
proteins
STRUCTURE O FUNCTION O BIOINFORMATICS

DNABind: A hybrid algorithm for
structure-based prediction of DNA-binding
residues by combining machine learning- and
template-based approaches
Rong Liu1,2 and Jianjun Hu1*
1 Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina 29208

2 Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China

ABSTRACT

Accurate prediction of DNA-binding residues has become a problem of increasing importance in structural bioinformatics.

Here, we presented DNABind, a novel hybrid algorithm for identifying these crucial residues by exploiting the complementar-

ity between machine learning- and template-based methods. Our machine learning-based method was based on the probabil-

istic combination of a structure-based and a sequence-based predictor, both of which were implemented using support vector

machines algorithms. The former included our well-designed structural features, such as solvent accessibility, local geometry,

topological features, and relative positions, which can effectively quantify the difference between DNA-binding and nonbind-

ing residues. The latter combined evolutionary conservation features with three other sequence attributes. Our template-based

method depended on structural alignment and utilized the template structure from known protein–DNA complexes to infer

DNA-binding residues. We showed that the template method had excellent performance when reliable templates were found

for the query proteins but tended to be strongly influenced by the template quality as well as the conformational changes

upon DNA binding. In contrast, the machine learning approach yielded better performance when high-quality templates were

not available (about 1/3 cases in our dataset) or the query protein was subject to intensive transformation changes upon DNA

binding. Our extensive experiments indicated that the hybrid approach can distinctly improve the performance of the individ-

ual methods for both bound and unbound structures. DNABind also significantly outperformed the state-of-art algorithms by

around 10% in terms of Matthews’s correlation coefficient. The proposed methodology could also have wide application in

various protein functional site annotations. DNABind is freely available at http://mleg.cse.sc.edu/DNABind/.
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INTRODUCTION

Protein–DNA interactions play critical roles in a wide

range of fundamental cellular processes, including replica-

tion, transcription, recombination, and repair.1 Despite

intensive studies on the interactions between proteins and

DNA over the past decades, the mechanism of protein–

DNA binding and recognition remains poorly under-

stood. Identification of the DNA-binding regions of a

protein is the first step toward uncovering the nature of

this interaction mode. To date, different experimental

techniques, such as mutagenesis and binding assays,2,3

have been commonly applied to this problem, but experi-

mental determination of binding residues is a time-

consuming and labor-intensive process. Hence, it is highly

desirable that computational methods could guide or

assist experimental approaches for systematically identify-

ing DNA-binding sites on a large scale.

With the efforts of structural genomics projects, an

increasing number of protein–DNA complex structures

have been solved and deposited into the structural data-

bases such as Protein Data Bank (PDB), which provides

the possibility to conduct structural and functional
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analysis on the interfaces between proteins and DNA

with computational methods. Such studies have greatly

enhanced our knowledge of DNA-binding regions. For

instance, the residues located at the binding interfaces

prefer to be positively charged and polar residues.4 To

facilitate contacting with DNA, the binding residues are

always well exposed to solvents.5 Compared to nonbind-

ing regions, DNA-binding residues generally have higher

electrostatics potential.6 Additionally, binding residues

are more conserved than nonbinding residues,7 and

putative hotspots tend to occur as clusters of conserved

residues.8 Besides the aforementioned well-known fea-

tures that can be used to characterize DNA-binding resi-

dues, other structural properties such as packing

density,8,9 surface curvature,10 B-factor,9 residue fluctu-

ations,11 and hydrogen bond donors,12 have also been

successfully exploited. These structure-based analyses can

provide important clues to discriminate DNA-binding

residues from the protein surface.

In principle, there are two classes of computational

algorithms for DNA-binding residue prediction. One is

feature-based approaches,9,13–16 which extract effective

features to describe the microenvironment of the target

residue and feed them into machine learning model. The

other is template-based approaches,17,18 which utilize

structural alignment to retrieve the best template of the

query protein from known protein–DNA complexes.

Recently, several structure-based algorithms with different

combinations of sequence and structural attributes have

been developed, where the prediction models were

implemented with machine learning techniques. Kuznet-

sov et al.13 first proposed a support vector machine

(SVM) predictor by combining position-specific scoring

matrix (PSSM) with low-resolution structural informa-

tion, such as spatial neighbors, missing residues, solvent

accessibility, and secondary structure. Tjong and Zhou14

developed a prediction method called DISPLAR, which

was composed of consensus neural networks using PSSM

and solvent accessibility as the input features. Xiong

et al.9 integrated SVM with four features including

sequence profile, solvent accessibility, packing density, and

pKa value to recognize DNA-binding residues. Dey et al.12

also introduced a SVM-based method, but utilizing a

combination of sequence conservation, spatial clustering,

hydrogen bond donors, and residue propensity to identify

binding sites at the patch level. Despite the promising

results of these methods, accurate prediction of DNA-

binding residues is still an unsolved problem. It is there-

fore necessary to find novel structural features that could

be more efficient in detecting these crucial residues.

In addition to the structure-based predictions, a large

number of sequence-based machine learning approaches

have been developed for DNA-binding residue prediction

during the last decade.15,16,19–21 Generally, with the

exception of evolutionary conservation, sequence features

such as amino acid identity16 and residue

physicochemical properties15 are difficult to distinctly

reflect the difference between binding and nonbinding

regions compared to their structural counterparts. As the

result, the prediction performance of sequence-based pre-

dictors was usually not as good as that of the predictors

incorporating structural features. Nevertheless, sequence-

based methods have a unique advantage: they do not

need the protein structure to be determined. Moreover, if

we attempt to combine structure- and sequence-based

approaches, the latter might provide additional informa-

tion to achieve better overall prediction performance.

As an alternative to the commonly used machine

learning approaches, the template-based predictors have

been successfully applied to recognizing various protein

functional sites.22–25 Currently, there are two template-

based methods related to DNA-binding residue predic-

tion, of which the initial motivation is predicting DNA-

binding function of new proteins. Gao and Skolnick17

developed a knowledge-based method, DNA-binding

domain Hunter, that combined structural alignment and

the evaluation of statistical potential for identifying

DNA-binding proteins and associated binding residues.

Zhao et al.18 proposed a similar procedure with an

improved statistical energy function for improving the

prediction accuracy. In these two studies, the binding

residue prediction will be conducted only if the target

protein was considered as a DNA-binding protein.

Hence, the prediction performance at the residue level

was just evaluated on the set of target proteins having a

highly similar template. Despite the good results reported

in the literature, the extent to which the template-based

methods can be reliably used to identify the binding resi-

dues in the comprehensive structures is still not clear.

They could not be applicable when the target proteins

cannot find a good template. Additionally, to the best of

our knowledge, there is no study that conducted a sys-

tematic comparison between template- and machine

learning-based approaches. And it remains to investigate

the feasibility and the best way to combine these two

strategies for improving DNA-binding residue prediction.

In this article, we propose a hybrid method for com-

putational identification of DNA-binding residues by

exploiting the complementary relationship between

machine learning- and template-based methods. We first

conducted a comprehensive analysis of various structural

features of binding regions, including solvent accessibil-

ity, local geometry, topological features, and relative posi-

tions. These features can effectively quantify the difference

between binding and nonbinding residues. They were then

coupled with evolutionary conservation to construct a

structure-based predictor using the SVM algorithm.

Meanwhile, we constructed a pure sequence-based predic-

tor on the basis of evolutionary conservation in combina-

tion with three other sequence features. Outputs of these

two feature-based predictors were further combined using

a linear function, which produced a slightly better
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performance than the individual predictors. Alternatively,

we presented a template-based method for binding residue

recognition, in which structural alignment was used to

detect the best reference structure from a template library.

Based on a representative dataset including both bound

and unbound structures, we systemically demonstrated the

advantages and limitations of the template and machine

learning methods. Finally, we designed and evaluated an

integrative predictor, called DNABind, by exploiting the

complementarity between these two strategies, which dis-

tinctly outperformed the existing methods. Although our

current study focused on DNA-binding residue prediction,

the proposed approach can be easily extended to other

types of protein functional site annotations.

MATERIALS AND METHODS

Datasets

Training and test sets

In this study, we used the dataset collected by Xiong

et al.,9 which was composed of 206 DNA-binding pro-

tein chains with pairwise sequence identity less than

25%. These chains were split into two datasets: DS123

for model training and HOLO83 for independent testing.

Additionally, APO83 that contains corresponding

unbound structures of the chains in HOLO83 was also

used to evaluate our method. After the steps of Tjong

and Zhou,14 we defined surface residues for each chain.

A residue was considered as a surface residue if its

exposed surface area is larger than 10% of its nominal

maximum area.26 Further, a surface residue was defined

as a binding residue if the distance between its any heavy

atom and any heavy atom of the DNA molecules is

<4.5Å. According to this definition, DS123 contains

2912 binding residues and 16,016 nonbinding residues,

and HOLO83/APO83 includes 2038/1871 binding resi-

dues and 12,200/12,187 nonbinding residues, respectively.

Template library

A template library of 312 protein–DNA complex struc-

tures was collected in this study. We retrieved all the pro-

tein–DNA complex structures solved by X-ray

crystallography with a resolution better than 3Å from the

PDB database (August 2012 release). The complex struc-

tures that include only one DNA chain were eliminated.

All the protein chains from the remaining 1779 com-

plexes were further analyzed. We obtained 3567 chains

with more than 40 amino acids long and at least five

binding residues within 4.5 Å of the DNA molecules.

These chains were clustered to remove redundancy using

the BLASTCLUST program27 with identity threshold of

35% and length coverage threshold of 60%. As a result,

352 clusters were retained and the longest chain in each

cluster was selected as a representative. By manually

checking with the PYMOL package,28 we considered the

312 protein chains interacting with the double-stranded

DNA composed of at least six base pairs as the final tem-

plates. The list of the template chains is provided in Sup-

porting Information Table S1.

Feature generation

To construct machine learning-based predictors, each

residue in the query protein was characterized by a group

of structural and sequence descriptors, which included evo-

lutionary conservation, solvent accessibility, local geometry,

topological features, relative position, statistical potential,

predicted structural features, and amino acids indices.

More details about these descriptors are given later.

Position specific scoring matrix

PSSM is widely used to reflect the evolutionary conserva-

tion of each residue in a protein sequence. The PSI-BLAST

program was used to generate the PSSM of each query pro-

tein with parameters j 5 3 and e 5 0.001. The search was

performed against the nonredundant database from NCBI.

Relative solvent accessibility

Accessible surface area is the exposed region of a mol-

ecule that is accessible to solvents. The DSSP program29

was used to calculate the exposed surface area of each

residue in the monomer structure. The ratio of the

exposed surface area to the nominal maximum area was

considered as the relative solvent accessibility.

Depth index and protrusion index

Depth index and protrusion index are important meas-

ures used to describe the geometric shape of a protein,

which reflect the local concavity and convexity of the pro-

tein surface, respectively. Their definitions are given in

Supporting Information. The PSAIA software30 with

default parameters was utilized to generate the depth-

and protrusion-related features of each residue, including

the average and standard deviation of all atom values, the

average and standard deviation of all side chain atom val-

ues, and the minimal and maximal atom values.

Topological features

Each protein structure can be considered as a residue

interaction network, where each vertex represents a resi-

due in the protein and each edge denotes that there is a

physical contact between a residue pair. A contact was

identified if the residue pair contains at least a pair of

heavy atoms with a distance less than 5Å. Based on the

network, four well-established measures, including

degree, closeness, betweenness, and clustering coefficient,

were extracted to describe the topological characteristics

of each residue in a protein structure. The definitions of

DNA-Binding Residue Prediction
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these measures are provided in Supporting Information.

The resulting features should be converted into Z-score

as following:

ZðiÞ5 XðiÞ2�X

r
(1)

where X(i) is the raw value of residue i for a given fea-

ture, �X and r are the average and standard deviation

over all the residues in a protein structure, respectively.

Distance to the centroid of the protein surface

Distance to the centroid is a global feature and reflects

the relative positions of the exposed residues in the pro-

tein structure. Briefly, each surface residue was repre-

sented by its Ca atom and the geometric center of the

protein surface was the average of the Ca coordinates of

all the surface residues. Accordingly, the Euclidean dis-

tance between each surface residue and the centroid can

be calculated. The distance of each residue should be

normalized as following:

NðiÞ5 DðiÞ2minðiÞ
maxðiÞ2minðiÞ (2)

where D(i) is the raw distance of residue i and max(i)

and min(i) are the longest and shortest distance to the

centroid, respectively.

Statistical pair potential

The existing studies proposed that the frequencies of

observed interactions between DNA bases and protein

residues follow a Boltzmann distribution.31 Based on this

assumption, Gao and Skolnick17 derived a knowledge-

based statistical pair potential by analyzing a representa-

tive set of 179 protein–DNA complex structures. Here we

used this statistical potential to represent the probabilities

of a given residue type interacting with 14 types of DNA

functional groups.

Predicted structural features

Sequence-derived structural features have been com-

monly used to predict protein-binding residues. In our

study, we utilized the predicted secondary structure and

solvent accessibility generated by the SPINE program32

to describe the putative structural properties of each resi-

due as only sequence information was provided. Normal-

ization should be conducted on predicted solvent

accessibility as done on the real solvent accessibility.

Amino acid indices

An amino acid index utilizes different numerical val-

ues to represent physiochemical and biological properties

of 20 residue types. Atchley et al.33 conducted

multivariate statistical analyses on 494 amino acid indices

and achieved five highly interpretable patterns of amino

acid variability. These patterns represent polarity, second-

ary structure, molecular volume, codon diversity, and

electrostatic charge, respectively. We used the reduced

amino acid indices to reflect the respective attributes of

each residue in a protein sequence.

Machine learning-based prediction protocol

Here a machine learning-based algorithm was pro-

posed for the prediction of DNA-binding residues, where

the SVMs were used to build the prediction models. We

developed a structure-based and a sequence-based pre-

dictor, respectively. The input of the structure-based pre-

dictor is a spatial window of 11 residues containing the

target residue and its nearest surface residues. The fea-

tures used in this predictor included PSSM, relative sol-

vent accessibility, depth index and protrusion index,

topological features, distance to the centroid, and statisti-

cal potentials. On the other hand, the input of the

sequence-based classifier is a linear window of 11 consec-

utive residues centered on the target residue. The features

used in this predictor contained PSSM, predicted struc-

tural features, amino acid indices, and statistical poten-

tials. These two predictors were implemented using the

LIBSVM package34 with the radial basis function as the

kernel. The optimal parameters C and g were 10/10 and

0.1/0.05, respectively. It should be pointed out that

except relative solvent accessibility, normalized centroid

distance, and predicted structural attributes, the remain-

ing features were scaled into the range from 0 to 1 using

the standard logistic function. Using the probability esti-

mation of LIBSVM, we got a probability score of the tar-

get residue to be a binding residue by each predictor. To

utilize the complementarity between these two predic-

tors, we combined their outputs as following:

MLscore5a3STRscore1ð12aÞ3SEQscore (3)

where MLscore is the probability score produced by our

machine learning-based protocol, STRscore and SEQ-

score are the probability scores generated by the struc-

ture- and sequence-based predictors, respectively, and the

weighting factor a is set at 0.6. The optimal probability

cutoffs of these three predictors are 0.57, 0.57, and 0.56,

respectively.

Template-based prediction protocol

We also developed a template-based approach to iden-

tify the residues involved in DNA binding. For a query

protein, any template with more than 35% sequence

identity to the target chain was removed from the tem-

plate library to exclude highly similar structures that may

lead to biased results. The structure of the query protein
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was then scanned against the remaining template struc-

tures using the structural alignment program TM-align.35

The templates were ranked according to their TM-scores.

The protein–DNA complex containing the top-ranked

template was selected and the query protein was superim-

posed onto the template structure. The rotation matrix

generated by TM-align was used to achieve the superim-

position. According to the putative complex structure

between the target protein and the DNA, a residue was

considered to be located at the binding interface if any

heavy atom of this residue is within 4.5Å of the DNA

molecules. Therefore, we defined that the predicted bind-

ing residue has a probability score of 1 to be a real bind-

ing residue and the nonbinding residue has a probability

score of 0.

DNABind: a combination of machine
learning- and template-based protocols

The proposed DNABind method is a hybrid prediction

algorithm on the basis of combining machine learning-

and template-based approaches. Given a query protein, if

a template can be found with a TM-score larger than a

given threshold, we integrated the prediction results gen-

erated by the machine learning and template approaches

using the weighted sum method similar to the construc-

tion of MLscore. Otherwise, we only considered the pre-

diction results produced by the machine learning

method. The scoring functions are defined as following:

Cscore5b3MLscore1ð12bÞ if TM-score � cutoff

3TLscore

Cscore5MLscore Otherwise

8>><
>>:

(4)

where Cscore is the probability score of the target residue

produced by the integrative protocol, MLscore and

TLscore are the probability scores generated by the

machine learning- and template-based protocols, respec-

tively, and both the TM-score cutoff and the weighting

factor b are set at 0.6. According to the integrative pre-

diction, if the Cscore of a target residue is not less than

0.47, we considered it as a binding residue; otherwise, it

was categorized as a nonbinding residue.

Training and testing

To estimate the effectiveness of our method, we first

tested the machine learning-based algorithm on the

DS123 dataset using fivefold cross-validation. This data-

set was randomly split into five partitions, four of which

were used for training and the remaining one for testing.

Especially, we used all the binding residues and an equal

number of randomly extracted nonbinding residues as

the training set in each fold. The final result was the

average performance of the five partitions. The optimal

parameters of SVM-based predictors and the weighting

factor a were determined during this stage. Furthermore,

datasets HOLO83 and APO83 were considered as inde-

pendent datasets to test our machine learning- and

template-based methods. Because the ultimate aim of

our proposed prediction algorithm should be identifying

the potential binding residues in the unbound structures,

HOLO83 can be used to optimize the TM-score thresh-

old and the weighting factor b in the integrative proto-

col. The resulting parameters were used to evaluate our

performance on the APO83 dataset.

Performance measures

The prediction performance of our method was eval-

uated by recall, precision, F1-score and Matthews’s corre-

lation coefficient (MCC). These measures are defined as

following:

Recall5
TP

TP1FN

Precision5
TP

TP1FP

Fl-score5
23Recall3Precision

Recall1Precision

MCC5
TP3TN2FP3FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP1FNÞðTP1FPÞðTN1FPÞðTN1FNÞ
p

(5)

Here TP, TN, FP, and FN are true positive, true negative,

false positive, and false negative, respectively. Addition-

ally, the receiver operating characteristic (ROC) curve

was drawn by changing the probability score cutoff. The

area under the ROC curve (AUC) was also reported to

assess the overall performance.

RESULTS AND DISCUSSION

Statistical analysis of structural features

In this study, we utilized a variety of structural fea-

tures to describe DNA-binding residues. It is interesting

to quantify the differences of these attributes between the

residues involved in DNA-binding regions and those

within nonbinding regions. The distributions and mean

values of the samples in binding and nonbinding groups

from DS123 are shown in Figure 1 and Supporting

Information Table S2, respectively, where Kolmogorov–

Smirnov test and t test were combined to evaluate the

statistical significance.

We first focused on the three local geometric proper-

ties including relative solvent accessibility, depth index,

and protrusion index. From Figure 1(A), we can see that

DNA-binding residues are more exposed on the protein

surface compared to nonbinding residues, which has

DNA-Binding Residue Prediction
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Figure 1
Comparison of structural characteristics between DNA-binding and nonbinding residues. (A) Relative solvent accessibility, (B) depth index,

(C) protrusion index, (D) degree, (E) closeness, (F) betweenness, (G) clustering coefficient, and (H) distance to the centroid. The distributions
were obtained by dividing all the residues from DS123 into different bins according to their attribute values and calculating the percentages of

binding and nonbinding residues in each bin. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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been widely accepted in the existing studies.9,12 To our

knowledge, however, there are few reports about the

comparison of depth index and protrusion index. As

show in Figure 1(B,C), it is interesting to find that the

binding residues tend to have lower depth values but

higher protrusion values, suggesting that they are usually

located at the convex regions of the protein surface. This

might be attributed to the need of the geometric comple-

mentarity between the concave surface of DNA grooves

and the protein-binding regions.

Another way to characterize functional residues is to

utilize topological features defined on the residue inter-

action network. It was found that protein functional sites

such as active sites and ligand-binding residues,36,37

typically have higher centrality values. Here we presented

a systematic comparison of the network-based features in

Figure 1(D–G). It was shown that, similar to above func-

tional residues, the closeness and betweenness values of

DNA-binding residues are also generally higher than

those of the remaining protein surface. For the degree

measure, conversely, the binding group has a slightly

lower mean value, although the difference is not signifi-

cant (Table S2). To some extent, this feature is similar to

the packing density feature used by Xiong et al.,9 which

also represents the local connectivity of a target residue.

They showed that the average packing density of binding

residues was moderately smaller than that of nonbinding

residues. In addition, we found that the clustering coeffi-

cients of DNA-binding regions were generally lower. This

is probably due to the fact that relatively relaxed neigh-

borhood of binding residues could provide a certain

degree of flexibility for the binding of DNA molecules.

Motivated by Ben-Shimon and Eisenstein’s study,38 we

proposed the centroid distance feature for characterizing

DNA-binding residues. As shown in Figure 1(H), the dis-

tribution of this feature for the binding group is clearly

different from that of the nonbinding group, and the dis-

crepancy of this feature is most apparent among those of

all the structural attributes. Concretely, the binding

residues are much closer to the geometric center of the

protein surface than other exposed residues. Additionally,

we observed that there is a strong negative correlation

between the closeness values of residues and their dis-

tance to the centroid (Pearson’s correlation coefficient 5

20.827). The above analysis indicated that this new fea-

ture could be used to identify DNA-binding residues.

Because the proposed method will be finally used to

predict binding residues in the unbound structures, it is

necessary to check whether these structural features could

characterize the binding regions of the unbound structures

as well as those of the bound structures. In Supporting

Information Figures S1 and S2 and Table S3, as expected,

similar phenomenon was observed for each attribute when

the same statistical analysis was conducted on the

unbound dataset APO83 and the bound dataset HOLO83.

These results strongly suggested that the structural features

introduced here are not sensitive to the conformational

changes triggered by DNA binding.

Performance of machine learning-based
approach tested on DS123 dataset

In this section, the machine learning-based approach

which integrated the structure- and sequence-based pre-

dictors was evaluated on the DS123 dataset using fivefold

cross-validation. To estimate the improvements intro-

duced by our features, we considered the PSSM-based

predictors as the baseline models and constructed several

other predictors using different combinations of the

PSSM feature with increasing number of other features.

From Table I, we can see that when only the PSSM

feature was used to build the prediction models, the pre-

dictors constructed with both spatial and linear input

windows produced similar performance, with a F1-score

of about 0.47 and MCC of about 0.36. This confirmed

that evolutionary conservation is very important for pre-

dicting DNA-binding residues. Next, by incorporating

different structural features into the baseline model with

Table I
Performance of Machine Learning-Based Protocol on DS123

Model Typea Recall Precision F1 MCC AUC

PSSM Q 0.656 0.364 0.466 0.358 0.803
PSSM 1 PS Q 0.678 0.359 0.466 0.360 0.807
PSSM 1 PS 1 AA Q 0.674 0.370 0.473 0.369 0.807
PSSM 1 PS 1 AA 1 SP Q 0.678 0.373 0.479 0.376 0.814
PSSM T 0.656 0.376 0.474 0.368 0.803
PSSM 1 SA T 0.660 0.381 0.480 0.375 0.806
PSSM 1 SA 1 DP T 0.667 0.387 0.486 0.383 0.811
PSSM 1 SA 1 DP 1 TP T 0.689 0.404 0.505 0.408 0.821
PSSM 1 SA 1 DP 1 TP 1 DC T 0.699 0.405 0.510 0.414 0.828
PSSM 1 SA 1 DP 1 TP 1 DC 1 SP T 0.697 0.413 0.515 0.421 0.830
STR 1 SEQ C 0.697 0.424 0.524 0.432 0.845

PS, predicted structural features; AA, amino acid indices; SP, statistical potential; SA, solvent accessibility; DP, depth index and protrusion index; TP, topological fea-

tures; DC, distance to the centroid; STR, the best structure-based predictor; SEQ, the best sequence-based predictor.
aQ, T, and C denote the sequence-based, structure-based, and combined predictors, respectively.
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a step-by-step approach, we observed gradually increased

performance of the structure-based predictors. In partic-

ular, we achieved additional gains in the prediction when

the centroid distance feature was incorporated, even

though it is highly related to the closeness feature. When

all the structural features plus statistical potential were

used, the performance reached the peak with a F1-score

of 0.515 and MCC of 0.421. Meanwhile, compared to the

baseline model, the AUC value of the final structure-

based predictor was significantly increased from 0.803 to

0.830. The results suggested that these structural features

coupled with evolutionary conservation can provide

largely complementary information for DNA-binding res-

idue prediction. Alternatively, if only sequence informa-

tion was used, the performance can be improved

moderately by integrating PSSM with three other

sequence features. The final sequence-based predictor

gave a promising result with a F1-score of 0.479, MCC

of 0.376, and AUC of 0.814. It is therefore evident that

both structure- and sequence-derived features can con-

tribute to the effective prediction of DNA-binding

residues.

Additionally, we investigated the possibility of combin-

ing the best structure- and sequence-based predictors for

recognizing the binding residues. By testing different val-

ues of the weighting factor, we achieved the highest AUC

value as a 5 0.6 (Supporting Information Fig. S3). As

shown in Table I and Figure 2, the integrative machine

learning-based predictor showed enhanced performance

with a F1-score of 0.524, MCC of 0.432, and AUC of

0.845, respectively. This indicated that the individual pre-

dictors exploited different aspects of the binding signals,

and the complementarity between them resulted in the

improved performance. According to these results, we

selected the integrative prediction model as the machine

learning-based protocol for DNA-binding residue predic-

tion, which was to be hybridized with the template-based

protocol.

Performance of machine learning-based
approach tested on independent datasets:
HOLO83 and APO83

To further evaluate the machine learning-based method,

we tested several representative predictors from the previ-

ous section on HOLO83 and APO83, which were consid-

ered as independent datasets. As shown in Table II, the

performances of two baseline models on HOLO83 were

not as good as the result of fivefold cross-validation on

dataset DS123, but were still acceptable. Compared to

using evolutionary conservation alone, we found that

incorporation of the structural features remarkably

improved the prediction performance with 3% increase in

the AUC score. Adding additional sequence attributes also

marginally raised the performance. Similar phenomena

were also observed on the unbound dataset APO83. More

importantly, the results showed that the performances of

our predictors on the unbound structures, especially the

structure-based predictors, were just slightly lower than

those on the bound structures, which further indicated

that the features used in our study are tolerable to the

conformational changes upon DNA binding. Finally, we

applied the integrative machine learning predictor to the

independent datasets. We observed improvements in per-

formance for the protein structures both in the absence

and presence of DNA. The F1-score and MCC values were

0.483 and 0.396 for APO83 and 0.502 and 0.411 for

HOLO83, respectively. The ROC curves in Figure 3 also

clearly illustrated that the integrative strategy is indeed

Figure 2
The ROC curves of representative predictors tested on DS123. PSSMQ

and PSSMT represented the baseline predictors using sequence and
structural windows as inputs. SEQ and STR denoted the best sequence-

and structure-based predictors. STR 1 SEQ denoted the combination
of sequence- and structure-based predictors. All the predictors were

evaluated using fivefold cross-validation on DS123. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table II
Performance of Machine Learning-Based Protocol on HOLO83/APO83

Dataset Modela Recall Precision F1 MCC AUC

HOLO83 PSSMQ 0.585 0.347 0.435 0.328 0.788
SEQ 0.601 0.348 0.441 0.335 0.794

PSSMT 0.592 0.371 0.456 0.354 0.799
STR 0.590 0.420 0.491 0.397 0.828

STR 1 SEQ 0.590 0.437 0.502 0.411 0.839
APO83 PSSMQ 0.587 0.325 0.419 0.318 0.788

SEQ 0.603 0.327 0.424 0.326 0.795
PSSMT 0.575 0.335 0.423 0.323 0.791

STR 0.569 0.394 0.465 0.374 0.822
STR 1 SEQ 0.582 0.414 0.483 0.396 0.837

aQ and T denote the sequence- and structure-based input windows, and SEQ and

STR denote the best sequence- and structure-based predictors, respectively.

R. Liu and J. Hu

1892 PROTEINS

 10970134, 2013, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.24330 by N

anjing A
gricultural, W

iley O
nline L

ibrary on [22/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

wileyonlinelibrary.com


effective to enhance the prediction on the unbound struc-

tures as well as that on the bound structures.

Performance of template-based approach
tested on HOLO83 and APO83

Besides the machine learning-based method, we also

applied the template-based protocol to datasets HOLO83

and APO83. For each query structure, we picked out the

best template with sequence identity less than 35% from

the template library. As shown in Figure 4, the TM-score

distributions of the top-ranked templates for HOLO83 and

APO83 were largely similar, but the bound structures

tended to easily identify more closely resembled templates.

For instance, 13 holo queries retrieved a template with a

TM-score better than 0.85, whereas only 8 apo queries

detected such highly similar templates. Similar phenomenon

was also reported by Gao and Skolnick.17 Additionally, we

found that there were 63 bound–unbound structure pairs

sharing the same template, indicating that most of the cor-

responding structures in HOLO83/APO83 would experience

small conformational changes before and after DNA

binding.

After the best template was retrieved for the query pro-

tein, we replaced the template structure with the query

structure to get the predicted protein–DNA complex

structure. The putative binding residues were determined

in terms of the distance between amino acids and nucleo-

tides. From Table III, we can see that the template-based

approach achieved a F1-score and MCC of 0.525 and

0.452 on the bound dataset HOLO83, and 0.417 and

0.336 on the unbound dataset APO83, respectively. Obvi-

ously, compared with the performance on the bound

structures, there was a substantial deterioration in the per-

formance on the unbound structures, suggesting that the

template method is very sensitive to conformational

changes. The reason will be discussed in the next section.

Alternatively, we proposed another method to predict

binding residues by directly aligning the target residues of

the query structure with the known binding residues of

the template. The results are also reported in Table III. It

showed that the distance-derived prediction method

clearly outperformed the alignment-derived counterpart

on HOLO83, but they achieved comparable performance

on APO83. Due to the fact that the former tended to pro-

duce more positive predictions, it yielded higher recall but

lower precision compared to the latter. Based on this per-

formance comparison, the distance-derived prediction was

chosen in our template-based protocol.

Figure 3
The ROC curves of representative predictors tested on HOLO83 and

APO83. (A) HOLO83 and (B) APO83. With the exception of DNA-
Bind, the predictors are the same as those in Figure 2. All the predictors

were evaluated by independent testing on HOLO83/APO83. [Color fig-
ure can be viewed in the online issue, which is available at wileyonline

library.com.]

Figure 4
The TM-score distributions of the top-ranked templates for HOLO83

and APO83. The TM-score of each top-ranked template was achieved
using TM-align to align the query structure with our template library.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Complementarity between machine
learning- and template-based methods

Our hybrid DNABind algorithm exploited the comple-

mentarity between machine learning- and template-based
methods to improve DNA-binding residue prediction. In
this section, we provided some evidence for this motiva-
tion from two perspectives that are tightly related to the
performance: one is the quality of template selection,
and the other is the effect of conformational changes.

To evaluate the dependence of prediction performance

on the templates, we divided the TM-score ranging from

0.4 to 1.0 into five partitions and deposited the query

structures from HOLO83/APO83 into corresponding

partitions by the TM-scores of their best templates. As

shown in Table IV, when the TM-score was larger than

0.6, the template-based method can give respectable per-

formance on each partition. Especially, the prediction

performance on the bound structures of the highest two

partitions was excellent. In contrast, when the TM-score

was below 0.6, the performance of the template method

decreased drastically. These results showed that the per-

formance of our template-based approach strongly

depended on the quality of the template. On the other

hand, the performance discrepancy of the machine learn-

ing method on these two different subsets (separated by

the TM-score of 0.6) was relatively smaller. Even on the

partition with TM-score less than 0.5, the machine learn-

ing method achieved an acceptable result with a F1-score

and MCC of around 0.39 and 0.29 for both bound and

unbound structures, which were remarkably higher than

the corresponding values of about 0.21 and 0.09 achieved

by the template-based approach. It is thus clear that

when no high-quality template can be found for the

query proteins, the machine learning-based approach

depending on effective features to describe the microen-

vironment of the target residue is an alternative way to

distinguish its binding function.

Another factor that affects the performance of the

template-based method is the conformational changes due

to DNA binding. To verify this, we first calculated the

transformation changes in terms of the TM-score by

aligning each bound-unbound structure pair in the

HOLO83 and APO83 datasets. We then divided the 83

structure pairs into three groups with small (TM-score �
0.95), medium (0.85 � TM-score < 0.95), and large (TM-

score < 0.85) conformational changes based on the TM-

scores. Next, we analyzed how the prediction performance

of the template method on each group is related to the

number of identical templates that were retrieved by the

query protein pairs and the average TM-scores of the tem-

plates for the bound and unbound groups.

Table V shows the performance of the template

method on different groups of bound and unbound

structures with varying conformational changes. For the

small transformation group with 45 structure pairs, there

was no significant difference between the average TM-

score of the retrieved templates for the proteins in the

bound group (0.651 6 0.124) and that of the unbound

group (0.651 6 0.126), suggesting that all the protein

pairs in this group retrieved identical (34 pairs) or highly

similar templates. Accordingly, the performance on the

unbound structures was comparable to that on the

bound structures with a MCC score of 0.363 against

0.382. For the protein pairs in the medium transforma-

tion group, 92% (24/26) of them retrieved the identical

templates, and the average TM-score of the bound group

(0.681 6 0.115) was slightly higher than that of the

unbound group (0.665 6 0.102). In terms of the MCC

measure, however, the performance on the unbound

group was about 14% lower than that on the bound

group. The reason might be that the conformational

changes before and after DNA binding mainly happened

in the local binding regions, which led to more incorrect

Table III
Performance of Template-Based Protocol on HOLO83/APO83

Method Dataset Recall Precision F1 MCC

Distance HOLO83 0.496 0.558 0.525 0.452
APO83 0.388 0.450 0.417 0.336

Alignment HOLO83 0.351 0.613 0.447 0.401
APO83 0.305 0.560 0.395 0.351

Table IV
Performance of Individual Protocols on Different TM-Score Ranges

Method TM-score Recall Precision F1 MCC

Template 0.8–1.0 0.619a (0.464)b 0.809 (0.710) 0.701 (0.561) 0.668 (0.526)
0.7–0.8 0.633 (0.537) 0.721 (0.614) 0.674 (0.573) 0.628 (0.522)
0.6–0.7 0.529 (0.405) 0.503 (0.485) 0.516 (0.441) 0.438 (0.364)
0.5–0.6 0.321 (0.255) 0.451 (0.295) 0.375 (0.274) 0.275 (0.147)
0.4–0.5 0.221 (0.220) 0.207 (0.199) 0.214 (0.209) 0.082 (0.088)

Machine learning 0.8–1.0 0.666 (0.677) 0.496 (0.530) 0.568 (0.595) 0.493 (0.532)
0.7–0.8 0.593 (0.617) 0.387 (0.349) 0.468 (0.446) 0.374 (0.369)
0.6–0.7 0.635 (0.564) 0.440 (0.444) 0.519 (0.497) 0.439 (0.409)
0.5–0.6 0.520 (0.556) 0.517 (0.480) 0.519 (0.515) 0.418 (0.416)
0.4–0.5 0.472 (0.500) 0.354 (0.319) 0.405 (0.389) 0.297 (0.289)

aThe performance was tested on HOLO83.
bThe performance was tested on APO83.
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predictions for the unbound structures despite a reasona-

ble degree of global similarity with the template struc-

ture. As expected, in the large transformation group,

there was only 42% (5/12) overlap between the templates

for the protein pairs in the bound and unbound groups,

and the average TM-score of the bound group (0.703 6

0.144) was obviously higher than that of the unbound

group (0.623 6 0.085). This suggested that it is difficult

for the monomer structures with large conformational

changes to find ideal reference structures from existing

templates derived from the complex structures. It is thus

not surprising that the performance on the unbound

structures in the large group was distinctly inferior to the

performances on the small and medium groups. Further-

more, the performance discrepancy between unbound

and bound structures became more remarkable as the

conformational change is large, with a MCC score of

0.203 for unbound structures in comparison to 0.597 for

bound structures.

Compared to the template-based approach, the

machine learning-based method had much higher toler-

ance as regard to the conformational changes. For exam-

ple, as given in Table V (results in brackets), we observed

that the performance of this predictor on the unbound

structures in the large transformation group was even

slightly better than the result achieved on the small

transformation group. Moreover, the performance differ-

ences for the bound and unbound structures were signif-

icantly smaller for all the three transformation groups. It

is therefore expected that for unbound structures, the

hybrid predictor DNABind, which takes advantage of the

information provided by machine learning-based

approach, should demonstrate better performance than

the template-based method alone.

Performance of hybrid algorithm DNABind
tested on HOLO83 and APO83

Ultimately, the purpose of binding residue prediction

is to identify potential binding regions in protein struc-

tures without DNA molecules. Here, we utilized the

bound dataset HOLO83 to optimize the TM-score cutoff

and the weighting factor b in the integrative predictor

DNABind. Previously, we showed that the performance

of the template-based method decreased rapidly as the

TM-score of the template was less than 0.6. Conse-

quently, we expected that the optimal TM-score cutoff

should be around 0.6. To achieve the highest overall per-

formance, we conducted a grid search by testing TM-

score threshold from 0.55 to 0.65 and b from 0 to 1,

respectively. In Supporting Information Table S4, the

AUC score peaked when TM-score 5 0.6 and b 5 0. 6.

These two optimal parameters were used to validate the

unbound dataset APO83.

We then conducted a systematic comparison of the

machine learning-based, template-based, and hybrid pre-

dictors in Table VI. It was shown that for the overall per-

formance on the whole datasets, the template method

yielded a better result than the machine learning method

on HOLO83 with a MCC of 0.452 compared to 0.411,

whereas the machine learning method won on APO83

with a MCC of 0.396 compared to 0.336. In general, the

template-based predictor tended to have higher preci-

sion, because the predicted binding residues are usually

clustered and close to the real binding regions once a

reliable template was retrieved, whereas some of the posi-

tive predictions generated by machine learning-based

method might be scattered on the protein surface, lead-

ing to relatively high false positive rate. Additionally, it is

clear that the integrative algorithm, DNABind, remark-

ably outperformed both individual protocols. In particu-

lar, as shown in Figure 3, compared to machine learning-

based method, the AUC measures of DNABind were dis-

tinctly increased from 0.839 to 0.885 on HOLO83, and

from 0.837 to 0.861 on APO83. DNABind also achieved

the better MCC measures of 0.512 and 0.442 on

HOLO83 and APO83, respectively, in comparison to

0.452 and 0.336 provided by the template-based method.

We further found that the performance difference of

DNABind on bound and unbound structures became

much smaller, suggesting that it had effectively alleviated

the effect from conformational changes.

To further illustrate the complementary relationship of

two individual methods, we separated HOLO83/APO83

Table V
Performance of Individual Protocols on Different Conformational Change Groups

Group No. of chain pairs Structure Ave. of TM-scoresa Recall Precision F1 MCC

Small 45b (34)c Holo 0.65160.124 0.456d (0.561)e 0.463 (0.406) 0.459 (0.471) 0.382 (0.387)
Apo 0.65160.126 0.418 (0.550) 0.454 (0.383) 0.436 (0.452) 0.363 (0.370)

Medium 26 (24) Holo 0.68160.115 0.522 (0.645) 0.636 (0.491) 0.573 (0.558) 0.499 (0.458)
Apo 0.66560.102 0.421 (0.642) 0.484 (0.465) 0.451 (0.540) 0.357 (0.445)

Large 12 (5) Holo 0.70360.144 0.560 (0.573) 0.755 (0.436) 0.643 (0.495) 0.597 (0.390)
Apo 0.62360.085 0.242 (0.565) 0.359 (0.416) 0.289 (0.479) 0.203 (0.384)

aThe P values of small, medium, and large groups provided by paired t-test were 0.89, 0.02, and 0.09, respectively.
bThe number of protein pairs in each group.
cThe number of protein pairs sharing the same template in each group.
dThe performance provided by template-based protocol.
eThe performance provided by machine learning-based protocol.
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into two groups based on the TM-score cutoff of 0.6.

For the group with TM-score above the cutoff, the per-

formance comparison with the template-based method

showed that incorporating machine learning-based pre-

diction into DNABind significantly improved its per-

formance on unbound structures (APO83) while with

moderate improvement on bound structures (HOLO83).

As discussed earlier, although there was a reasonable

global alignment between the apo query and the result-

ing template, some binding residues might not be cor-

rectly inferred from the template due to the local

conformational changes happening in binding regions. In

this case, the machine learning-based method, whose

predictions mainly depended on characterizing the local

context of target residues, can provide additional infor-

mation to correct these mistakes. It is also worth men-

tioning that because the machine learning and integrative

protocols used different probability score cutoffs (0.57

and 0.47), there was a difference in the results of them

on the group with TM-score below 0.6. Taken together,

the complementarity between the individual prediction

strategies is indeed helpful in improving DNA-binding

residue prediction.

Case studies

To further show the complementarity between

machine learning and template approaches for DNA-

binding residue prediction, we selected two DNA-

binding proteins from the HOLO83 and APO83 datasets

for visualizing their prediction results. The first example

is the complex structure composed of the transcriptional

regulator CprK (3E6C:C) and its associated DNA.39

From Figure 5, we observed that when the machine

learning predictor was used to identify the binding resi-

dues of CprK, we got 10 true positives and 7 false posi-

tives, with a F1-score of 0.606 and MCC of 0.56. For the

template method, an ideal template (2CGP:A) was iden-

tified with a TM-score of 0.73, although the sequence

identity between the query and template proteins was

only 0.21. Based on the predicted complex structure, we

obtained 7 true positives without any false positive. The

F1-score and MCC of template-based method were 0.609

and 0.641. When the hybrid method was applied to the

prediction, the number of true positives was the same as

that produced by the machine learning approach,

whereas there was only one false positive. And the F1-

score and MCC were increased to 0.741 and 0.733,

Table VI
Performance Comparison of Different Protocols on HOLO83/APO83

Group NO. of chains Method Recall Precision F1 MCC

TM-score � cutoff 57a (55)b Template 0.593c (0.465)d 0.659 (0.572) 0.624 (0.513) 0.569 (0.453)
Machine learning 0.630 (0.606) 0.437 (0.417) 0.516 (0.494) 0.432 (0.414)

DNABind 0.684 (0.581) 0.610 (0.561) 0.645 (0.571) 0.585 (0.507)
TM-score < cutoff 26 (28) Template 0.279 (0.241) 0.325 (0.252) 0.301 (0.247) 0.182 (0.122)

Machine learning 0.500 (0.534) 0.439 (0.406) 0.467 (0.462) 0.361 (0.360)
DNABind 0.669 (0.689) 0.381 (0.342) 0.486 (0.457) 0.380 (0.359)

All 83 (83) Template 0.496 (0.388) 0.558 (0.450) 0.525 (0.417) 0.452 (0.336)
Machine learning 0.590 (0.582) 0.437 (0.414) 0.502 (0.483) 0.411 (0.396)

DNABind 0.679 (0.618) 0.515 (0.451) 0.586 (0.521) 0.512 (0.442)

aThe number of chains in HOLO83.
bThe number of chains in APO83.
cThe performance was tested on HOLO83.
dThe performance was tested on APO83.

Figure 5
Prediction results of transcriptional regulator CprK in the bound state. (A) Machine learning-based predictor, (B) template-based predictor, and

(C) DNABind. The following color scheme is used: query protein in purple, template protein in gray, true positives in red, false positives in yellow,

false negatives in green. In addition, we superimposed the query structure onto the template with the rotation matrix. The TM-score and sequence
identity between query and template proteins were 0.73 and 0.21, respectively.
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respectively, clearly demonstrating the advantage of

DNABind for the bound structure.

We also applied these three approaches to an apo

example, EcoRV endonuclease (1RVE:A),40 which experi-

enced a medium conformational change before and after

DNA binding (the TM-score between the unbound and

bound structures is 0.94). As represented in Figure 6,

although the TM-score of the best template (2WIW:B)

was 0.603, which was just equal to the cutoff used in

DNAbind, we still correctly recognized 11 binding resi-

dues but missed the remaining 15 residues. Compared

with the template-based method, the machine learning-

based predictor output more positive samples, including

21 true positives and 19 false positives. The F1-score and

MCC values of the individual methods were 0.537/0.636

and 0.505/0.579, respectively. Through the combination

of the individual predictors, we yielded an improved result

with a F1-score and MCC of 0.704 and 0.652, which

produced 19 true positives, 9 false positives, and 7 false

negatives, respectively. The results suggested that the com-

plementarity between template- and machine learning-

based strategies is useful in enhancing the prediction of

unbound structures as well as that of bound structures.

Comparison with other prediction
algorithms

We compared our algorithms with two recent DNA-

binding residue prediction algorithms, including Xiong et

al.’s method and DISPLAR,9,14which also combined

machine learning with structural information. To make a

fair comparison, we re-implemented Xiong et al.’s method

and conducted fivefold cross-validation on the DS123

dataset. Furthermore, we evaluated these two methods

using the HOLO83 and APO83 datasets.

The results in Table VII showed that when Xiong et

al.’s method was tested on DS123, it yielded a F1-score

and MCC of 0.483 and 0.378, which was marginally bet-

ter than the performance of the baseline machine learn-

ing predictor using only the PSSM feature (Table I).

Similar observation was also reported in their study.

Clearly, our machine learning-based predictor, DNA-

BindML, outperformed their predictor by about 5% in

the corresponding measures. For the independent datasets

(HOLO83 and APO83), DNABindML was still obviously

superior to Xiong et al.’s method for both bound and

unbound structures. Compared to DISPLAR, DNABindML

achieved slightly better performance on HOLO83, with a

F1-score of 0.502 (compared to 0.479) and MCC of 0.411

(compared to 0.396), respectively. However, for the

unbound structures, the performance of DISPLAR

degraded dramatically and was approximately 6% lower

than that of our predictor, suggesting that DISPLAR was

affected by the conformational changes upon DNA bind-

ing. Furthermore, our hybrid machine learning- and

template-based algorithm, DNABind, outperformed both

Xiong et al.’s method and DISPLAR by more than 10% in

terms of the F1-score and MCC measure.

In addition, the PDNA62 dataset collected by Ahmad

et al.5 was used as an independent dataset to compare

Figure 6
Prediction results of EcoRV endonuclease in the unbound state. (A) Machine learning-based predictor, (B) template-based predictor, and (C) DNA-
Bind. The color scheme is the same as that of Figure 5. The TM-score and sequence identity between query and template proteins were 0.603 and

0.24, respectively. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table VII
Performance Comparison Between Our Approach and Existing

Methods

Dataset Method Recall Precision F1 MCC AUC

DS123 Xiong et al. 0.625 0.398 0.483 0.378 0.806
DNABindML

a 0.698 0.424 0.524 0.432 0.845
HOLO83 Xiong et al. 0.586 0.378 0.459 0.358 0.800

DISPLAR 0.461 0.499 0.479 0.396 n/ab

DNABindML 0.590 0.437 0.502 0.411 0.839
DNABind 0.679 0.515 0.586 0.512 0.885

APO83 Xiong et al. 0.562 0.349 0.431 0.332 0.794
DISPLAR 0.420 0.423 0.421 0.333 n/a

DNABindML 0.582 0.414 0.483 0.396 0.837
DNABind 0.618 0.451 0.521 0.442 0.861

PDNA62 Xiong et al. 0.753 0.462 0.573 0.434 0.819
DISPLAR 0.684 0.570 0.620 0.501 n/a

DNABindML 0.784 0.512 0.620 0.500 0.856
DNABind 0.820 0.563 0.667 0.566 0.896

aML denotes the machine learning-based protocol in DNABind.
bBecause DISPLAR output only predicted label for each residue, we cannot calcu-

late its AUC measure.
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DNABind with Xiong et al.’s method and DISPLAR. To

train the DNABindML model, we only used the chains in

DS123 sharing less than 25% sequence identity with any

chain in PDNA62. As given in Table VII, the perform-

ance of DNABindML on PDNA62 is much better than

that on HOLO83/APO83, with a F1-score of 0.62 and

MCC of 0.5. When the template-based prediction was

integrated, the corresponding measures were raised by

about 5% and 7%, respectively. More importantly, the

performance of DNABind was consistently superior to

that of the other two structure-based algorithms. Besides,

we also compared DNABind with other existing struc-

ture- and sequence-based methods, such as DR_Bind,41

BindN1,42 NAPS,43 and DNABINDPROT.11 The

detailed procedures and results are provided in Support-

ing Information (Supporting Information Table S5),

which further demonstrated the robustness and advant-

age of our proposed algorithm. The success of our

method is probably due to two reasons. On the one

hand, compared to the structural features used in the

existing methods, our comprehensive feature set more

effectively captured the nature of DNA-binding residues.

On the other hand, the template-based prediction

method can yield excellent performance when a reasona-

ble template can be found. It is thus complementary to

the machine learning-based algorithm which has better

performance for the query proteins without good

templates.

In this study, we did not directly compare our approach

with existing pure template-based methods,17,18 because

the same structural alignment program TM-align were

used in these methods and DNABind and similar per-

formance was expected. Zhao et al.18 showed that there

was a slight difference in the performances of DNA-

binding residue prediction when they used different

energy functions to rerank the templates. This suggested

that the major power of template-based predictors comes

from the structural alignment procedure, although the

evaluation of statistical potential is beneficial for discrimi-

nating the binding functions of proteins. It is thus reason-

able to believe that compared to existing template

methods, our template-based approach could achieve

comparable performance and our hybrid algorithm DNA-

Bind has better predictive capability than all these tem-

plate methods.

Although we are working on DNABind, a new struc-

tural alignment program SPalign was developed by Yang

et al.,44 which showed improvement in predicting DNA-

binding proteins over TM-align. We thus used SPalign to

find the best templates for the query proteins in the

HOLO83 and APO83 datasets. As shown in Supporting

Information Table S6, SPalign has slightly improved the

template-based binding residue prediction by about 2%

in the MCC measure, which is agreement with the obser-

vation reported in Yang et al.’s article. However, when

SPalign algorithm was integrated with the machine

learning method, the combined model did not remark-

ably outperform DNABind. Even so, the results clearly

demonstrated that different structural alignment algo-

rithms could be incorporated into our proposed method

for improving DNA-binding residue prediction.

CONCLUSIONS

In this study, we proposed DNABind, the first hybrid

algorithm for predicting DNA-binding residues, based on

combining machine learning- and template-based predic-

tion strategies. Our study showed that there exists a

dichotomy in the DNA-binding residue prediction prob-

lem. When good templates (such as the TM-score larger

than 0.6) can be found for a query protein, the

template-based algorithm achieved much higher per-

formance than the machine learning-based predictor.

Instead, when no good templates are available, the

machine learning-based predictor was obviously superior

to the template-based counterpart. We also demonstrated

the effectiveness of our well-designed structural features,

which can well quantify the difference between binding

and nonbinding residues and thus contributed to

remarkable progress in the performance of feature-based

approaches. Additionally, our systematic comparison of

these two strategies showed that the performance of

template-based methods was easily affected by the con-

formational changes upon DNA binding as well as the

template quality, whereas the machine learning-based

methods provided relatively stable performance. Utilizing

the complementarity between these two approaches, our

hybrid DNABind algorithm not only demonstrated

clearly better predictive power than either method on its

own, but also significantly outperformed the state-of-the-

art algorithms. Because machine learning- and template-

based methods are widely available for other protein

functional site annotations, our hybrid approach can also

be extended to solve these problems.
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