relevant sequence-derived
structural and functional properties that include relative
amino acid propensities (RAAPs) for ligand-binding and
predicted secondary structure and disorder. We use the
one-hot encoding to represent the sequence. More specif-
ically, each amino acid in the input sequence is repre-
sented by the 20-dimensional vector, where the position
of the corresponding amino acid type is set to 1 while
the other positions are set to 0. Moreover, we compute
the maximum, minimum and average of the sequence
embedding vectors that are defined in [70]. Inspired by
recent studies that introduce novel predictors of the
protein-binding residues from structured/ordered pro-
teins [49, 71], we use RAAP for ligand-binding. These
scores are derived empirically from binding data and
quantify propensities of each amino acid type to bind a
specific type of ligand. We use the five RAAP scales for

the protein- and nucleic acid-binding, which have been
described in Table 3 in [39]. Finally, we use popular and
fast predictors of the secondary structure, the single-
sequence version of PSIPRED [72], and of the intrinsic
disorder, SPOT-Disorder Single [73]. PSIPRED generates
the three-state secondary structures (helix, strand and
coil), which we represent with the one-hot encoding.
SPOT-Disorder Single produces real-valued propensities
and binary predictions of disorder. Altogether, the pro-
file includes 33 dimensions: 20 for one-hot encoding
of sequence +3 sequence embedding values +5 RAAP
values +3 secondary structure predictions +2 disorder
predictions. Similar to the other solutions in this area
[27, 29, 69, 73–75], we use sliding windows to predict
the interaction propensity for the residues in the middle
of the windows. We pad the windows at the sequence
termini with zeros.

Architecture of the DeepDISOBind network

The underlying idea is to initially model a generic set
of interacting residues and progressively specialize the
network to more specific interacting partners. To this
end, the partner-agnostic common layer (yellow block in
Figure 1) links to layers that discriminate protein- and
nucleic acid-binding (blue and green blocks in Figure 1),
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while the latter layer further connects to layers that
distinguish between DNA and RNA interactions.

The first, common layer consists of convolutional
neural network (CNN) and feed-forward neural network
(FNN) modules. The CNN module is composed of four
different kernels that differ in size (k = 1, 3, 5 and 7).
The variable kernel size designs were shown to be
effective to reproduce the sequential nature of the
protein sequences by accommodating for varying sizes
of the residue neighborhoods, leading to improvements
in predictive performance when compared to more
traditional network architectures [70, 76–78]. We use
eight channels for each kernel which are followed by
ReLU activation units and a 1D max-pooling layer.
We utilize the 1D max-pooling layer to reduce the
dimension of the latent feature spaces before they are
passed to the subsequent layers. Since the CNN module
focuses specifically on local information (in a small
sequence neighborhood around the predicted residue),
we supplement it with the FNN module that extracts
information from a larger window. This module uses a
layer of n = 32 ReLU activation units that work in parallel
to the CNN module. The outputs of the CNN and FNN
modules are combined and fed into the subsequent
FNN layers that aim to specialize the latent feature
space produced in the common layer to specific types
of interactions. We use four of these layers. First, the
common layer is linked to the protein-binding and
the nucleic acid-binding layers. Next, the nucleic acid-
binding layer is linked to the DNA-binding and RNA-
binding layers. We fix the sizes of the protein, DNA and
RNA layers to n = 32 units, and we add additional sub-
layers (smaller by a factor of 2) into the DNA and RNA
layers. Consequently, RNA and DNA elements consist of
two fully connected sub-layers, n = 32 and n/2 = 16 units.
The latter is motivated by the fact that DNA and RNA
interactions are harder to differentiate compared to the
nucleic acids and protein interactions [39]. Finally, the
output layer that generates putative propensities for
disordered RNA, DNA and protein interactions consists
of three neurons implemented with the sigmoid transfer
function.

Learning of the multi-task network requires a more
specialized strategy compared to classical single-task
networks. This is because some of the tasks (interactions)
could be easier to optimize compared to the other tasks.
This can be solved by relative weighting between tasks.
We use a recently proposed tuning that relies on estimat-
ing uncertainty of each task [79]. Under this approach, if
the performance of two tasks improves and the reduction
of the other task gets worse by no more than ε (we set
ε to a small value of 0.1), then we continue training the
model. Otherwise, we stop the training process. Moreover,
we adopt early stopping approach to avoid overfitting the
training dataset.

We empirically investigate the impact of the selection
of the hyperparameter n (size of the FNN modules
in the common, protein, nucleic acids, DNA and RNA

layers) on the predictive performance. We consider
networks with n = 16 (small size), n = 32 (medium), n = 64
(large) and n = 256 (very large). We summarize the
corresponding topologies in Supplementary Table S1
available online at http://bib.oxfordjournals.org/. We also
empirically compare learning of the complete networks
with the dropout learning [80] across the different
network sizes. We set the dropout rate to 0.2. The
dropout is meant to prevent overfitting, which would be
apparent if the dropout-based learned networks would
provide superior results. We compare the results on the
validation dataset across different network sizes and
when learning with and without the dropout on the
training dataset in Supplementary Table S2, available
online at http://bib.oxfordjournals.org/. The average
(across the three interaction types and three training
runs) AUC ranges between 0.759 (small network with
dropout) and 0.791 (medium network without dropout).
Similarly, the average F1 varies between 0.238 (small
network with dropout) and 0.271 (medium network
without dropout). We observe that the averaged AUC
and F1 scores are highly correlated (Pearson correlation
of 0.95), which means that the considered networks
produce high-quality propensities that are used to
generate similarly accurate binary predictions. The
medium size networks produce slightly better results
than the small and large networks. Further increasing the
size to the very large does not improve over the large-size
networks. This means that the medium size networks
are sufficiently large for this prediction. Lastly, we find
that use of dropout does not lead to improvements.
This together with the observation that modest-sized
network produces the best results and outperforms the
very large network suggest that our design does not
overfit the training dataset. Consequently, we implement
DeepDISOBind based on the medium network size (n = 32)
and using training without dropout.

We also compare the above architecture that combines
CNN and FNN modules with a design that relies on the
graph neural network (GNN). GNNs were recently used in
related projects that target prediction of protein–protein
interactions (PPIs) at the protein level [81] and PPIs at the
residue level from protein structure [82]. The correspond-
ing underlying graphs represent the PPI networks and
the spatial arrangement of amino acids in the protein
structures. We use the graph to represent our input
protein sequence, and more specifically, the sequential
nature of connection between the residues in the input
sliding window. The architecture of the GNN model
draws from the best-performing medium size CNN/FNN
network (i.e. DeepDISOBind) where we replace the CNN-
based common layer with two graph convolutional
layers, where nodes correspond to amino acids linked by
peptide bonds, and we retain the other layers. Table S2,
available online at http://bib.oxfordjournals.org/, com-
pares the results produced by this GNN model with
the DeepDISOBind. The average AUC and F1 of the
GNN-based design are modestly lower than the results
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produced by the CNN-based DeepDISOBind; AUC of 0.756
versus 0.791 and F1 of 0.234 versus 0.271. This could be
explained by the fact that the underlying graph is rather
simple as it can only represent corrections between
residues in the protein sequence compared to the CNN
architecture that models these sequential relations more
effectively. The more successful application of GNNs for
the above-mentioned prediction of PPI networks and PPIs
from protein structure stems from a more informative
structure of the corresponding graphs.

Results
Ablation analysis of the network design
DeepDISOBind relies on two major elements: the multi-
element sequence profile and the multi-task architec-
ture. We investigate the relation between the specific
formulation of these elements and the resulting predic-
tive performance. We run ablation analysis where we
measure predictive performance when removing certain
parts of the profile and when we implement the topol-
ogy as the collection of three single-task networks. The
corresponding 10 versions of the predictive model are
defined in Supplementary Tables S3 and S4, available
online at http://bib.oxfordjournals.org/, i.e. modifications
of the sequence profile and modifications of the topology,
respectively.

We summarize the results of the ablation analysis
on the test dataset in Table 2. The top portion of the
Table 2 focuses on the sequence profile and reveals
that all major parts of this profile that we employ
provide useful information for the predictive model.
More specifically, removal of the sequence, putative
disorder or binding propensities (versions v1–v3) leads to
a substantial drop in predictive performance from 0.75 to
between 0.72 and 0.73 in the average AUC and from 0.56
to between 0.47 and 0.50 in the average sensitivity; we
average over the three partner types. Removal of two
or more parts of the profile (versions v4–v7) further
deteriorates the performance, with the average AUC
dropping to between 0.70 and 0.71. Interestingly, the
v7 model that relies solely on the amino acid level
propensities for binding (5-dimensional RAAP input)
is comparable to the v6 model that uses the protein
sequence [23-dimensional amino acid sequence (AAS)
input], where both models secure the average AUC of
0.7. This shows that the RAAP scores provide a high-
quality reduced representation of the sequence for the
purpose of the prediction of the protein and nucleic
acids interactions. Supplementary Figure S1A, available
online at http://bib.oxfordjournals.org/, provides the
corresponding ROC curves. The curves demonstrate
that DeepDISOBind offers particularly strong improve-
ments over the models that exclude certain types
of inputs for the low values of FPR (false positive
rate) < 0.3 (Supplementary Figure S1B, available online
at http://bib.oxfordjournals.org/). The increase in the
sensitivity at the same FPR can be as high as 7%

when compared to the best input-reduced version. We
argue that predictions with the low FPRs are more
practical than the predictions with higher FPRs, given our
imbalanced dataset where only about 20% of residues
are interacting. In other words, FPRs of >0.3 would
correspond to substantial overprediction of interactions.
Altogether, these results indicate that all elements of the
sequence profile contribute to the quality of predictions
produced by the DeepDISOBind model.

We also study benefits of the application of the
multi-task architecture by comparing it with the imple-
mentation that combines three single-task networks
that use corresponding subsets of the layers from the
original network and the same complete sequence
profile (Supplementary Table S4, available online at
http://bib.oxfordjournals.org/). We summarize these
results in the bottom section of Table 2 (versions v8–
v10). Each of the three single-task models underperforms
when compared with DeepDISOBind. More specifically,
the AUC for the prediction of the disordered protein
interactions drops from 0.77 (DeepDISOBind) to 0.75
(single-task deep network), the AUC for the RNA
interactions drops from 0.75 to 0.72 and the AUC for the
DNA interactions decreases from 0.74 to 0.70. Moreover,
average (over the three types of interactions) F1 and
sensitivity (measured as the same specificity = 0.8) are
reduced from 0.30 and 0.56 to 0.25 and 0.46, respectively,
when comparing the multi-task and the single-task
networks. This suggests that the use of the multi-
task design leads to substantial improvements in the
predictive performance across the three types of the
interactions. This conclusion is in agreement with
literature that similarly demonstrates that the multi-
task learning improves over the single-task learning in a
generic machine learning setting [61, 83] as well as when
applied to bioinformatics problems [62, 63, 84]. We note
that the multi-task learning was not previously used
for the prediction of the disordered protein–protein and
protein–nucleic acids interactions.

Comparative assessment of predictive
performance between DeepDISOBind and related
methods
We compare results produced by DeepDISOBind with
other relevant and representative methods that pre-
dict protein, DNA and RNA interactions from protein
sequences. These methods include the only other tool
that predicts disordered protein, DNA and RNA inter-
actions, DisoRDPbind [29] and two popular and accu-
rate predictors of the disordered protein interactions,
ANCHOR2 [31] and MoRFCHiBiLight [25]. These methods
secured the top three spots in the assessment of the
prediction of interacting IDRs in the recent CAID exper-
iment [38]. We also include a comprehensive selection
of the structure-trained predictors, including SCRIBER
[49], which predicts protein-binding residues and which
was recently shown to outperform other structure-
trained predictors of protein-interacting residues [59];
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Table 2. Ablation analysis for the DeepDISOBind predictor on the test dataset

Ablation
design

Model Protein interactions RNA interactions DNA interactions Average

AUC Sensitivity F1 AUC Sensitivity F1 AUC Sensitivity F1 AUC Sensitivity F1

Exclusion
of inputs
from the
profile

DeepDISOBind 0.77 0.60 0.31 0.75 0.61 0.32 0.74 0.47 0.26 0.75 0.56 0.30
v1 (excludes AAS) 0.75 0.55 0.29 0.74 0.52 0.28 0.70 0.44 0.24 0.73 0.50 0.27
v2 (excludes PID) 0.74 0.53 0.28 0.69 0.43 0.24 0.72 0.46 0.25 0.72 0.47 0.26
v3 (excludes RAAP) 0.77 0.55 0.29 0.67 0.46 0.25 0.73 0.40 0.22 0.72 0.47 0.25
v4 (excludes AAS and RAAP) 0.76 0.56 0.30 0.68 0.40 0.22 0.70 0.46 0.25 0.71 0.47 0.26
v5 (excludes PSS and PID) 0.72 0.53 0.28 0.68 0.45 0.25 0.70 0.42 0.23 0.70 0.47 0.25
v6 (excludes RAAP, PSS and PID) 0.71 0.45 0.25 0.67 0.38 0.21 0.72 0.43 0.24 0.70 0.42 0.23
v7 (excludes AAS, PSS and PID) 0.69 0.47 0.25 0.72 0.51 0.28 0.68 0.48 0.26 0.70 0.49 0.26

Single-
task
prediction

v8 (single-task prediction of protein-binding) 0.75 0.51 0.27 N/A N/A N/A N/A N/A N/A
0.72 0.46 0.25v9 (single-task prediction of RNA-binding) N/A N/A N/A 0.72 0.44 0.24 N/A N/A N/A

v10 (single-task prediction of DNA-binding) N/A N/A N/A N/A N/A N/A 0.70 0.44 0.24

Note. We compare the complete DeepDISOBind model against 10 versions where we remove specific parts of the sequence profile (v1–v7) and where
we implement the model as the combination of three single-task networks (versions v8–v10). Supplementary Tables S3 and S4, available online at
http://bib.oxfordjournals.org/, define further details. The profile includes AAS, RAAP for binding, putative secondary structure (PSS) and putative intrinsic
disorder (PID). Sensitivity and F1 are calibrated to the same specificity = 0.8. The last set of columns shown in bold font shows the average values over the
three types of the partner molecules.

RNABindRPlus [50] that was ranked as the best tool
in the recent assessment of the structure-trained
predictors of the RNA interactions [45]; TargetDNA [52],
one of the most accurate and popular predictors of the
DNA interactions in the structured regions [85]; two
representative structure-trained methods that predict
DNA- and RNA-binding regions, popular BindN+ [56]
that was shown to provide strong predictive performance
in comparative surveys [39, 43] and one of the most
recent methods, NCBRPred [55]; and two structure-
trained methods which target prediction of protein, DNA
and RNA interactions, ProNA2020 that was released
in 2020 [57] and MTDsites that was published in 2021
[58]. The latter two methods offer the same scope of
predictions as DeepDISOBind and DisoRDPbind, but they
address predictions for structured rather than disordered
regions. We use the author-provided webservers or
implementations to make the predictions for these
ten tools: DisoRDPbind, ANCHOR2, MoRFCHiBiLight,
SCRIBER, RNABindRPlus, TargetDNA, BindN+, NCBRPred,
ProNA2020 and MTDsites.

We compare results produced by DeepDISOBind with
the 10 representative tools and our implementation
that is based on the single-task networks on the test
dataset, as shown in Table 3. We empirically assess
whether DeepDISOBind offers statistically significant
improvements over the other solutions that are robust
across different datasets. We bootstrap 50% of the test
proteins for 50 times and compare the corresponding
results with the t-test (for normal measurements) or
with the Wilcoxon test (otherwise). We test normality
with the Kolmogorov–Smirnov test at the P-value of
0.05. Similar tests were done in related comparative
studies [45, 64, 86]. Table 3 reveals that DeepDISOBind
consistently secures the best predictive performance
across the three binding partner types and the three
metrics of performance. Moreover, the improvements
in AUC, sensitivity and F1 are statistically significant

compared to each of the 10 other methods for the
predictions of protein, DNA and RNA interactions (P-
value < 0.05).

The average AUC, sensitivity and F1 (computed over
the three interactions) for DeepDISOBind are 0.75, 0.56
and 0.30 compared the other three tools that provide
the same scope of predictions that covers protein, DNA
and RNA interactions: DisoRDPbind (0.66, 0.42 and
0.23), ProNA2020 (0.47, 0.28 and 0.13) and MTDsites
(0.64, 0.35 and 0.22). The corresponding ROC curves
for these four predictors are separated by a relatively
wide margin (Supplementary Figure S2, available online
at http://bib.oxfordjournals.org/). We also assess multi-
label predictions for these four methods using the macro-
average and micro-average metrics (Table 3). Consistent
with the single-label assessment, DeepDISOBind outper-
forms the other three predictors by securing macro-F1
of 0.30, macro-sensitivity of 0.56, micro-F1 of 0.30 and
micro-sensitivity of 0.58. These results are statistically
better than the results of the three other methods (P-
value < 0.05), with the second-best DisoRDPbind that
obtains macro-F1 of 0.23, macro-sensitivity of 0.43,
micro-F1 of 0.25 and micro-sensitivity of 0.46. The
predictive performance of MTDsites and ProNA2020
is worse than DeepDISOBind and DisoRDPbind since
the two former methods are trained using structured
proteins. The lower predictive quality of these tools
for the prediction of interactions in the IDR is in
agreement with similar observations obtained in a
recent comparative survey of the disorder-trained and
structure-trained predictors of protein-binding residues
[59].

For the disordered protein interactions’ prediction,
the sensitivity of DeepDISOBind is better by (0.595–
0.456)/0.456 = 30.5%, 190.2%, 95.7%, 40.5%, 18.8% and
18.5% when compared with DisoRDPbind, ProNA2020,
MTDsites, SCRIBER, ANCHOR2 and MoRFChibiLight,
respectively. This means that DisoRDPbind correctly
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Table 3. Comparative assessment on the test dataset

Predictive target Method Protein-binding RNA-binding DNA-binding Multi-label
macro-average

Multi-label
micro-average

AUC Sensitivity F1 AUC Sensitivity F1 AUC Sensitivity F1 Sensitivity F1 Sensitivity F1

Protein-, DNA- and

RNA-binding residues

DeepDISOBind 0.771 0.595 0.313 0.746 0.611 0.320 0.736 0.472 0.255 0.559 0.297 0.580 0.305
Single-task

predictor

(combination of

v8–v10)

0.746+ 0.516+ 0.277+ 0.725+ 0.446+ 0.243+ 0.697+ 0.443+ 0.242+ 0.468+ 0.254+ 0.503+ 0.271+

DisoRDPbind 0.727+ 0.456+ 0.249+ 0.594+ 0.364+ 0.202+ 0.671+ 0.452+ 0.246+ 0.426+ 0.234+ 0.457+ 0.248+
MTDsites 0.576+ 0.304+ 0.173+ 0.677+ 0.479+ 0.258+ 0.675+ 0.253+ 0.242+ 0.406+ 0.225+ 0.322+ 0.182+
ProNA2020 0.398+ 0.205+ 0.120+ 0.468+ 0.193+ 0.08+ 0.551+ 0.441+ 0.187+ 0.215+ 0.132+ 0.204+ 0.120+

Protein-binding residues ANCHOR2 0.719+ 0.501+ 0.270+
MoRFChibiLight 0.735+ 0.502+ 0.271+
SCRIBER 0.684+ 0.423+ 0.232+

DNA and RNA-binding

residues

BindN+ 0.685+ 0.473+ 0.257+ 0.615+ 0.331+ 0.187+
NCBRPred 0.662+ 0.455+ 0.243+ 0.617+ 0.367+ 0.205+

DNA-binding residues TargetDNA 0.580+ 0.274+ 0.157+
RNA-binding residues RNABindRPlus 0.576+ 0.336+ 0.186+

Note. The binary predictions use thresholds that equalize specificity to 0.8 across the methods to allow for direct comparisons (details in the Evaluation criteria
section). + means that DeepDISOBind is statistically significantly better (P-value < 0.05). = means that the difference between DeepDISOBind and another
predictor is not significant (P-value ≥ 0.05). The best results for each column are shown in bold font.

identifies at least 18.5% more interacting residues
at the same false positive rate, i.e. we fix speci-
ficity at 0.8 for all methods, which corresponds to 0.2
false positive rate. Similarly, for the RNA interactions,
DeepDISOBind’s sensitivity is better by 67.9%, 216.5%,
27.5%, 34.3%, 29.2% and 81.8% when contrasted with
DisoRDPbind, ProNA2020, MTDsites, NCBRPred, BindN+
and RNABindRPlus, respectively. The improvements in
the sensitivity for the DNA interaction predictions are
at 4.4%, 7.0%, 86.5%, 28.6%, 42.6% and 72.3% when
compared against DisoRDPbind, ProNA2020, MTDsites,
NCBRPred, BindN+ and TargetDNA, respectively. Similar
observations are true when using the F1 and AUC
metrics.

Figure 2 offers a more direct approach to compare
DeepDISOBind with the state of the art. We compare
the average values of the AUC (bars), sensitivity (gray
line) and F1 (black line) computed over the three inter-
action types. The comparison includes DeepDISOBind,
the single-task network (combination of the v8–v10 net-
works), the ‘combine best’ approach which uses the best
method (i.e. having highest AUC) for each interaction
type selected across the 10 predictors (i.e. MoRFChibi-
Light for the protein interactions; BindN+ for the RNA
interactions and MTDsites for the DNA interactions); Dis-
oRDPbind which is the only other disorder-trained predic-
tor with the same scope as DeepDISOBind; and MTDsites
and ProNA2020 which are the two recently published
structure-trained methods that predict protein-, DNA-
and RNA-interacting residues. First, we note a substan-
tial and statistically significant (Table 3) improvement
when contrasting the multi-task (DeepDISOBind) ver-
sus single-task solutions across the three metrics (P-
value < 0.05). Second, DeepDISOBind improves against
the combination of the best current methods by a large
and statistically significant margin (0.75 versus 0.70 in
AUC, 0.56 versus 0.41 in sensitivity and 0.30 versus 0.26

in F1). Third, DeepDISOBind and the single-task net-
works outperform DisoRDPbind, primarily because the
latter relies on simpler logistic regression models that
are applied utilizing the single-task architecture. Lastly,
DeepDISOBind improves over ProNA2020 and MTDsites
because the latter two are trained on the structured
proteins.

Finally, we investigate impact of similarity between
the test proteins and the proteins that were used to
train PSIPRED and SPOT-Disorder-Single methods, which
we utilize to derive inputs for DeepDISOBind (Figure 1).
We collect and combine the training datasets of these
two predictors. Next, we align each test protein to
every training protein with BLASTp [87] to annotate
regions in the test proteins that share similarity >30%.
Finally, we retest the predictive performance of Deep-
DISOBind and the other predictors of protein-, DNA-
and RNA-binding residues on the test proteins when
excluding the similar regions. We summarize these
results in Supplementary Table S5, available online at
http://bib.oxfordjournals.org/. DeepDISOBind secures
results that are on average very similar to the results
on the complete test dataset, with the average AUC (over
the protein, DNA and RNA predictions) of 0.752 versus
0.751 and the average F1 of 0.295 versus 0.296. More-
over, DeepDISOBind’s predictions consistently maintain
statistically significant advantage over the results of
the other 10 predictors (P-value < 0.05). Altogether, the
results on the complete test dataset and the sequence
regions that share low similarity to the training data
of PSIPRED and SPOT-Disorder-Single are similar. This
could be explained by the fact that we use the single-
sequence version of PSIPRED and the inherently single-
sequence SPOT-Disorder-Single. Both methods do not
use sequence alignment, thus minimizing the likelihood
of overfitting training datasets [72, 73]. To sum up, the
empirical analysis demonstrates that DeepDISOBind
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Figure 2. Comparison of the predictive performance on the test dataset between DeepDISOBind, MTDsites, ProNA2020, the single-task network
(combination of the v8–v10 networks), the Combine_best approach which uses the best method for each interaction type selected across the six
predictors (i.e. MoRFChibiLight for the protein interactions, BindN+ for the RNA interactions and MTDsites for the DNA interactions) and DisoRDPbind.
We quantify the predictive performance with the average (over the three interaction types) values of AUC (bars and vertical axis on the left), F1 and
sensitivity (lines and vertical axis on the right).

provides accurate predictions of the disordered protein,
DNA and RNA interactions.

Assessment of cross-predictions and
over-predictions
The binding residues share certain characteristics,
such as high levels of evolutionary conservation and
high solvent accessibility, irrespective of the type of
their binding partners. This may lead to a substantial
amount of cross-predictions, which are measured as
the fraction of residues that bind a given partner type,
which are predicted to interact with another ligand
type, e.g. protein-binding residues predicted as DNA- or
RNA-binding residues. Recent studies have found that
majority of methods that predict interacting residues
for the structured regions generate substantial amounts
of cross-predictions, which in some cases, are as high
as their sensitivity that quantifies the rate of correct
predictions [42, 43, 59, 88]. Correspondingly, we assess
the cross-predictions and over-predictions (fraction
of non-binding residues predicted to interact with a
given partner type) for DeepDISOBind and the other
10 considered to be predictors. Figure 3 quantifies the
average (over the different partner types) ratios of
sensitivity (rate of correct predictions) to the cross-
prediction and over-prediction rates (rates of incorrect
predictions) on the test dataset; ratios >1 denote
methods for which the rate of the correct predictions
is higher than the rate of over- or cross-predictions.
We normalize rate of predictions of binding residues
across predictors to allow for side-by-side comparisons

of the ratios across methods, i.e. we equalize the
number of the predicted protein-/DNA-/RNA-binding
residues to the number of the native protein-/DNA-/RNA-
binding residues. We provide the complete set of results
including cross-prediction rates, over-prediction rates
and sensitivity values for each partner type (protein,
DNA and RNA) in Supplementary Table S6, available
online at http://bib.oxfordjournals.org/. We compare
DeepDISOBind to the other methods using the same
set of predictions, e.g. we compare DeepDISOBind’s
predictions of protein-binding residues to the SCRIBER’s,
ANCHOR2’s and MoRFChibiLight’s results which also
predict only the protein-binding residues. The ratios
to the over-predictions are relatively high across all
methods, ranging between 1.89 for TargetDNA and
11.94 for DeepDISOBind’s prediction of the RNA-binding
residues (gray bars in Figure 3). This means that relatively
few non-binding residues are predicted to bind. We also
observe that DeepDISOBind generates the highest/best
ratios to the cross-predictions across all scenarios, except
when compared for the RNA-binding prediction with
RNABindRPlus where both methods achieve good results,
1.73 and 1.91 (black bars in Figure 3). Moreover, the
DeepDISOBind’s ratios are always >1, which means
that that its rates of correct prediction of binding
residues outperform the rates of the cross-predictions.
We observe that relatively few protein-binding residues
are incorrectly predicted as RNA-binding (7%) or DNA-
binding (11%) compared to the corresponding average
sensitivity (26%). Overall, when making predictions of
the protein, DNA- and RNA-binding, the DeepDISOBind’s

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/1/bbab521/6461158 by N

anjing Agricultural U
niversity user on 24 Septem

ber 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab521#supplementary-data


10 | Zhang et al.

Figure 3. Comparison of the ratios of the average sensitivity (over the three interaction types) to the average cross-prediction and over-prediction rates on
the test dataset. Larger ratios indicate higher quality predictions. The predictions rely on thresholds that equalize the number of the predicted binding
residues with the number of native binding residues for each predictor. Predictors are grouped by the scope of their predictions, as described on the
x-axis, where DeepDISOBind’s predictions are limited to the predictions of the other methods in the same group.

ratio to cross-predictions equals 1.41. This means that
its average rate of correct predictions is 40% higher than
the rate of the cross-predictions, which is substantially
better than the 0.98, 0.46 and 0.90 ratios secured by
DisoRDPbind, ProNA2020 and MTDsites.

Assessment of predictions in the human
proteome
We assess DeepDISOBind’s predictions on the proteome
scale. While the coverage of the residue-/region-level
annotations is limited at this scale, we can obtain a
comprehensive set of experimental annotations at the
protein level. We evaluate DeepDISOBind’s predictions
of the disordered DNA- and RNA-binding proteins in
one of the most comprehensively annotated proteomes,
the human proteome. To do that, we collect disordered
human proteins that are annotated to interact with
DNA and with RNA as well as the human proteins
that are unlikely to interact with the nucleic acids.
First, we collect the human proteome from UniProt
version 2019_09 [89] and remove partial sequences
that we identify based on the “Sequence status” term
“Fragment”. This produces 43 789 protein sequences.
Second, we annotate the DNA-interacting proteins by
combining data from a comprehensive collection of
relevant databases including 3D-footprint [90], CIS-
BP [91], JASPAR [92], HumanTF2 [93], SMiLE-seq [94],
animalTFDB [95] and the gene ontology (GO) terms
[96] in UniProt. We also annotate the RNA-binding

proteins based on the data from ATtRACT [97], RBPDB
[98] and the GO terms in UniProt. We map proteins in
these diverse resources into the human set based on
the UniProt’s accession numbers. This results in 2379
DNA-binding and 2371 RNA-binding proteins, which
is in line with related studies [99]. We identify the
disordered subset of these proteins using the popular
VSL2B predictor [100]. This method is different than the
SPOT-Disorder-Single predictor used in DeepDISOBind
and offers high-quality predictions of the disordered
proteins [38, 64]. We annotate a given DNA-/RNA-binding
protein as disordered if its putative disorder content is
>0.2. Consequently, we identify 1739 and 1711 disordered
DNA- and RNA-interacting proteins, respectively. Third,
we derive proteins that are unlikely to interact with
the nucleic acids. We select the human proteins that
share <30% sequence similarity with the annotated
DNA- and RNA-binding proteins, which we quantify
with BLASTp [87, 101]. This results in the set of 24 435
proteins. Finally, we convert the residue-/region-level
propensities produced by DeepDISOBind into protein-
level propensities of the disordered RNA and DNA
interactions. Since typically only a small portion of the
amino acids interact with the nucleic acids, we compute
average of the highest 5% of the residue-level propen-
sities produced by DeepDISOBind for a given protein to
quantify the protein-level propensities. We emphasize
that this approach does not validate correctness of the
positions of the predicted binding residues in the protein
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Figure 4. ROC curves for the DeepDISOBind’s prediction of the DNA-
interacting proteins (green line) and the RNA-interacting proteins (orange
line) in the human proteome. The blue ROC curve is for the scenario
where DeepDISOBind classifies disordered human hub proteins (proteins
that interact with many proteins) versus human proteins that interact
with a few protein partners.

sequence (which we assess in Comparative assessment
of predictive performance between DeepDISOBind and
related methods and Assessment of cross-predictions
and over-predictions sections) but rather the ability to
quantify propensity for binding at the whole protein
level. We assess these protein-level predictions of the
DNA- and RNA-interacting proteins in the human
proteome with the ROC curves and the corresponding
AUC scores (Figure 4). DeepDISOBind secures AUCs of
0.72 and 0.82 for the prediction of the human RNA-
and DNA-interacting proteins, respectively, which are
consistent with the results on the test dataset.

Moreover, motivated by the discussion in Assessment
of cross-predictions and over-predictions section, we
evaluate the potential for cross-predictions of the
protein-level scores. We group the considered human
proteins into four sets: (i) proteins that bind DNA and
do not bind RNA, (ii) proteins that bind RNA and do not
bind DNA, (iii) proteins that bind both RNA and DNA
and (iv) proteins that do not bind neither DNA nor RNA.
Next, we compare the protein-level scores for DNA and
RNA interactions that we extract from DeepDISOBind’s
predictions (i.e. average of the highest 5% of the residue-
level propensities) inside the sets 1–3 to study the cross-
prediction. We utilize the pairwise t-test (for normal
measurements) or the Wilcoxon test (otherwise), where
we test normality with the Kolmogorov–Smirnov test at
the 0.05 P-value. The protein-level DNA-binding propen-
sities are higher than the protein-level RNA propensities
within the protein set 1 and the difference is statistically
significant (P-value < 0.01). Similarly, the protein-level
RNA-binding propensities are significantly higher than

the corresponding DNA propensities for the set 2 (P-value
< 0.01). Interestingly, the protein-level RNA- and DNA-
binding propensities are not significantly different for
the protein set 3 (P-value = 0.66). These results suggest
that the predictions of DeepDISOBind that we aggregate
at the protein-level successfully differentiate between
DNA- and RNA-binding proteins. Finally, we further
examine the accuracy of the prediction of the DNA-
and RNA-binding proteins by comparing the protein-
level DNA-binding propensities between sets 1 and 4 and
the protein-level RNA-binding propensities between sets
2 and 4. In both cases, the protein-level propensities for
DNA and RNA interactions are higher in the sets 1 and
2, respectively, when compared with the set 4 and these
differences are statistically significant (P-value < 0.01).

We also assess whether DeepDISOBind accurately pre-
dicts the disordered protein interactions. Since majority
of human proteins interact with proteins, and thus, it
would be virtually impossible to reliably identify non-
protein-binding proteins; we use DeepDISOBind’s predic-
tions to differentiate between disordered hub proteins
[102], which interact with many protein partners, and
proteins that interact with relatively few proteins. This is
motivated by the finding that the human hub proteins
are enriched in the intrinsic disorder [103, 104]. First,
we collected a comprehensive set of PPI annotations in
the human proteome from the mentha resource, which
combines data from several relevant source databases
[105]. Second, we process the corresponding set of 17 598
protein-interacting proteins to extract the highly promis-
cuous hub proteins (25% of proteins with the highest
PPI counts) and proteins that interact with a few pro-
tein partners (25% that interact with the smallest num-
ber of proteins). The same as for the assessment of
the DNA/RNA interactions, we use VSL2B to identify a
subset of the disordered hub proteins. Finally, we con-
vert the residue-/region-level protein-binding propensi-
ties produced by DeepDISOBind into the protein-level
propensities of the disordered proteins interactions using
the same approach as for the assessment of the nucleic
acid-binding proteins. Blue ROC curve in Figure 4 quan-
tifies the predictive quality of DeepDISOBind applied
to differentiate between the disordered hubs and the
proteins that interact with few proteins. DeepDISOBind
obtains AUC of 0.76, which is similar to the results on
the test dataset. Altogether, these results suggest that
the outputs produced by DeepDISOBind can be converted
into protein-level scores that correctly predict disordered
RNA-, DNA- and protein-interacting proteins. The Deep-
DISOBind’s predictions for the human proteins are avail-
able at https://www.csuligroup.com/DeepDISOBind/.

Case study
We illustrate DeepDISOBind’s predictions on one of
the test proteins, the silent information regulator
Sir3p from budding yeast (DisProt: DP00533; UniProt:
P06701). Sir3p is involved in the initiation, propagation
and compaction of the silenced chromatin [106, 107].
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Sir3p has a long IDR (positions 216–549) that interacts
with RAP1p [108], RAD7p [109] and Sir4p coiled-coil
domain [110]. This DNA- and protein-interacting IDR
is flanked by structured regions that extend to the
termini.

The case study aims to visualize the putative propen-
sities and binary predictions produced by DeepDISOBind
and the other methods that we cover in Comparative
assessment of predictive performance between Deep-
DISOBind and related methods section and Table 3.
This example is not intended to quantify or compare
the predictive performance. Supplementary Figure S3A,
available online at http://bib.oxfordjournals.org/, reveals
that the disorder-trained predictors (ANCHOR2, MoR-
FCHiBiLight, DisoRDBbind and DeepDISOBind) correctly
identify this IDR as interacting with proteins. MoRFCHiBi-
Light slightly overpredicts protein-interacting regions in
the structured domain at the N-terminus. On the other
hand, the structure-trained predictors of the protein-
binding residues, such as SCRIBER, ProNA2020 and
MTDsites, miss this binding region. This can be explained
by the fact that they target prediction of protein-binding
in structured regions. Supplementary Figure S3B, avail-
able online at http://bib.oxfordjournals.org/, shows that,
while most methods (except for ProNA2020) correctly
predict DNA interactions in this IDR, DisoRDPbind,
TargetDNA, BindN+, MTDsites and NCBRPred overpre-
dict DNA interactions outside this region. TargetDNA,
BindN+, MTDsites and NCBRPred were designed to iden-
tify the interactions in the structured regions and this is
likely why they make more predictions at both structured
termini. Moreover, predictions from DeepDISOBind,
DisoRDPbind, ProNA2020 and RNABindRPlus suggest
that this protein is unlikely to interact with RNA, while
BindN+, NCBRPred and MTDsites predict multiple RNA-
binding regions (Supplementary Figure S3C, available
online at http://bib.oxfordjournals.org/). This can be
again attributed to the fact that BindN+, NCBRPred
and MTDsites aim to predict RNA interactions in the
structured regions.

DeepDISOBind webserver
DeepDISOBind is available as a user-friendly webserver
at https://www.csuligroup.com/DeepDISOBind/. With
the user’s convenience in mind, we make predictions
on the server side and process up to 20 proteins in a
single request. The only required inputs are the FASTA-
formatted protein sequences. Users can opt to provide
an email address where we send links to the results
when predictions are completed. Predictions take about
30 seconds for an average-size sequence. The server
outputs numeric propensities for the protein, RNA and
DNA interactions and the three corresponding binary
predictions for each residue in the input chain(s). We also
provide putative propensities and binary annotations of
disorder generated by SPOT-Disorder-Single. The results
are available in three convenient formats: (i) parseable
text file that can be downloaded from a request-specific

URL, (ii) color-coded (to ease identification of interacting
residues) table in the browser window and (iii) an
interactive graphical format in the browser window. We
will store these predictions for at least 1 month. The
graphical format allows users to select predictions of
specific interactions, identify propensity scores, amino
acid type and position on mouse hover and zoom on
a specific protein segment. Users should employ the
putative propensities as a measure of confidence, i.e.
residues predicted with higher values of propensity
are more likely to interact with the corresponding
partner. Moreover, the binary predictions can be used
identify the putative protein-, RNA- and DNA-binding
residues when assuming low false positive rate at 0.2;
we use the same calibration in Tables 2 and 3 and in
Supplementary Tables S5 and S6, available online at
http://bib.oxfordjournals.org/.

Importantly, DeepDISOBind targets prediction of IDRs
that interact with proteins, DNA and RNA and, by
design, is not going to produce reliable predictions
for the structured regions. Thus, predictions of the
interacting residues for the structured regions, which can
be identified with the help of the SPOT-Disorder-Single’s
predictions, should be pursued with the structure-
trained methods. Recent surveys of the structure-trained
predictors can be used to identify suitable methods
[39–45].

Discussion
IDRs interact with a variety of partner molecules includ-
ing nucleic acids and proteins. The availability of exper-
imental data for hundreds of interacting IDRs gave rise
to the development of machine learning models that
learn from these data to predict these interactions for
the millions of unannotated protein chains. However,
only one such tool is available for the prediction of
disordered interactions with the nucleic acids, and the
recent CAID experiment concludes that new and more
accurate predictors of the interacting regions are needed
[38]. To this end, we develop DeepDISOBind, a novel
multi-task deep learner, which provides accurate predic-
tions of the DNA-, RNA- and protein-binding IDRs. We
empirically demonstrate that our selection of the predic-
tive inputs and the multi-task design of DeepDISOBind’s
model contribute to its predictive performance. Side-by-
side evaluation on an independent (low similarity) test
dataset reveals that DeepDISOBind offers statistically
significant improvements over the single-task topology
and a representative collection of 10 existing tools that
cover both disorder-trained and structure-trained meth-
ods. These improvements are consistent across the three
interactions types. Evaluation on the human proteome
shows that DeepDISOBind accurately identifies hubs and
DNA- and RNA-binding proteins. We provide a conve-
nient webserver at https://www.csuligroup.com/DeepDI
SOBind/. This webserver allows for batch predictions, per-
forms calculations on the server side and provides results
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in multiple formats, including an interactive graphical
visualization.

Key Points

• CAID experiment shows that current predictors
of disordered regions interacting with nucleic
acids and proteins offer modest levels of predic-
tive accuracy.

• DeepDISOBind uses an innovative deep multi-
task architecture to accurately predict DNA-
, RNA- and protein-binding disordered regions
from protein sequences.

• DeepDISOBind’s predictions outperform results
of current disorder- and structure-trained meth-
ods across the interactions with DNA, RNA and
protein partners.

• DeepDISOBind accurately identifies protein hubs
and DNA- and RNA-binding proteins in the
human proteome.

• DeepDISOBind’s webserver is available at https://
www.csuligroup.com/DeepDISOBind/.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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