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Abstract

Efforts to elucidate protein–DNA interactions at the molecular level rely in part on accurate predictions of DNA-binding
residues in protein sequences. While there are over a dozen computational predictors of the DNA-binding residues, they are
DNA-type agnostic and significantly cross-predict residues that interact with other ligands as DNA binding. We leverage a
custom-designed machine learning architecture to introduce DNAgenie, first-of-its-kind predictor of residues that interact
with A-DNA, B-DNA and single-stranded DNA. DNAgenie uses a comprehensive physiochemical profile extracted from an
input protein sequence and implements a two-step refinement process to provide accurate predictions and to minimize the
cross-predictions. Comparative tests on an independent test dataset demonstrate that DNAgenie outperforms the current
methods that we adapt to predict residue-level interactions with the three DNA types. Further analysis finds that the use of
the second (refinement) step leads to a substantial reduction in the cross predictions. Empirical tests show that DNAgenie’s
outputs that are converted to coarse-grained protein-level predictions compare favorably against recent tools that predict
which DNA-binding proteins interact with double-stranded versus single-stranded DNAs. Moreover, predictions from the
sequences of the whole human proteome reveal that the results produced by DNAgenie substantially overlap with the
known DNA-binding proteins while also including promising leads for several hundred previously unknown putative DNA
binders. These results suggest that DNAgenie is a valuable tool for the sequence-based characterization of protein
functions. The DNAgenie’s webserver is available at http://biomine.cs.vcu.edu/servers/DNAgenie/.
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Introduction

Protein–DNA interactions drive regulation of gene expression
and DNA processing and repair [1, 2]. These interactions involve
single-stranded DNA (ssDNA), double-stranded DNAs (dsDNA)
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[3] and a number of noncanonical DNA structures that include
G-quadruplex [4–6], cruciform [7], i-motif [8], triplex [9] and
hairpins [10], to name a few. The ssDNA-binding proteins are
involved in DNA replication, recombination, and repair while
the dsDNA-binding proteins play key roles in numerous cellular
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processes that include DNA cleaving, chromosome packing and
transcription [11, 12]. The dsDNA assumes several functionally
different conformations with the B-DNA being the most abun-
dant form and A-DNA and Z-DNA being the other common
dsDNA subtypes [13, 14]. A-DNA and B-DNA are right-handed
double helices that differ in the spatial arrangement of the base
pairs, while Z-DNA is a left-handed duplex. Structural details of
protein-DNA complexes are used to gain invaluable mechanistic
insights into the corresponding protein functions [15–17], to
characterize different modes of protein–DNA interactions [18]
and to address a variety of other basic science and applied
studies. The source data for these studies is generated by exper-
imental techniques, such as X-ray crystallography and NMR.
However, application of these techniques is relatively expensive
and time-consuming. For instance, the structural genomics con-
sortia reported solving about 13 500 structures over 15 years
at the cost of 2 billion dollars, which converts to an average
per-protein cost of $148 000 [19]. Consequently, cost- and time-
efficient computational methods have been used to support and
advance studies of protein–DNA interactions.

The computational methods that characterize these inter-
actions on the protein side are categorized into two groups:
structure-based versus sequence-based [20]. The former cate-
gory identifies whether and how a given protein interacts with
DNA by comparing the structure of a query protein to the struc-
tures of similar proteins that are in complex with DNA [21].
However, such structural information is available for a relatively
small subset of DNA-binding proteins. A quick search of Protein
Data Bank (PDB) reveals about 5600 protein-DNA complexes [22].
While homology modeling can be used to improve coverage by
modeling proteins with unknown structure, this approach is
computationally expensive, was estimated to cover only about
25% of proteins overall and 19% of eukaryotic proteins [23], and
the resulting structural models may lack in quality for accurate
prediction of interactions [24, 25].

The sequence-based predictors use protein sequence to pro-
vide either a coarse-grained level prediction of DNA-binding
proteins (i.e., they identify DNA-binding proteins without details
about the underlying interactions) or to predict DNA-binding
residues (i.e., they identify the DNA-binding amino acids in the
protein sequence) [20]. While they produce results at a lower res-
olution (protein-level and residue-level) compared to the atomic-
level results generated by the structure-based methods, they
can be applied to analyze any of the millions of proteins with
the known sequences. The protein-level sequence-based predic-
tors, which include DNA-Prot [26], DNAbinder [27], and Stack-
DPPred [28], were summarized in a recent survey [20]. Here, we
focus on the sequence-based methods that predict DNA-binding
residues. They provide more details compared to the predictors
of DNA-binding proteins while their results can be still used to
identify DNA-binding proteins. Recent reviews [20, 29] and liter-
ature search reveal over a dozen residue-level sequence-based
methods that include (chronologically) DBS-pred [30], DBS-PSSM
[31], BindN [32], DNABindR [33], DP-Bind [34], DISIS [35], BindN-
RF [36], DBindR [37], ProteDNA [38], NAPS [39], BindN+ [40],
DNABR [41], TargetDNA [42], DRNApred [43], hybridNAP [20] and
DNApred [44]. Predictions generated by these tools provide use-
ful clues that support functional characterization of proteins.
As an example, DRNApred [43] was recently used to charac-
terize proteomes of coronaviruses [45] and Japanese encephali-
tis virus [46], to functionally characterize BEX3 [47] and σ ETF
[48] proteins, and to investigate interactome of ANKRD55 [49].
Although the residue-level methods generally produce accurate
results [29], recent works reveal that they suffer a significant

drawback. Namely, they incorrectly cross-predict residues that
interact with other ligands (RNAs, proteins and small molecules)
as DNA-binding [29, 50, 51]. For instance, depending on a method
used, between 23 and 60% of the native RNA-binding residues
were shown to be cross-predicted as DNA-binding [29]. In other
words, these methods fail to reliably differentiate between inter-
actions with DNA, RNA, proteins and small molecules. This is
explained by the fact that they were trained using datasets con-
sisting solely of DNA-binding proteins, whilst lacking proteins
that interact with the other partners [29, 52].

The current residue-level methods provide DNA-type-
agnostic predictions, i.e., their predictions do not differentiate
between different types of DNAs. There are a handful of the
protein-level predictors that tackle prediction of proteins that
interact specifically with ssDNA and dsDNA [12, 53–56]. However,
these methods predict the DNA type for the known DNA-binding
proteins (i.e., they assume that the input protein binds DNA),
do not differentiate between different types of dsDNA, and
do not identify the DNA-binding residues. The current lack
of the residue-level methods that address DNA-type-specific
predictions is a substantial downside, given that the knowledge
of the interacting DNA type provides useful functional clues [11,
12]. However, an accurate prediction of interactions with specific
DNA types is rather challenging given that the existing methods
struggle to differentiate between even more distinct partner
type, such as DNA, RNA, protein and small molecules.

Motivated by the lack of suitable tools to solve these
problems (i.e., DNA-agnostic prediction and cross-predictions),
we introduce the first predictor of DNA-type-specific binding
residues in protein sequences, DNAgenie. We compile and share
a new dataset that covers carefully curated A-DNA, B-DNA and
ssDNA-interacting proteins as well as proteins that bind other
partners to facilitate addressing the cross-predictions. DNAgenie
combines a custom-designed machine learning architecture
and a comprehensive physiochemical profile extracted from
the input protein sequence to accurately predict A-DNA, B-DNA
and ssDNA-binding residues. At the coarse-grained level, these
predictions can be used to identify A-DNA-, D-DNA- and ssDNA-
binding proteins, proteins that do not interact with DNA, as
well as to differentiate between DNA types for the known DNA-
binding proteins. Correspondingly, we compare the ability of
DNAgenie to identify the DNA type for the DNA-binding proteins
with the recently released best-performing tool [56]. Moreover,
we use DNAgenie to produce and analyze putative A-DNA, B-
DNA and ssDNA-binding proteins and residues in the human
proteome.

Methods
Datasets

The training and benchmarking of DNAgenie’s predictive model
require a high-quality dataset of proteins that are experimen-
tally annotated for interactions with a broad range of ligands.
The annotations of the protein–DNA interactions serve as the
ground truth to train and test predictive models. The annota-
tions of the interactions with the other ligands (RNA, proteins
and small molecules) are necessary to train a model that can
accurately separate them from the protein–DNA interactions
and to quantify the cross-predictions. We curated the data for
the DNA-binding proteins from Protein Data Bank (PDB) [22].
First, we collected high-quality structures (resolution <3 Å) of
proteins in complex with DNA. We ensure that the DNA chain is
sufficiently long to determine DNA type, i.e., we reject complexes
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where the DNA sequence <15 nucleotides long. Using geometry
of the DNA molecule we identify 123 protein-ssDNA complexes,
185 protein-A-DNA complexes, and 954 protein-B-DNA com-
plexes. Next, we map the PDB chains of these DNA-binding
proteins into the corresponding full UniProt [57] sequences using
SIFTS [58] to comprehensively annotate interactions with DNA
and the other partners. Using the SIFTS’s data, we identify other
PDB chains that map to a given UniProt sequence. We com-
bine the corresponding residue-level annotations of interactions
extracted using the BioLip database [59] across these chains. This
way we map experimental annotations of the binding residues
from potentially multiple structures and from across multi-
ple ligand types (including DNA-binding residues) onto a given
UniProt sequence. This procedure, which was used in several
recent studies [20, 52, 60], was shown to produce about 27% more
complete coverage of the interactions compared to earlier works
that use a single complex to annotate interactions [20].

We also curate a set of proteins that bind non-DNA partners.
First, we select a clustered (to 30% sequence similarity) set of
high-quality protein structure (resolution <3 Å) from PDB that
do not interact with DNA. Like for the DNA-binding proteins, we
map the PDB chains into the corresponding UniProt sequences
with SIFTS. Next, we remove proteins that could bind DNA based
on the information in UniProt, i.e., we eliminate proteins with
‘transcription factor’ and ‘DNA binding’ keywords and annota-
tions. We comprehensively annotate residue-level interactions
for the remaining proteins using the abovementioned approach
and BioLip. We select a subset of these proteins at random
to match the number of the annotated DNA-binding proteins.
Finally, we cluster the resulting combined set of the DNA-binding
and the non-DNA-binding proteins at 30% similarity using Blast-
clust to divide these data into training and test datasets. We
place 70% of the resulting clusters into the training dataset,
which we use to compute and optimize machine learning mod-
els, and the remaining 30% into the test dataset, which we use to
empirically and comparatively evaluate the optimized models.
This protocol ensures that the similarity between the training
and test proteins is below 30%. We show a detailed breakdown
of these datasets in Supplementary Table S1. These datasets are
available at http://biomine.cs.vcu.edu/servers/DNAgenie/.

We use a recently released RNA-T benchmark dataset which
includes 17 well-annotated RNA-binding proteins, utilizing the
mapping protocol described above [20]. This dataset facilitates
measurement of the cross-predictions among the RNA-binding
residues. This is motivated by the fact that some of the RNA
structures are similar to the A-DNA structure. RNA-T includes
409 RNA-binding residues and 5867 non-binding residues. The
similarity of proteins in this dataset is below 30% when com-
pared to the training dataset.

Assessment criteria

DNAgenie produces six predictions for every residue in the input
protein sequence: three real-valued propensities that quantify
likelihood that a given residue binds A-DNA, B-DNA and ssDNA;
and three binary scores that categorize a given residue as
A-DNA, B-DNA, ssDNA or non-DNA-binding. The binary
predictions are produced by thresholding propensities, i.e.,
residues with propensities above a threshold are assumed
binding, and otherwise they are assumed non-binding. Since
the numbers of A-DNA-, B-DNA- and ssDNA-binding residues
are much smaller compared to the non-binding residues (i.e.,
the data are highly imbalanced), some of the popular metrics,
such as accuracy, should not be employed since their values

are biased by the imbalance. We quantify the quality of the
binary predictions using sensitivity (rate of correct predictions
among the native binding residues) that is measured using
thresholds that are set to maintain specific low values of false
positive rate (FPR) at 5, 10 and 20%, which is equivalent to
specificity of 95, 90 and 80%, respectively. This facilitates side-
by-side comparisons between different predictors for each of the
three thresholds. Moreover, we assess the cross-prediction using
several metrics that were introduced in recent studies [20, 29, 52,
60, 61] including RatioCPR-D (ratio of the cross-prediction rate
for DNA to sensitivity), RatioCPR-L (ratio of the cross-prediction
rate for the other ligands to sensitivity), RatioOPR (ratio of the
over prediction rate to sensitivity) using the binarity predictions
that rely on the 5% FPR threshold (specificity = 0.95). The values
of these ratios >1 suggest that a given predictor produces
proportionally more correct than incorrect predictions, while
ratios ≤1 mean that its outputs are at the level of a random
predictor or worse. Inspired by related studies [20, 43, 51, 60–
62], we assess the propensities with the commonly used AUC
(area under the ROC curve), AULCratio, AUCPC-D, AUCPC-L and
AUOPC. Larger values of the latter three measures (AUCPC-D,
AUCPC-L and AUOPC) correspond to worse predictions, meaning
predictions that are characterized by higher amounts of the
cross/over-predictions. We provide detailed definitions of the
above metrics in the Supplement.

DNAgenie model

DNAgenie employs a custom-designed two-layer architecture
where the predictions generated by machine learning (ML) mod-
els in the first layer are refined in the second layer to reduce the
cross-predictions (Figure 1).

The first layer includes four color-coded ML models that
predict real-valued residue-level propensities for binding with A-
DNA, B-DNA, ssDNA and with a collection of other partners that
includes proteins, RNA and small molecules. The high predictive
performance of this layer stems from the use of the compre-
hensive physiochemical profile that we produce from the input
protein sequence. This profile covers a wide range of characteris-
tics that are relevant to the protein–ligand interactions including
relative solvent accessibility (RSA), intrinsic disorder and sec-
ondary structure that are predicted directly from the sequence,
relative amino acid-level propensities (RAAP) that quantify ten-
dency of amino acids to bind specific ligand types (RNA, DNA
and proteins), evolutionary conservation (ECO), and biophysical
properties including hydrophobicity, polarity and charge [20]. For
instance, literature suggests that the DNA-binding residues are
conserved, locate on the protein surface, and that certain amino
acids are more likely to interact with DNA [20, 53, 63]. We predict
RSA, intrinsic disorder and secondary structure directly from an
input protein chain using ASAquick [64], IUPred2A [65] and the
single-sequence version of PSIPRED [66], respectively. We select
these methods based on their high predictive performance and
low runtime. We develop the RAAP values for the A-DNA, B-DNA
and ssDNA binding using a recently published approach [20];
we discuss these novel features in the Section A-DNA, B-DNA
and ssDNA interaction indices. We generate the evolutionary
conservation scores from the alignment profiles produced by
fast HHblits tool [67]. We compute hydrophobicity, polarity and
charge using indices from the AAindex database [68]. We process
this comprehensive profile using a sliding-window approach to
produce 423 features that quantify the respective characteris-
tics individually and in combination with each other (e.g. we
quantify the number of charged and conserved residues on the
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Figure 1. Architecture of DNAgenie. The input box denotes the physiochemical profile derived directly from the input protein sequence that covers relative amino

acid propensities (RAAP) for binding, relative solvent accessibility (RSA), intrinsic disorder (Disorder), secondary structure (SS) and evolutionary conservation (ECO) and

several other relevant biophysical properties. Seven machine learning models used by DNAgenie are denoted by color-coded boxes including the four models in the

first layer that generate unrefined putative residue-level propensities for A-DNA, B-DNA, ssDNA and other (protein/RNA/small molecule) binding and the three models

in the second layer that generate the refined putative residue-level propensities for A-DNA, B-DNA and ssDNA binding.

predicted surface). We detail these features in Supplementary
Table S2.

The input for the second layer consists of the four predictions
for the A-DNA, B-DNA, ssDNA and RNA/protein/small molecule
binding passed from the first layer. Supplementary Table S3
describes features that are encoded from these four predictions,
which we use as the input to the three color-coded ML models
in the second layer. The second layer refines A-DNA, B-DNA
and ssDNA predictions to minimize the cross-predictions. The
cross predictions are reduced by comparing the unrefined
putative residue-level propensities for the A-DNA, B-DNA and
ssDNA interactions against each other and against the putative
propensities for protein/RNA/small molecule binding. In other
words, the refined residue-level propensities for A-DNA, B-DNA
and ssDNA binding generated by DNAgenie can be seen as the
cross-prediction reduced versions of the unrefined propensities
generated in the first layer.

We consider five popular ML algorithms to train predictive
model in both layers: logistic regression, weighted k-nearest-
neighbor (kNN), Naïve Bayes, random forest and support vector
machine. We motivate this selection by the successful use of
these algorithms in related studies [20, 34, 43, 69–74]. However,
in contrast to the past designs, we incorporate several innovative
ideas including the use of the second/refinement layer that aims
to reduce the cross-predictions, utilization of the RNA/protein/s-
mall molecule binding predictor in the first layer that facilitates
the refinement, development and use of the novel RAAP for
A-DNA, B-DNA and ssDNA binding, and consideration of a broad

range of ML algorithms to develop the predictive model. We do
not utilize the nowadays popular deep learning models since
the amount of the training data is insufficient for their training
(Supplementary Table S1), which would likely lead to overfitting.
We use an empirical approach to adapt the predictive models
trained with these five algorithms to the prediction of the spe-
cific DNA types and to maximize their predictive performance.
We explore two-dimensional search space defined by empirical
feature selection and selection of the ML algorithms. Feature
selection aims to select a subset of the considered features that
share low mutual correlation (i.e., which do not duplicate each
other) and which are predictive for a specific DNA type. For
each DNA type, we use wrapper feature selection with the best-
first search [75] to select the best-performing subset of non-
redundant features for each of the five ML algorithms. This
allows us to adapt the same input profile to build accurate and
selective models that predict residues that interact with A-DNA,
B-DNA and ssDNA. The entire empirical design process relies
exclusively on the 5-fold cross-validation tests on the training
dataset. More precisely, we parametrize the models for first layer
and the second layers inside the same cross-validation loop,
ensuring that we do not overfit this dataset.

We compare results produced by the five ML algorithms
on the training dataset in Supplementary Table S4. The results
show that the support vector machine outperforms the other
algorithms for the prediction of the residues that interact with
each of the three DNA types. Support vector machine secures the
highest AUC and AUCLratio scores coupled with the lowest/best
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Table 1. Relative amino acid propensities (RAAP) for binding A-DNA, B-DNA and ssDNA

Amino Acid Type Propensity for A-DNA binding Propensity for B-DNA binding Propensity for ssDNA binding

A 0.03 0.10 0.03
R 1.00 1.00 1.00
N 0.50 0.38 0.35
D 0.10 0.06 0.19
C 0.18 0.08 0.00
Q 0.35 0.36 0.14
E 0.09 0.03 0.06
G 0.22 0.22 0.34
H 0.56 0.56 0.50
I 0.14 0.09 0.22
L 0.06 0.00 0.10
K 0.76 0.76 0.56
M 0.15 0.18 0.15
F 0.19 0.19 0.38
P 0.00 0.15 0.08
S 0.34 0.34 0.18
T 0.36 0.50 0.36
W 0.62 0.35 0.62
Y 0.38 0.62 0.76
V 0.08 0.14 0.09

AUCPC-D, AUCPC-L and AUOPC values. This suggests that this
ML model provides the most accurate predictions of the DNA-
binding residues and the lowest rates of the cross-predictions.
The support vector machine relies on the popular radial basis
function kernel and we tune its hyperparameters C (complexity
coefficient) and γ (width of the kernel function) using grid search
where the parameter values are expressed as 2x and x = −10, −9,
−8, . . . , 10. Consequently, we use the support vector machine
models to implement DNAgenie.

These optimized models encapsulate relations between the
selected physiochemical characteristics and DNA-binding, cir-
cumventing the need to use sequence alignment or homology.
This means that DNAgenie can be used to predict virtually any
protein sequence, irrespective of its similarity to other proteins,
which we demonstrate empirically on the test dataset.

A-DNA, B-DNA and ssDNA interaction indices

We develop three new relative amino acid propensity (RAAP)
indices which quantify likelihood that a given amino acid
interacts with A-DNA, B-DNA and ssDNA. We follow a recent
approach that has produced similar indices for binding to RNA,
(type-agnostic) DNA and proteins [20]. First, we use Composition
Profiler [76] to compute relative amino acid propensity for
a specific DNA type by contrasting the corresponding set of
DNA-binding residues against the non-DNA-binding residues
collected from the training dataset. Next, we normalize these
propensities across the three DNA types by first scaling them to
the unit range and adjusting the scaled scores based on ranked
averages across the DNA types. We list the resulting indices in
Table 1.

We empirically test ability of these indices to identify
residues that interact with A-DNA, B-DNA and ssDNA. For a
set of training proteins that interact with a given DNA type, e.g.,
A-DNA-binding proteins, we compute differences of the A-DNA,
B-DNA and ssDNA index values between the residues that inter-
act with A-DNA and the remaining residues in the sequence. We
compare these three differences and we mark a given protein
as correctly predicted if the difference for the A-DNA index (the

index for the selected DNA type) is higher than the difference for
the other indices. This corresponds to a result where the A-DNA
index is successful in marking the binding residues with the
correct DNA type. We perform this test for the training proteins
sets that bind A-DNA, B-DNA and ssDNA and summarize these
results in Supplementary Table S5. The A-DNA index correctly
predicts 70% of the A-DNA-binding proteins compared to only
23 and 7% of proteins that are incorrectly recognized as B-DNA
and ssDNA; the corresponding rate of improvement over the
second most common outcome is 70/23 = 3.04. Similarly, the B-
DNA index correctly finds 54% of B-DNA-binding proteins, with
the rate of improvement 54/31 = 1.74, while the ssDNA index
marks 58% of the ssDNA proteins correctly, with the rate of
improvement 58/24 = 2.42. These empirical results demonstrate
that the three indices differentiate between the residues that
interact with A-DNA, B-DNA and ssDNAs. We use these indices
as one of the key innovative elements in the physiochemical
profile utilized by DNAgenie and to adapt the current DNA
type agnostic predictors of DNA-binding residues to predict
interactions with A-DNA, B-DNA and ssDNA.

Results
Comparative assessment of the predictions
of the A-DNA, B-DNA and ssDNA-binding residues

We benchmark predictions on the independent test dataset
that covers the three types of DNA-binding residues, residues
that bind the other ligand types and the non-binding residues.
The assessment compares predictions against the native
annotations of A-DNA, B-DNA, ssDNA, RNA, protein and small
molecule binding. This allows us to evaluate the quality of the
residue-level A-DNA, B-DNA and ssDNA-binding predictions
and to assess the extent of cross-predictions of the DNA-
binding among the residues that interact with the other
partner molecules. The test dataset shares low (<30%) sequence
similarity to the training data that was used in the cross-
validation setting to design and optimize DNAgenie. The low
similarity and the exclusion of the test set during the design
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Table 2. Predictive performance of DNAgenie, the random baseline, and the DNA type-augmented predictions produced by the four state-of-
the-art residue-level predictors of DNA-binding residues. We assess robustness of the predictive quality to different datasets by performing
10 tests on randomly selected 50% proteins from the test dataset. We report the corresponding averages and standard deviations. Statistical
significance of differences in the predictive performance between DNAgenie and each of the other five predictors is quantified with the t-
test for normal measurements as tested with the Anderson-Darling test; otherwise we use the Wilcoxon rank sum test. ++ and + mean that
DNAgenie is significantly better at P-value <0.01 and P-value <0.05, respectively; = means that the difference is not significant (P-value ≥0.05).
The sensitivities are reported at 5, 10 and 20% FPR. Bold font identifies the most accurate predictor for a given metric and DNA type

DNA type Predictors Sensitivity
at 5% FPR

Sensitivity
at 10% FPR

Sensitivity
at 20% FPR

AUC AULCratio

A-DNA Random baseline 0.050 ± 0.005++ 0.110 ± 0.008++ 0.209 ± 0.018++ 0.514 ± 0.006++ 0.951 ± 0.109++
TargetDNA 0.268 ± 0.016++ 0.411 ± 0.028++ 0.622 ± 0.020++ 0.774 ± 0.016++ 5.839 ± 0.653++
HybridNAP 0.185 ± 0.025++ 0.322 ± 0.017++ 0.493 ± 0.019++ 0.702 ± 0.014++ 4.084 ± 0.850++
BindN+ 0.196 ± 0.035++ 0.361 ± 0.029++ 0.527 ± 0.034++ 0.722 ± 0.014++ 4.633 ± 0.995++
DNApred 0.310 ± 0.021++ 0.464 ± 0.026++ 0.650 ± 0.019++ 0.789 ± 0.017++ 7.196 ± 0.801++
DNAgenie 0.483 ± 0.058 0.676 ± 0.026 0.831 ± 0.052 0.886 ± 0.037 11.896 ± 1.163

B-DNA Random baseline 0.052 ± 0.004++ 0.099 ± 0.005++ 0.201 ± 0.011++ 0.507 ± 0.006++ 0.998 ± 0.082++
TargetDNA 0.326 ± 0.014++ 0.464 ± 0.015++ 0.636 ± 0.018++ 0.794 ± 0.009++ 8.200 ± 0.490++
HybridNAP 0.219 ± 0.012++ 0.357 ± 0.013++ 0.515 ± 0.015++ 0.716 ± 0.008++ 5.225 ± 0.401++
BindN+ 0.270 ± 0.014++ 0.383 ± 0.012++ 0.567 ± 0.015++ 0.746 ± 0.009++ 6.691 ± 0.552++
DNApred 0.354 ± 0.016++ 0.529 ± 0.020++ 0.663 ± 0.015++ 0.811 ± 0.009++ 9.350 ± 0.536++
DNAgenie 0.472 ± 0.044 0.644 ± 0.041 0.824 ± 0.037 0.884 ± 0.015 11.156 ± 1.161

ssDNA Random baseline 0.047 ± 0.004++ 0.108 ± 0.023++ 0.219 ± 0.026++ 0.502 ± 0.005++ 0.933 ± 0.093++
TargetDNA 0.193 ± 0.016++ 0.351 ± 0.052++ 0.560 ± 0.039++ 0.757 ± 0.025++ 3.999 ± 0.563++
HybridNAP 0.142 ± 0.014++ 0.245 ± 0.034++ 0.454 ± 0.039++ 0.683 ± 0.018++ 2.729 ± 0.505++
BindN+ 0.153 ± 0.025++ 0.281 ± 0.051++ 0.491 ± 0.044++ 0.709 ± 0.025++ 3.346 ± 0.425++
DNApred 0.213 ± 0.039++ 0.412 ± 0.051++ 0.576 ± 0.045++ 0.774 ± 0.027++ 4.816 ± 0.723++
DNAgenie 0.487 ± 0.063 0.691 ± 0.088 0.850 ± 0.066 0.907 ± 0.018 16.581 ± 2.509

process ensure that the measured performance reflects values
that are expected when DNAgenie is applied on proteins for
which sequence alignment or homology could not produce
accurate results.

Since DNAgenie is the first method that predicts A-DNA, B-
DNA and ssDNA-binding residues, we compare it against a base-
line implemented as a random-level predictor and the closest
alternatives represented by a curated selection of state-of-the-
art sequence-based predictors of DNA-binding residues: BindN+
[40], TargetDNA [42], hybridNAP [20] and DNApred [44]. These
tools satisfy three selection criteria: availability as webservers
or standalone software; fast predictions (under 10 minutes for
an average size protein chain); and recent release, with the
exception of the older and popular BindN+. We adapt their
DNA type-agnostic predictions to cover the three DNA types
by using A-DNA, B-DNA and ssDNA interaction indices that we
devise using an approach described in a recent study [20]. Briefly,
each index quantifies propensities of the 20 amino acids for
interaction with a specific DNA type, reflecting compositional
differences between the DNA-type-specific binding residues and
residues that do not bind DNA. We multiply the original DNA
type agnostic predictions by the indices to secure the three DNA-
type-specific predictions for each of the four current predictors.
This improves these predictions compared to using the original
DNA type-agnostic prediction for each of the three DNA types.
We demonstrate that empirically in the Section A-DNA, B-DNA
and ssDNA interaction indices.

Table 2 quantifies predictive performance of DNAgenie and
compares it with the baseline and the four alternatives. Results
show that DNAgenie provides very accurate predictions across
the three DNA types, with AUCs ranging between 0.88 (for B-
DNA) and 0.91 (for ssDNA); Supplementary Figure S1A gives the
corresponding ROC curves. The same is true based on the other
metrics including AULCratio that quantifies the ratio of the
measured AUC scores to the AUC scores of a random predictor

for conservative predictions where the amount of the predicted
DNA-binding residues does not exceed the amount of the native
DNA-binding residues. Per this definition, the AULCratio values
for the random baseline are around 1 while higher values denote
more accurate results. DNAgenie secures AULCratio scores that
span between 11.16 (for B-DNA) and 16.58 (for ssDNA), which
corresponds to 1116 and 1658% improvement over the baseline,
respectively. Moreover, sensitivity values of DNAgenie computed
based on the conservative scenario with low 5% false positive
rate (specificity = 95%) equal 48, 47 and 49% for the A-DNA, B-
DNA and ssDNA binding. In other words, nearly half of the DNA-
binding residues are correctly predicted at this low false-positive
rate. The sensitivity values increase to the range between 0.64 to
0.69 when FPR is set to 10% and further increase to the range
between 0.82 and 0.85 when FPR is set to 20%. The relation
between sensitivity and specificity values is expressed by the
ROC curves shown in Supplementary Figure S1A. We note that
DNAgenie provides the best sensitivity values for the same
specificity when compared to all other approaches, i.e., its ROC
curves are above the other curves by a wide margin. Overall,
Table 2 reveals the DNAgenie’s results for the three DNA types
that we quantify with multiple metrics are statistically signif-
icantly better than the baseline and the predictions generated
by the four current augmented DNA type-agnostic predictors (P-
value <0.01). The best of these methods, DNApred, obtains AUCs
of 0.79, 0.81 and 0.77 for the prediction of the A-DNA, B-DNA and
ssDNA interactions, respectively.

Analysis and evaluation of the cross-predictions

We empirically analyze the cross-predictions among the
residues that interact with different DNA types and among the
residues that bind non-DNA ligands (proteins, RNA and small
molecules). Inspired by related works [29, 52], we quantify the
cross-predictions among the DNA-binding residues with the
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Table 3. Assessment of cross predictions generated by DNAgenie, the random baseline, and the DNA type-augmented predictions produced
by the four state-of-the-art residue-level predictors of DNA-binding residues. Lower values of the AUCPCs and higher ratio values denote
more accurate predictions (lower amount of cross-predictions). We assess robustness to different datasets by performing 10 tests on randomly
selected 50% proteins from the test dataset. We report the corresponding averages and standard deviations. Statistical significance of differences
in the predictive performance between DNAgenie and each of the other five predictors is quantified with the t-test for normal measurements
as tested with the Anderson-Darling test; otherwise we use the Wilcoxon rank sum test. ++ and + mean that DNAgenie is significantly better
at P-value <0.01 and P-value <0.05, respectively; = means that the difference is not significant (P-value ≥0.05). The binary assessments (CPR-D,
CPR-L and OPR) are normalized between different predictors to maintain the same 5% FPR (specificity = 0.95). Bold font identifies the most
accurate predictor for a given metric and DNA type

DNA type Predictors AUCPC-D RatioCPR-D
at 5% FPR

AUCPC-L RatioCPR-L
at 5% FPR

AUOPC RatioOPR at 5%
FPR

A-DNA Random 0.503 ± 0.016++ 1.055 ± 0.241++ 0.483 ± 0.014++ 1.076 ± 0.215++ 0.488 ± 0.010++ 1.055 ± 0.213++
TargetDNA 0.517 ± 0.021++ 0.928 ± 0.098++ 0.278 ± 0.019++ 4.281 ± 0.485++ 0.220 ± 0.015++ 5.991 ± 0.375++
HybridNAP 0.504 ± 0.018++ 0.905 ± 0.133++ 0.345 ± 0.015++ 3.091 ± 0.566++ 0.293 ± 0.014++ 3.924 ± 0.504++
BindN+ 0.520 ± 0.023++ 0.786 ± 0.169++ 0.319 ± 0.016++ 3.058 ± 0.609++ 0.272 ± 0.014++ 4.265 ± 0.770++
DNApred 0.513 ± 0.024++ 1.002 ± 0.096++ 0.260 ± 0.020++ 5.264 ± 0.480+ 0.204 ± 0.016++ 6.887 ± 0.433++
DNAgenie 0.317 ± 0.051 2.007 ± 0.376 0.152 ± 0.037 7.295 ± 2.277 0.110 ± 0.025 10.584 ± 1.336

B-DNA Random 0.492 ± 0.015++ 0.944 ± 0.119++ 0.504 ± 0.007++ 1.106 ± 0.107++ 0.493 ± 0.006++ 1.021 ± 0.076++
TargetDNA 0.454 ± 0.014++ 1.246 ± 0.077++ 0.248 ± 0.014++ 4.797 ± 0.698= 0.203 ± 0.009++ 6.785 ± 0.334++
HybridNAP 0.472 ± 0.011++ 1.210 ± 0.126++ 0.319 ± 0.018++ 3.531 ± 0.548++ 0.282 ± 0.008++ 4.469 ± 0.257++
BindN+ 0.457 ± 0.018++ 1.438 ± 0.251++ 0.281 ± 0.016++ 3.996 ± 0.595= 0.251 ± 0.009++ 5.520 ± 0.281++
DNApred 0.455 ± 0.016++ 1.150 ± 0.056++ 0.230 ± 0.014++ 5.786 ± 0.805++ 0.187 ± 0.009++ 7.373 ± 0.364++
DNAgenie 0.291 ± 0.027 2.374 ± 0.550 0.172 ± 0.017 4.343 ± 0.567 0.102 ± 0.012 9.864 ± 0.925

ssDNA Random 0.517 ± 0.005++ 1.225 ± 0.396++ 0.515 ± 0.004++ 1.146 ± 0.328++ 0.515 ± 0.003++ 1.140 ± 0.274++
TargetDNA 0.552 ± 0.031++ 0.680 ± 0.111++ 0.297 ± 0.029++ 2.829 ± 0.547++ 0.234 ± 0.025++ 4.366 ± 0.655++
HybridNAP 0.525 ± 0.017++ 0.708 ± 0.091++ 0.355 ± 0.021++ 2.404 ± 0.570++ 0.312 ± 0.018++ 2.938 ± 0.492++
BindN+ 0.536 ± 0.027++ 0.707 ± 0.111++ 0.329 ± 0.026++ 2.409 ± 0.430++ 0.285 ± 0.025++ 3.308 ± 0.527++
DNApred 0.549 ± 0.033++ 0.689 ± 0.113++ 0.278 ± 0.032++ 3.525 ± 0.644++ 0.217 ± 0.027++ 5.038 ± 0.848++
DNAgenie 0.154 ± 0.025 4.872 ± 0.807 0.161 ± 0.033 4.689 ± 0.961 0.097 ± 0.022 10.064 ± 1.195

area under the cross-prediction curve for DNA (AUCPC-D) and
cross-prediction rate for DNA (CPR-D). These two measures
quantify the extent to which a given type of DNA binding is
predicted among the residues that bind the other two types of
DNA. Lower values of area correspond to fewer cross-predictions.
To ease interpretation, the cross-prediction rate is computed as
a ratio (RatioCPR-D) between the number of the cross predictions
and the sensitivity (the number of correct predictions for a given
DNA type). This way random-level predictions have ratio = 1,
with higher values denoting the rate of improvement over the
random baseline. We also assess the cross-predictions among
the residues that interact with the other ligands (proteins,
RNA and small molecules) based on two metrics, AUCPC-L and
RatioCPR-L. Finally, we evaluate the rate of incorrect predictions
among the non-binding residues with AUOPC (area under the
over-prediction rate curve) and RatioOPR (ratio of over-prediction
rate among the non-binding residues and sensitivity). We define
these metrics in the Section Assessment criteria.

Table 3 reveals that DNAgenie produces minimal amounts
of cross-predictions across the three DNA types. On average,
over the three DNA types, DNAgenie secures RatioCPR-D = 3.08,
RatioCPR-L = 5.44 and RatioOPR = 10.17. The fact that RatioCPR-
D < RatioCPR-L means that the amount of the cross-predictions
between the three DNA types is larger compared to the cross-
predictions of DNA binding among residues that interact with
the other molecules. This is expected given that the different
DNA types are much more similar to each other compared to the
similarity between the DNA and the other molecules (proteins,
RNA and small molecules). However, even for the most challeng-
ing case, the corresponding RatioCPR-D shows that DNAgenie is
308% better than the baseline. To compare, the best alternative,
DNApred, substantially cross-predicts between the three DNA
types (average RatioCPR-D = 0.95, which is at the level of the

baseline) and produces more cross predictions among the
residues that bind the other partners (average RatioCPR-L = 4.86).
The cross-prediction curves shown in the Supplementary
Figure S1B (for DNA-binding residues), S1C (for the other ligand
types) and S1D (for the non-binding residues) reveal a large
margin of improvement between the DNAgenie’s curves and
the curves of the other methods. These plots demonstrate
that the improvements in the DNAgenie’s cross-prediction
rates are consistent over the entire range of the sensitivity
values. Moreover, Table 3 shows that the corresponding AUCPC-
D, AUCPC-L and AUOPC scores produced by DNAgenie are
significantly better when compared with the other methods
and for each DNA type (P-value <0.01).

Empirical analysis also reveals that the major reason for the
low amounts of the cross-predictions is the use of the second
(refinement) layer in the DNAgenie’s model. While the first
layer’s models achieve the average AUCPC-D (area under the
curve that quantifies rate of the incorrect predictions of DNA
binding across DNA types) = 0.29, this area shrinks to 0.25 (16%
improvement) after the refinement in the second layer. When
broken by the DNA type, AUCPC-D decreases from 0.35 to 0.32
for A-DNA (P-value = 0.15), from 0.33 to 0.29 for B-DNA (p-value
<0.05) and from 0.19 to 0.15 for ssDNA (P-value <0.05). This
means that the use of the second layer provides consistent
improvements, over the three DNA types, which in case of B-
DNA and ssDNA are also statistically significant. By contrast,
DNApred yields the average AUCPC-D = 0.51.

Assessment of the cross-predictions
in RNA-binding proteins

We analyze the cross-predictions among the RNA-binding
proteins since the A-form of DNA is structurally similar to some
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Figure 2. Comparison of the cross-predictions rates among the RNA binding residues (i.e., fraction of the RNA-binding residues predicted as A-DNA, B-DNA and ssDNA-

binding residues) in the RNA-T dataset. Similar to Table 2, the predictions are normalized between different predictors to maintain the same 5% FPR (specificity = 0.95)

on the test dataset.

of the RNA structures. Moreover, recent work demonstrates that
predictors of DNA-binding residues cross-predict over 20% of
RNA-binding residues as DNA-binding [43]. Figure 2 illustrates
the cross-prediction rates on the recently published RNA-T
benchmark dataset, i.e., the rate of the prediction of A-DNA,
B-DNA and ssDNA residues among the native RNA-binding
residues. When considering predictions of the A-DNA-binding
residues, TargetDNA, hybridNAP and BindN+ cross-predicts over
15% of the RNA-binding residues as A-DNA-binding residues
while DNApred and DNAgenie yield the lowest/best rates at
about 11.5 and 7.1%, respectively. On average, across the three
DNA types, DNAgenie obtains the lowest cross prediction rate
at 10.2%, compared to 16.3% for hybridNAP, 17.1% for DNApred,
17.9% for TargetDNA and 21.5% for BindN+. These are relatively
low rates given that DNAgenie secures the average sensitivity of
48.1% (4.7 times higher compared to the cross-prediction rate)
for the DNA-binding residues (Table 2). This test demonstrates
that DNAgenie accurately differentiates between DNA-binding
and RNA-binding residues.

Comparative assessment of the predictions of dsDNA
and ssDNA-binding proteins

Several methods are available for the coarse-grained prediction
that identifies whether a given DNA-binding protein interacts
with ssDNA or dsDNA [12, 53–56]. We apply the residue-level
predictions of A-DNA-, B-DNA- and ssDNA-binding residues
generated by DNAgenie to differentiate between the ssDNA and
dsDNA partners for the DNA-binding proteins in the test dataset.
We compute the propensity for the ssDNA binding at the protein
level by calculating the average of the residue-level propensities
for the predicted ssDNA-binding residues. Similarly, we use one
minus the average of the propensities for the A-DNA- and B-
DNA-binding residues to quantify the protein-level propensity
for the dsDNA binding. We compare these results with the
most recent protein-level predictor by Sharma and colleagues
that was shown to outperform the older tools [56]. We use the
author-provided implementation of this tool to collect the

protein-level propensities for the ssDNA and dsDNA binding.
We report results for the two best performing ensembles of
three machine learning models: ensemble 1 that relies on the
majority-based prediction and ensemble 2 that select the model
with the highest propensity [56]. For the ensemble 1, we use the
propensity that is calculated as the average of the propensities of
the 2 or 3 models that are in the majority, while for ensemble 2,
we use the propensity of the selected model. Table 4 summarizes
the results. We setup the binary predictions to the same 5, 10 and
20% FPRs, which allows us to directly compare the corresponding
sensitivity values across different methods.

DNAgenie offers better coarse-grained predictions of the
ssDNA- and dsDNA-binding proteins. The sensitivity com-
puted at the 5% FPR is higher by 18% and AUC improves
from 0.786 to 0.863 when compared with the best current
tool. Supplementary Figure S2 gives the corresponding ROC
curves. We note that DNAgenie additionally provides accurate
predictions of the DNA-binding residues that are categorized by
DNA type into A-DNA, B-DNA and ssDNA. In contrast, the other
methods do not predict the DNA-binding residues and do not
differentiate between different dsDNA types.

Case study

We showcase blind/de novo prediction produced by DNAgenie
on one of the test proteins, human DNA methyltransferase 3A
(DNMT3A). This protein shares low 4.9% similarity with the
training proteins, i.e., the maximal pairwise similarity across
all training proteins measured with BLAST is 4.9% [77, 78]. We
emphasize that this case study is meant to illustrate DNAge-
nie’s predictions and compare them side-by-side with the other
predictors. Recently released structural details of the interaction
of DNMT3A with B-DNA serve as the ground truth to assess
these predictions [79]. DNAgenie’s predictive quality, expressed
with AUC, is similar to the average AUCs on the test dataset,
representing an average/typical case. Figure 3 illustrates the 3D
structure of the complex with B-DNA with the color-coded anno-
tations of DNAgenie’s predictions. The correct predictions of
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Table 4. Predictive performance of DNAgenie and the ensembles 1 and 2 proposed by Sharma and colleagues for the prediction of ssDNA
and dsDNA partners of the DNA-binding proteins in the test dataset. The binary assessment with sensitivity is normalized between different
predictors to maintain the same 5, 10 and 20% FPR. Bold font identifies the most accurate predictor for a given metric

Protein-level predictor of ssDNA
and dsDNA binding

Sensitivity at 5% FPR Sensitivity at 10% FPR Sensitivity at 20% FPR AUC

Ensemble 1 0.17 0.34 0.68 0.786
Ensemble 2 0.24 0.26 0.42 0.739
DNAgenie 0.42 0.44 0.73 0.863

Figure 3. Structure of the human DNA methyltransferase 3A (DNMT3A) in complex with B-DNA (PDB ID: 5YX2 chain D). The protein structure is shown with the gray

cartoon representation. DNA-structure is represented by the orange double helix. The residues represented using color-coded balls identify DNAgenie’s predictions

where green are true positives (correctly predicted B-DNA-binding residues), red are false negatives (native B-DNA-binding residues incorrectly predicted as non-B-

DNA-binding residues), and yellow are false positives (native non-B-DNA-binding residues incorrectly predicted as B-DNA-binding residues).

the B-DNA-binding residues shown in green (true positives)
extend along the double helix. The false positives (native non-
B-DNA-binding residues incorrectly predicted as B-DNA-binding
residues) marked in yellow are located nearby the interaction
site. We argue that they provide useful clues, especially since the
native annotations of binding residues rely on a somehow arbi-
trary distance-based definition, i.e., residue is defined as binding
if the distance between an atom of this residue and a DNA atom
is <0.5 Å + the sum of the Van der Waal’s radii of the two atoms
[59]. The yellow residues could be marked as green if the 0.5 Å
factor would increase. Supplementary Figure S3 provides side-
by-side comparison of the B-DNA-binding predictions produced
by DNAgenie and the DNA type-agnostic predictions generated
by the four selected sequence-based predictors of DNA-binding
residues. DNAgenie successfully identifies 12 of the 23 native
B-DNA-binding residues, with the false positives clustered in a
close proximity of the B-DNA-binding residues. The second-best
DNApred correctly finds six B-DNA-binding residues, but with
many false positives scattered along the sequence at positions
far from the native B-DNA-binding residues. The other three
tools face similar problems, with predictions distributed along
the entire protein chain. This example illustrates that DNAgenie
produces on average more true positives than the alternative
tools, which is evident based on its high sensitivity values in
Table 2, and also generates arguably more useful false positives
that are localized nearby the true positives.

Prediction and analysis of A-DNA, B-DNA
and ssDNA-binding residues and proteins
in the human proteome

We apply DNAgenie to make predictions for the 20 350 proteins
from the UniProt’s reference human proteome [57]. We evaluate

veracity of these predictions by computing their overlap with
the list of the currently known DNA-binding proteins. First,
we collect the DNA-binding proteins from ENPD, the largest
database of the nucleic acid-binding proteins [80]. Given natural
variations in protein sequences, we annotate human proteins
from the UniProt’s reference proteome as DNA-binding if they
share over 90% similarity (quantified with BLAST) with any of
the human DNA-binding proteins from ENPD. This results in
a list of 2062 experimentally annotated DNA-binding proteins.
Second, we independently use Pfam domains [81] to annotate
DNA-binding proteins. We manually analyze Pfam domains in
the human proteome and find 672 domains that interact with
DNA. We identify 2218 human proteins that have at least one
of these domains. Third, we combine the 2062 DNA-binding
proteins from ENPD and the 2218 proteins that have Pfam’s DNA-
binding domains to establish the final set of 2763 verified DNA-
binding proteins. Next, we use the putative A-DNA, B-DNA and
ssDNA-binding residues generated by DNAgenie at the low 5%
FPR to identify putative DNA-binding proteins. We calibrate this
residue-level to protein-level prediction conversion to generate
the number of putative DNA-binding proteins that is similar
to the number of the verified DNA-binding proteins. We apply
two conditions to define a given protein as DNA-binding. First,
the fraction of putative DNA-binding residues must be higher
than 10% to reduce likelihood of including spurious predictions.
Second, the protein must include at least one long segment
of DNA-binding residues (equivalent of a DNA-binding domain)
which is composed of at least 90% of residues predicted as A-
DNA-, B-DNA- or ssDNA-binding residues within a window of
15 consecutive residues. This approach generates 2778 putative
DNA-binding proteins, which constitute 13.6% of the human pro-
teome and include 1201 A-DNA-binding, 1404 B-DNA-binding,
and 713 ssDNA-binding proteins.
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We compare the 2778 putative DNA-binding proteins against
the 2763 known DNA-binding proteins. DNAgenie predicts 529
(25.7%) of the 2062 ENPD-annotated proteins and 737 (26.5%) of
the complete set of the 2763 verified DNA-binding proteins. The
amount of the overlap is driven in part by the use of the low
5% FPR-based predictions, which limits their sensitivity to about
48%, as we show in Table 2. We assess statistical significance
of the overlap between the predicted and the verified DNA-
binding proteins by comparing the predictions with a random-
ized baseline. We compute overlap between a randomly selected
set of 2778 human protein and the 2763 verified DNA-binding
proteins to implement the baseline, and we repeat this sampling
1000 times to establish confidence intervals. The corresponding
average and standard deviation for the overlap of the baseline
are 13.8% ± 0.6%, with the maximum of 15.5%. The 26.5% overlap
generated by DNAgenie is about two times larger than the aver-
age of the baseline and this difference is statistically significant
(P-value <0.01).

We also analyze novel putative DNA-binding proteins
produced by DNAgenie to investigate whether they share
certain characteristics (i.e., subcellular localization and Pfam
domains) that are associated with the known DNA-binding
proteins. If true, that would suggest that these predictions
provide informative leads to identify novel DNA-binding pro-
teins. Correspondingly, we further analyze the 2778–737 = 2041
novel putative DNA-binding proteins produced by DNAgenie.
First, we investigate whether they share subcellular location
annotations that are characteristic for the verified DNA-binding
proteins. Using the GO-slim analysis of the cellular component
annotations in PANTHER [82], we find 42 cellular components
that are statistically enriched among the verified DNA-binding
proteins, when compared to the reference human proteome
(P-value <0.05 using the Fisher’s test with the discovery rate
correction, fold enrichment >2, and 15 or more occurrences
per annotation to ensure robustness of the statistics). We
repeat this analysis for the novel putative DNA-binding proteins
and identify 27 significantly enriched cellular components,
out of which 48.1% (13 annotations) are in common with the
components enriched for verified DNA binders. For context, no
significantly enriched cellular component are produced when
we run the same analysis for a random set of 2763 human
proteins, which is equivalent to the size of the collection of
the verified DNA-binding proteins. Figure 4 summarizes the
cellular components that are enriched in the novel putative
DNA-binding proteins. As a couple of highlights, they are found
among ribosomal and mitochondrial proteins, which agrees with
literature [83, 84]. Second, we examine Pfam domains present in
the novel putative DNA-binding proteins. We find that 10.5% of
them include at least one domain that suggests binding to DNA,
such as BEX, CENP, Cyclin, MBD_C, NPIP and several types of the
zinc finger domains. Overall, we discover that 35.5% of these
novel DNA binders include at a minimum one of the relevant
Pfam domains or is annotated with a cellular component term
that is associated with the verified DNA-binding proteins. These
results suggest that at least some of the novel predictions
constitute promising leads to identify previously unknown
DNA-binding proteins.

We list the protein IDs of the 2778 DNA-binding proteins
predicted by DNAgenie in the Supplementary Table S6. We also
share more detailed information at http://biomine.cs.vcu.edu/
servers/DNAgenie/. The latter data includes UniProt accession
numbers, sequences, predictions of the A-DNA, B-DNA and
ssDNA-binding residues, markers for inclusion in ENPD, and

listing of relevant Pfam domains that are categorized as either
DNA-binding or likely to interact with DNA.

DNAgenie webserver

DNAgenie is publicly available as a webserver at http://biomi
ne.cs.vcu.edu/servers/DNAgenie/; we also offer a mirror site at
http://www.inforstation.com/webservers/DNAgenie/. With the
user’s convenience in mind, the webserver performs calculations
on the server side and we allow batch predictions for up to five
proteins in a single request. We encourage users to contact the
authors directly in case if large-scale predictions are needed. The
only required input are the FASTA-formatted protein sequences.
The server outputs numeric propensities for the A-DNA, B-
DNA and ssDNA-binding and the three corresponding binaries
predictions (binding versus non-binding) for each amino acid
in the input protein chain(s). The results are available in two
convenient ways: as an HTML page-formatted report and a
parseable csv file. Users have an option to provide email address
where the links to the results are sent upon completion of the
predictions.

Summary
Prediction of the DNA-binding residues in protein sequence is a
difficult problem. The current DNA type-agnostic solutions lack
in two aspects: the ability to differentiate DNA-binding residues
from the residues that interact with other partners (i.e., they
cross-predict residues that interact with RNAs, proteins and
small molecules as DNA binding); and the ability to predict inter-
actions with specific DNA types. DNAgenie provides the first
and accurate solution to both challenges, as we demonstrate
through extensive comparative empirical tests and application
to the human proteome. Importantly, DNAgenie does not rely on
sequence similarity or homology, which means that it provides
accurate results for virtually any protein sequence. This is evi-
dent based on the results on the test dataset, which simulates
a scenario where DNAgenie is used to predict sequences that
share low similarity (<30%) with its training proteins.

There are multiple factors that explain high-quality of the
results produced by DNAgenie. First, we utilize the training
dataset that covers proteins that interact with DNA, RNA, pro-
teins and small molecules, allowing our machine learning mod-
els to successfully learn to differentiate between different ligand
types. This is in contrast to the prior tools that were trained using
datasets composed solely of the DNA-binding proteins [29, 52].
Second, we represent the input protein sequence using a broad
physiochemical profile that covers a comprehensive collection
of relevant sequence-derived structural, evolutionary, biophysi-
cal and biochemical information. Third, we use the two-layered
topology (Figure 1) where we apply the custom-designed second
layer to refine the initial predictions generated by the first stage,
with the objective to minimize the cross-predictions. The use of
the comprehensive profile leads to a very accurate prediction of
the A-DNA, B-DNA and ssDNA binding by the machine learning
models from the first layer. On average, over the three DNA types,
the first-layer models secure AUC = 0.890 and sensitivity = 0.47 at
the low 5% FPR. After the refinement in the second layer, DNA-
genie’s models generate nearly identical average AUC = 0.893 and
sensitivity = 0.48 (at 5% FPR). Importantly, this refinement leads
to the statistically significant reduction in the cross-predictions,
which we discuss in the Section Analysis and evaluation of the
cross-predictions. More specifically, the average AUCPC-D of the
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Figure 4. Cellular components that are significantly enriched among the novel putative DNA-binding proteins produced by DNAgenie. ∗ identifies annotations that

are in common with the components that are significantly enriched in the verified DNA-binding proteins. The plot is sorted by the number of proteins that have a

given enriched annotation (blue bars). Analysis was performed with PANTHER where p-values were computed using the Fisher’s test with the discovery rate correction,

minimal fold enrichment is set to 2, and annotations with 15 or more occurrences are used to ensure robustness of the statistics.

first layer’s models of 0.29 is improved to 0.25 (16% improvement)
after the refinement. To compare, DNApred, the best current
method (as shown in by its authors [44] and in our Table 2),
obtains the average AUC = 0.79, the average sensitivity = 0.29 (at
5% FPR), and the average AUCPC-D = 0.51. The improvements
offered by the DNAgenie over DNApred and other considered
methods are statistically significant for each of the three DNA
types (P-values <0.05). Moreover, we note that lower predictive
performance of DNApred and other methods that we compare
with can be explained by the fact that they were not origi-
nally designed to predict A-DNA-, B-DNA- and ss-DNA-binding
residues.

We empirically demonstrate that DNAgenie’s predictions
on the human proteome significantly overlap with the known
DNA-binding proteins while also covering several hundred
novel putative DNA-binding proteins. Utilizing two sources of
independent data, Pfam domains and GO annotations, we argue
that some of these novel putative DNA binders are likely to
interact with DNA because they harbor domains that suggest
DNA binding and since they share subcellular locations that
are enriched for the currently known DNA-binding proteins.
The putative DNA-binding proteins should be investigated
experimentally to either confirm or refute the predictions.
Nowadays, a wide array of methods that include functional
proteomics experiments and mass spectrometry can be used
for that purpose. Some of the popular approaches include
affinity purification [85], chromatin immunoprecipitation (ChIP)

[86, 87] electrophoresis mobility shift assay (EMSA), and more
recently CRISPR (regularly clustered interspaced palindromic
repeats)-based approaches [88].

Altogether, the strong predictive performance on the test
dataset coupled with the accurate predictions on the human
proteins, which include numerous promising leads for novel
DNA-binding proteins, demonstrate that DNAgenie is a valuable
tool for computational, sequence-based characterization of pro-
tein functions. DNAgenie’s webserver, training and test datasets,
and predictions and annotations for the human proteins are
available at http://biomine.cs.vcu.edu/servers/DNAgenie/.

We envision extending DNAgenie in two directions. The cur-
rent version is limited to the three major DNA types: A-DNA, B-
DNA and ssDNA. This is due to the lack of a sufficient amount
of experimental data for the interactions with the other DNA
types. While the current amount of data is insufficient to accu-
rately train the predictive model and to build an adequately
large and dissimilar test dataset, this is likely to change in a
near future. The other interesting extension is to consider tax-
onomic differences in the protein–DNA interactions. DNAgenie
is designed to make predictions across all domains of life, as it
was trained on the dataset that covers eukaryotic (36%), bacterial
(43%), archaeal (5%) and viral (16%) proteins. However, we antic-
ipate that models optimized specifically for eukaryotic versus
prokaryotic proteins would be different and would provide more
accurate results when used for the taxonomically compatible
proteins.
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Key Points
• Sixteen methods are available for the prediction of the

DNA-binding residues in protein sequences
• Current predictors of the DNA-binding residues are

DNA type agnostic and significantly cross-predict
residues that interact with other ligands

• DNAgenie is the first sequence-based predictor of
amino acids that interact with A-DNA, B-DNA and
single-stranded DNA

• DNAgenie offers accurate predictions of the DNA-
binding residues, low cross-predictions rates and
high-quality coarse-grained predictions of ssDNA-
and dsDNA-binding proteins

• DNAgenie identifies promising leads for previously
unknown DNA-binding proteins in the human pro-
teome

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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