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Abstract—The recognition of DNA-binding residues in proteins is critical to our understanding of the mechanisms of DNA-protein

interactions, gene expression, and for guiding drug design. Therefore, a prediction method DNABR (DNA Binding Residues) is

proposed for predicting DNA-binding residues in protein sequences using the random forest (RF) classifier with sequence-based

features. Two types of novel sequence features are proposed in this study, which reflect the information about the conservation of

physicochemical properties of the amino acids, and the correlation of amino acids between different sequence positions in terms of

physicochemical properties. The first type of feature uses the evolutionary information combined with the conservation of

physicochemical properties of the amino acids while the second reflects the dependency effect of amino acids with regards to polarity-

charge and hydrophobic properties in the protein sequences. Those two features and an orthogonal binary vector which reflect the

characteristics of 20 types of amino acids are used to build the DNABR, a model to predict DNA-binding residues in proteins. The

DNABR model achieves a value of 0.6586 for Matthew’s correlation coefficient (MCC) and 93.04 percent overall accuracy (ACC) with a

68.47 percent sensitivity (SE) and 98.16 percent specificity (SP), respectively. The comparisons with each feature demonstrate that

these two novel features contribute most to the improvement in predictive ability. Furthermore, performance comparisons with other

approaches clearly show that DNABR has an excellent prediction performance for detecting binding residues in putative DNA-binding

protein. The DNABR web-server system is freely available at http://www.cbi.seu.edu.cn/DNABR/.

Index Terms—DNA-binding residues, random forest, physicochemical property, evolutionary information

Ç

1 BACKGROUND

PROTEIN-DNA interactions play an essential role in biolo-
gical processes and have attracted extensive attention

and investigation in recent years [1], [2], [3]. For instance, a
great deal of research has focused on the interaction
between transcription factors (TF) and DNA [4], [5], [6],
while other studies have concentrated on whether a novel
protein could bind to DNA [7], [8], [9], [10]. More and more
studies have focused on the identification of DNA-binding
residues in proteins because it would yield great insight into
the mechanisms that underlie DNA-protein interactions
[11]. Therefore, the recognition of DNA-binding residues
has increasingly attracted more attention and has become a
central theme in research related to the function of proteins.

There are several methods through which DNA-binding

residues can be identified and these can be categorized in
two main types of methodology: experimental methods and
computational methods. Experimental methods such as X-

ray crystallography and nuclear magnetic resonance (NMR)

are useful for obtaining the 3D structures of the DNA-
protein complexes and for calculating the DNA-binding
residues through this structural information. However,
recognizing binding residues through these experimental
techniques is expensive and time consuming. Thus, reliable
computational methods have been developed that allow an
automated prediction of DNA-binding residues based on
the information derived from the sequence alone and also
from the sequence and structure collectively [12], [13], [14],
[15], [16], [17]. When the structural information for the
DNA-binding protein is used to predict DNA-binding
residues, the problems limiting the application of these
experimental techniques to capture 3D structure still exist.
Therefore, in this study computational methods for predict-
ing the DNA-binding sites directly from amino acid
sequence have been developed.

Several computational-based methods have been used for
to construct a predictive model for DNA-binding residues in
proteins [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29]. These neural network models [30] were developed to
predict DNA-binding residues using sequence information.
A Naı̈ve Bayes classifier [21] was developed to predict DNA-
binding residue based on their identity and on the identities
of the neighboring sequences. A support vector machine
(SVM) classifier is also an effective tool with the ability to
distinguish DNA-binding residues from nonbinding ones
and it is has been widely used in recent research [19], [20],
[22], [24], [26], [29]. Ofran et al. developed a model named
DISIS (see http://cubic.bioc.columbia.edu/services/disis)
for predicting DNA-binding residues by using the SVM
classifier technology with physicochemical features combin-
ing local structure and evolutionary conservation data [24].
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Huang et al. have also predicted sequence-specific and
nonspecific binding residues by SVM coupled with evolu-
tionary information [26]. The BindN model [20] proposed by
Wang et al. used sequence feature including the biochemical
property of amino acids, including the side chain pKa value,
hydrophobicity index, and molecular mass with SVM.
BindN+ method [29] is also based on SVM algorithm and is
encoded with evolutionary information in terms of position
specific scoring matrix and same three physical-chemical
properties which are used in the BindN model. Random
forest (RF) classifiers also offer a strong alternative and
provide high accuracy for the prediction of DNA-binding
residues. The BindN-rf system was proposed by Wang et al.
as a means of predicting DNA-binding residues using a RF
classifier, combining biochemical features with several
descriptors of evolutionary data [27]. Recently, a meta web
server named MetaDBsite [31] was developed to predict
DNA-binding residues used sequence information of pro-
teins. MetaDBSite integrates the prediction results from six
available online web servers: DISIS, DNABindR, BindN,
BindN-rf, DP-Bind, and DBS-PRED for protein DNA-binding
residues prediction.

In this study, we propose a novel method for predicting
DNA-binding residues using the RF algorithm combining
sequence-based features. Feature selection is the most
important factor when aiming to improving the computa-
tional capacity of classifiers. In previous work, the con-
servation information about the amino acids at the level of
physicochemical properties was not considered. In this
study, to improve the classifier for DNA-binding residues, a
novel matrix, position specific scoring matrices combining
physicochemical properties (PSSM-PP) was put forth, which
not only contains the evolutionary information captured by
PSSM, but also contains information about the physico-
chemical properties of the amino acids. Therefore, it
captures more information than PSSM and has a better
predictive performance. With in models developed by
previous work, each amino acid is considered to act
independently, which may be incongruous with the idea
that each amino acid within a protein sequences closely
relies upon its neighboring amino acids. Therefore, in the
new system we have developed a novel feature that collects
information about one residue and its sequential neighbors.
Compared with the initial system, which had an indepen-
dent amino acid input feature, the predictive ability of the
new system is significantly improved when the relationship
between adjoining amino acids within protein sequences is
considered as an input features. Moreover, the problem of
imbalance between data sets brought about by the fact that
the number of DNA-binding residues in proteins is less than
that of nonbinding residues has also been considered and
resolved in this study. The results show that our DNABR
model scores very highly (0.6586) when tested using
Matthew’s correlation coefficient (MCC), with a 93.04 per-
cent overall accuracy (ACC). The DNABR model was also
found to have a sensitivity of 68.47 percent (SE) and
specificity of 98.16 percent (SP).

2 METHODS

2.1 Data Collection

The data set, DBP-337 was used in this work and contained
337 DNA-interacting proteins extracted from all the

protein-DNA complexes (released by November 17, 2010)
in the Protein Data Bank [32]. (The data set DBP-337 can be
found in the Appendix A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2012.106). Those
protein-DNA complexes were determined by X-ray crystal-
lography with a resolution better than 3.5 �A. Redundant
proteins with >25% sequence identity were removed using
the blastclust program within the BLAST package [33]
available from NCBI and only the longest amino acid
sequences which created nonredundant DBP-337 data set
were selected in each cluster.

Herein, an amino acid in the protein chain is defined as
having DNA-binding residues if one or more atoms on its
side chain or backbone are within the cutoff distance of
3.5 �A from any atoms of the DNA molecule in the complex.
This is the same as previous research [18], [19], [20], [27],
[30]. Among the 72,196 residues in the 337 DNA-binding
protein sequences, 5,084 residues were defines as DNA-
binding residues and the remaining 67,112 residues were
defined as nonbinding residues.

2.2 Feature Descriptors

Each data instance is obtained by sliding a window along
the protein, when predicting whether or not the central
residue binds to DNA. Thus, a data instance is defined as
positive if the central residue is a DNA-binding residue or
negative if the central residue is nonbinding. Then, the data
instances, each of which contain the information of L

consecutive residues of the proteins being trained, were
used to construct the RF classifier. Taking into considera-
tion the previous works [18], [19], [20], [21], [24], [26], [28],
[29] in prediction of DNA-binding residues in proteins, we
chose different lengths of a data instance L from five to
19 residues and compared prediction performances based
on those lengths using DNABR method. We calculated the
three performance evaluations, i.e., ACC, BM, and MCC, to
determine optimal window size. Compared with other
window sizes (See Appendix B, available in the online
supplemental material), the RF classifiers constructed with
L ¼ 9 presented the best performance.

In this work, we considered two novel descriptors,
including position specific scoring matrices combining
physicochemical properties and amino acid correlation
(AAC) with regards to polarity-charge and hydrophobicity
propriety.

2.2.1 Position Specific Scoring Matrices Combining with

Physicochemical Properties

A novel matrix called PSSM-PP is proposed based on the
information of PSSM with six physicochemical properties in
this research. The PSSM scores are generated by PSI-BLAST
[34] to search against the nonredundant (nr) data set of
amino acid sequences at NCBI, and 20 values are obtained
for each sequence position. The standard logistic function
[35] was used to rescale the value of PSSM within 0 and 1:

fðxÞ ¼ 1

1þ expð�xÞ : ð1Þ
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Six physicochemical properties are considered for each
amino acid: the pKa values of amino group, the pKa values
of carboxyl group [36], the electron-ion interaction potential
(EIIP) [37], the number of lone electron pairs(LEPs), Wiener
index [38] and the molecular mass [39]. A new parameter
daðiÞ is defined by normalizing six quantitative properties
with the following formula:

daðiÞ ¼ fPaðiÞ �minfPað1Þ; Pað2Þ; . . . ; Pað20Þgg=
fmaxfPað1Þ; Pað2Þ; . . . ; Pað20Þg
�minfPað1Þ; Pað2Þ; . . . ; Pað20Þgg;

ð2Þ

where daðiÞ represents the normalized property values that
range from 0 to 1, a is the index of the property, and i
indicates the ith amino acid. PaðiÞ is the value of property a
of the ith amino acid. Thus, PSSM-PP is generated by
merging 20 amino acid columns of the PSSM into a single
column containing the information of a certain physico-
chemical property. In a PSSM-PP, the entry mak of position k
for a certain physicochemical property a is calculated with:

mak ¼
X20

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
daðiÞfkðiÞ

p
; ð3Þ

where a is the index of a certain physicochemical property,
k is the index of position, i is the index of the type of amino
acids, fkðiÞ is the normalized value of the ith type of amino
acid in the position k of the PSSM calculated by (1) and daðiÞ
is normalized physicochemical property values of a for the
ith type amino acids calculated by (2). A process diagram
for PSSM-PP can be found in the Appendix C, available in
the online supplemental material. According the definition,
six values are captured for each sequence position. There-
fore, the vector size of PSSM-PP feature is 6� 9.

2.2.2 Amino Acid Correlation

Protein-DNA interactions are strongly influenced by elec-
trostatic and hydrophobic interactions. Therefore, two types
of AAC were considered based on the polarity-charge and
hydrophobic properties. They reflect the information about
dependency of amino acids with regards to polarity-charge
and hydrophobic properties.

Let ðC1; C2; C3; C4Þ � (polar amino acid with positive
charge, polar amino acid with negative charge, noncharged
polar amino acid, nonpolar amino acid). For a detailed
definition, see [36]. The AAC of polarity-charge is defined
as follows:

AAC PCðiÞ ¼
XL�1

k¼1

CiðkÞ
L� k log2

CiðkÞ=ðL� kÞ
N2
i =L

2

� �
; i ¼ 1; 2; 3; 4;

ð4Þ

where Ni is the number of certain Ci in the instances, CiðkÞ
means the number of two Cis at a distance of k, L is the
sliding window size, and AAC PCðiÞ represents the
relevance of the two Cis with different gaps from 1 to L-1
for the charge and polarity property.

The definition of AAC of hydrophobicity property is
similar with the definition of ACC of charge and polarity
properties. Let ðH1; H2; H3; H4Þ � (strong hydrophobic resi-
due, weak hydrophobic residue, strong hydrophilic residue,

weak hydrophilic residue). For a detailed definition, see [40].
Hence, the AAC of hydrophobic property is defined by

AAC HðiÞ ¼
XL�1

k¼1

HiðkÞ
L� k log2

HiðkÞ=ðL� kÞ
M2

i =L
2

� �
; i ¼ 1; 2; 3; 4;

ð5Þ

where Mi is the number of certain Hi in the sample, HiðkÞ
means the number of two His at a distance of k, and HCðiÞ
denotes the correlation of the two His with different gaps
from 1 to L-1 for the hydrophobic property. When CiðkÞ
equals to 0, the problem 0 log2 0 appeared in the (4). To
solve the problem, the (4) is transformed to (6) by using a
Taylor series

AAC PCðiÞ ¼
XL�1

k¼1

CiðkÞ
L� k log2

CiðkÞ=ðL� kÞ
N2
i =L

2

� �

¼
XL�1

k¼1

1

In 2

"
CiðkÞ
ðL� kÞ �

N2
i

L2

� �
þ ðCiðkÞ=ðL� kÞ �N

2
i =L

2Þ2

2N2
i =L

2

þO
CiðkÞ
ðL� kÞ �

N2
i

L2

� �3
#
:

ð6Þ

Using the same method, (7) was obtained from (5) as
follows:

AAC HðiÞ ¼
XL�1

k¼1

1

ln 2

"
HiðkÞ
L� k�

M2
i

L2

� �

þ ðHiðkÞ=ðL� kÞ �M2
i =L

2Þ2

2N2
i =L

2

þO
HiðkÞ
L� k�

M2
i

L2

� �3
#

i ¼ 1; 2; 3; 4:

ð7Þ

Then, we concatenate the vector spaces of AAC_PC and
AAC_H to represent the AAC feature vector ((6), (7)), and
the size of this feature is 8D

fAACg ¼ fAAC PCg � fAAC Hg: ð8Þ

2.2.3 Orthogonal Binary Vector (OBV)

Work produced by Shen et al. [41] indicates the importance
that can be reflected by the dipoles and volumes of the side
chains of amino acids, respectively. Therefore a 6D OBV
was used to code the amino acids in each class. The result
from our previous study indicates that an OBV is an
important feature for distinguishing DNA-binding residues
from nonbinding ones. The OBV reflect the information
about single amino acid and it could be used to complement
the AAC feature. The size of the OBV feature is 54D.

In this study, each data instance is coded with sequence-
based features by combing position specific scoring
matrices incorporating physicochemical properties, AAC,
and OBV. The vector in each instance has a dimension 116
and is less than that of previous studies.

2.3 Classification with Random Forests

The RF classifier builds an ensemble of decision trees for
classification [42]. The RF R package [43] is used to implement
the RF algorithm.
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To evaluate the performance of the classifier, a fivefold
cross-validation procedure was used in this research.
During the procedure, the data instances obtained from
the data set were randomly divided into five parts. In each
of the five round steps, four of these parts were used as a
training set to construct a classifier, while the remaining one
was used as test set to evaluate the performance.

2.4 The Algorithm to Balance the Data Set

The data instances obtained from DBP-337 contained
4,754 DNA-binding residues as positive instances and
61,451 nonbinding residues as negative ones. Thus, the
imbalanced data set problem should be considered when
improving the performance of classifier. The method to
solve the problem of an imbalanced data set was exactly the
same as previous study [44], which presented an algorithm
to downsize the majority class by selecting the safe
instances. After processing the algorithm to balance the
data set, the processed data set (PDBP-337) containing all
positive instances (4,754) and safe negative instances
(28,374) can be obtained as the new data set for constructing
the RF classifier.

2.5 Performance Assessment and Reliability Index
(RI)

The following performance assessments are used in this
study: the overall prediction accuracy, sensitivity, specifi-
city and MCC, and a balanced measure (BM) defined as
harmonic mean of sensitivity and specificity

BM ¼ 2SE � SP
SE þ SP : ð9Þ

The receiver operating characteristic curve (ROC) [45] is a
robust approach for measure the performance, which is
drawn by plotting the true positive rate (SE) against false
positive rate (1-SP). The area under the ROC curve (AUC)
[46] which is a reliable measure of classifier performance,
was also used in our research. The prediction reliability
index plays an important role in evaluating the quality of
prediction and the RI was adopted to show the level of
reliability for the prediction results of each amino acid. RI is
defined as:

RI ¼ int
500

9
D

� �
if D < 0:18

10 if D � 0:18

8<
: ð10Þ

D ¼ jFþ � �j; ð11Þ

where Fþ is the percentage of the tree votes for the positive
class in each instance, and � is the threshold by which to
classify instances according to tree votes for the positive
instances, and in this study was set to 0.2 because the ratio
of positive to the whole instances for training is nearly 1: 6.

3 RESULTS AND DISCUSSION

3.1 Performance Comparison to Other Methods

BindN (http://bioinformatics.ksu.edu/bindn/), BindN+
(http://bioinfo.ggc.org/bindn+/), and BindN-rf (http://
bioinfo.ggc.org/bindn-rf/) were all proposed by Wang

et al. to prediction DNA-binding residues in proteins and
performed on the same PDNA-62 data set. These three
models all use the 3.5 �A cut off distance defined for DNA-
binding residues, which is the same as with DNABR.

To compare with those three methods, an independent test
data set TS-72 with 72 protein chains was used to evaluate the
performance of each model. The 72 protein chains were
randomly selected from the DBP-337 data set without the
protein chains of the PDNA-62 data set [20] used to construct
the BindN, BindN+, and BindN-rf. We then trained the
DNABR model on the remaining 265 proteins in the TR265
data set using the same strategy as the original DNABR
model, and applied the new model to predict DNA-binding
residues in the TS-72 test data set. We also applied the BindN
model, the BindN+, and BindN-rf model to predict the
putative DNA-binding residues in the same TS-72. These
three methods could predict potential DNA-binding residues
on the web servers, therefore the prediction results of the TS-
72 data set were obtained by submitting the sequences to the
web server. Fig. 1 shows the comparison of the ROC curves
for the four methods on the independent test TS-72 data set.
The results reveal that the AUC values are 0.8669, 0.7488,
0.8257, and 0.8445 for DNABR, BindN, BindN-rf, and BindN+
method, respectively. Therefore, DNABR significantly out-
performs BindN, BindN-rf, and BindN+. Compared with the
previous works, it is clearly shown that our DNABR model
achieves the best performance. The number of instances
obtained from DBP-337 to construct the DNABR model is far
more than that obtained from PDNA-62 to construct BindN+,
BindN, and BindN-rf, which proves that DNABR is more
reliable than BindN+, BindN or BindN-rf.

To proved that DNABR is a useful tool for predicting
DNA-binding residues using amino acid sequences infor-
mation, PDB ID: 1C9B, which was not used for training the
RF classifier, was selected to examine the prediction
performance using Pymol software [47]. 1C9B is a human
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BindN+ using ROC curves. The AUC value for each predictor is 0.8669,
0.7488, 0.8257, and 0.8445, respectively.
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TATA-box binding protein (TBP) core domain-human

transcription factor IIB (TFIIB) core domain complex bound

to extended, modified adenoviral major late promoter

(ADMLP). Figs. 2a, 2b, 2c, and 2d show the results of

predicted DNA-binding sites for DNABR to comparing

with BindN, BindN-rf, and BindN+ with 3.5 �A distance

cutoff, and those four methods were all tested on the A

chains in 1C9B. Each sphere denotes an atom in Figs. 2a, 2b,

2c, and 2d, Red sphere represents true DNA-binding

residue that is correctly predicted (TP). Blue sphere

indicates DNA-binding residue that is predicted as non-

binding one (FN) and green sphere represents nonbinding

residue that is predicted as DNA-binding one (FP). As

shown from Figs. 2a, 2b, 2c, and 2d, it’s obviously that

DNABR outperforms other three models from the results of

comparison. Table 1 shows the detail predicted results for

the A chain of 1C9B. DNA-binding residues were predicted

by the our DNABR method at 95.94 percent overall

accuracy with MCC of 0.8124, and with a sensitivity of

95 percent and a specificity of 96.06 percent, while the low

overall accuracy was 77.66, 89.34, and 87.81 percent with the

Matthew’s correlation coefficient 0.3060, 0.5912, and 0.5598

for the BindN, BindN-rf, and BindN+.
The DP-Bind (http://lcg.rit.albany.edu/dp-bind/) [23]

predicts DNA-binding residues using feature of evolution-

ary conservation in the form of PSI-BLAST position-specific

scoring matrix with the models constructed onto the PDNA-

62 data set. DP-Bind uses a web server to predict the DNA-

binding residues and three machine-learning methods can

be used in DP-Bind for prediction. After submitting the

query protein to the servers, the putative DNA-binding

residues of TS-72 can be received by E-mail. The Huang

et al. model predicts DNA-binding residues using a SVM

classifier with evolutionary information about amino acid

sequences in terms of their PSSM. To use the Huang et al.

method for predicting the putative DNA-binding residues

in data set TS-72, we repeated the process of constructing a

prediction model based on the training data set TR265. As

DP-Bind and Huang et al. uses a 4.5 �A cutoff distance

definition for DNA-binding residues, we also reconstructed

a model on the training TR265 data set with the 4.5 �A cutoff

distance and predicted DNA-binding residues for TS-72. As

shown in Fig. 3, DNABR achieved an AUC of 0.8808, which

is much better than the predictive ability of Huang et al.

(AUC 0.6876) and DP-Bind using three machine-learning

models (AUC are 0.5778, 0.5832, and 0.5526 for DP-

Bind(SVM), DP-Bind(KLR), and DP-Bind(PLR), respec-

tively). These results clearly demonstrate that DNABR

performs significantly better than those two methods based

on the same criterion of a cutoff distance of 4.5 �A. Therefore,

the results demonstrate that whatever cutoff distance for the

binding residues we choose, our DNABR method still has

an excellent prediction performance.

1770 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 6, NOVEMBER/DECEMBER 2012

TABLE 1
The Prediction Performance for the A Chain of 1C9B Using

DNABR and Other Three Methods

Fig. 2. Predicted results for the A chain of 1C9B using (a) DNABR,
(b) BindN, (c) BindN-rf, and (d) BindN+.

Fig. 3. A comparison of the prediction performance with DNABR, Huang
et al. and three methods in DP-Bind using a cutoff distance of 4.5 �A for
the binding residue. The AUC value AUC are 0.8808, 0.6876, 0.5778,
0.5832, and 0.5526 for DNABR, Huang et al., DP-Bind(SVM), DP-
Bind(KLR), and DP-Bind(PLR), respectively.
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3.2 Prediction Performance of Random Forest
Model Based on Various Features

All the features described in the material and method section

was used to build an RF-based prediction model (DNABR).

The performance of DNABR was evaluated by fivefold cross

validation on a processed training data set (PDPB-337). The

predicted results obtained by using all the features are shown

in Table 2. A balanced performance was achieved with an

ACC of 93.04 percent and MCC of 0.6586 for the fivefold cross

validation. The corresponding SE, SP, and BM were 68.47,

98.16, and 80.67 percent, respectively. As shown in Fig. 4, the

ROC curve for the DNABR model has an AUC value of

0.9405, which is significantly higher than random guessing

(0.5). Because the SVM has been successfully applied to many

fields, this classifier was also applied to compare the

performance to RF classifier in this work. Both classifiers

were used on the same data set, with the same sequence-

based features and were evaluated by fivefold cross valida-

tion. The ROC analysis shows that the SVM classifier achieves

very similar performance with the RF classifier (Fig. 4), and
the AUC values are 0.9405 and 0.9345 for the RF and SVM
classifiers, respectively. Thus, we concluded that the
sequence-based features and the processed training data set
allow one to obtain a perfect prediction performance. The
prediction RI is an important measure for evaluating the
quality of the prediction and it represents the level of
prediction performance of an unknown protein. Fig. 5 shows
the fraction of samples with a different RI and the distribution
of the accuracy of prediction fraction of samples with a
different RI using the RF classifier with fivefold cross
validation. For example, about 76.1 percent of all samples
have an RI�5 and about 87.60 percent of these samples were
correctly predicted by DNABR.

3.3 The Importance of the Novel Features

A PSSM is a useful feature and has contributed to
improving the prediction performance of DNA-binding
residues in proteins in previous studies [18], [23], [26], [28].
Based on the PSSM, we proposed a novel matrix named
PSSM-PP, which not only contains the evolutionary
information captured by PSSM, but also the conservation
information about the amino acids at the level of their
physicochemical properties. Many physicochemical proper-
ties relevant to DNA-protein interactions were considered
in this research. For instance, the side chain pKa value
determines the ionization state of a residue. Because the
phosphate groups of nucleic acids are negatively charged,
the ionization state of amino acid side chains affects the
interaction with DNA molecules. The Wiener index is
topological index of a molecule, which has the effect on the
process by which the protein interacts with the DNA. In this
research, we first chose 35 descriptors from AAindex
database which are relevant to DNA-protein interactions
and other nine physicochemical properties which are also
relevant for DNA-protein interactions and mentioned in
previous works [20], [27], [28], [29]: isoelectric point, pKa for
�-COOH (pKa1), the pKa for �-NH3 (pKa2), the number of
lone electron pairs, molecular mass, EIIP, the Wiener index,
the Balaban index and the lowest free energy. (Details see
the Appendix D, available in the online supplemental
material) The key to choose each physicochemical property
is based on how well the PSSM-PP constituted by it and
PSSM distinguishes the binding residues from nonbinding
ones. We used a two-sample t-test to test each PSSM-PP
constituted by one physicochemical property and PSSM for
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TABLE 2
The Prediction Performance of the RF Model Based on

Various Features, Which Was Evaluated by
Fivefold Cross Validation on PDBP-337

A: Position specific scoring matrices combining with physicochemical
properties (PSSM-PP) B: Amino acid correlation (AAC) C: Orthogonal
binary vectors (OBV)

Fig. 4. Performance comparisons of the ROC graph with the RF and
SVM classifiers on the same PDBP-337 data set using the same hybrid
feature (PSSM-PP+AAC+OBV). The AUC values are 0.9405 and
0.9345 for the RF and SVM classifiers, respectively.

Fig. 5. The fraction of samples and prediction accuracy with each RI
using the DNABR method. For example, 43.3 percent of all samples
have a RI ¼ 10 and of these samples 97.49 percent were predicted
correctly.
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positive samples and negative samples and calculate the p-
values, small p-value indicating greater separation and
large p-values indicating less separation. We used training
data set TR265 to obtained p-value of each physicochemical
property. Each p-value of physicochemical property could
be calculated by the t-test to test the PSSM-PP feature
constituted by it and PSSM for positive samples and
negative samples in TR265. The 10 best ranked physico-
chemical properties can be seen from the Appendix E,
available in the online supplemental material. We found
that the molecular mass, pKa1, pKa2 and the Wiener index
are on the top. The remaining six physicochemical proper-
ties indicate the structure information of amino acid. We
preferred to select physicochemical properties based on
sequence information, therefore we first selected these top
four physicochemical properties, i.e., pKa1, pKa2, the
molecular mass, and the Wiener index.

We also used test data set TS-72 to obtained p-value of
each physicochemical property to verify that the p-values of
physicochemical properties are independent of the data set.
Forty four-values of physicochemical properties could be
calculated by the t-test to test the PSSM-PP feature
constituted by each physicochemical properties and PSSM
for positive samples and negative samples in TS-72. The rank
of physicochemical properties from TS-72 is very similar to
that from TR265. According to the result from TS-72, pKa1,
pKa2, the molecular mass and the Wiener index are also on
the top (Appendix F, available in the online supplemental
material). We used the same strategy to obtained p-value of
each physicochemical property in fivefold data sets which
used in fivefold cross validation. The results of best ranked
physicochemical properties obtained from five fold data sets
are the same as the results obtained from training data set
(TR265) and test data set (TS-72).

Moreover, the EIIP and the number of LEPs are closely
related to DNA-protein interactions. EIIP representing the
main energy term of the valence electrons, are essential
physical parameters of biological molecules determining
their long-range properties [48], [49]. The long-range
biomolecular interactions represent an important factor
which influences biological processes. For this reason, long-
range interactions representing intrinsic physicochemical
properties of proteins and nucleotide sequences should be
included in analysis of protein-DNA interactions. As we
described above, the EIIP is an important physical para-
meter of biological molecules that is important for deter-
mining their long-range properties, which represent
intrinsic physicochemical properties of proteins and nucleo-
tide sequences. For this reason, EIIP can work well in the
analysis of protein-DNA interactions. The number of lone
electron pairs is much related to the formation of hydrogen
bonds which are the main force for DNA-protein interac-
tion. Therefore, in this research, we selected the six
physicochemical properties: pKa1, pKa2, the molecular
mass, the Wiener index, EIIP, and LEPs.

To further ensure that the four top properties (pKa1,
pKa2, the molecular mass, and the Wiener index) combin-
ing EIIP and LEPs works best for all examples in training
and test data set, we evaluated the performance of the four
top properties combining all possible combinations of two

properties each from the remaining six properties in
Appendix E, available in the online supplemental material.
Compared the results from 15 (C2

6 ) combinations of
features, we found that four top properties, EIIP and LEPs
combining with PSSM achieves the best performance on test
data set TS-72 except the performance produced by four top
properties, normalized frequency of alpha-helix and un-
folding Gibbs energy in water pH9.0 combining with PSSM.
(Details see Appendix G, available in the online supple-
mental material) Although the performance by the latter
(AUC 0.8672) is slightly better than the former (AUC
0.8669), we preferred to select physicochemical properties
based on sequence information. Therefore, it is reliable and
reasonable to select the six physicochemical properties
(pKa1, pKa2, the molecular mass, the Wiener index, EIIP,
and LEPs) in this research.

The PSSM-PP captures more information and achieves
better prediction performance than that of PSSM. Seen
from Appendix H, available in the online supplemental
material, the use of PSSM-PP for input encoding reaches
an MCC of 0.5928 with 91.10 percent ACC, 62.36 percent
SE, and 96.27 percent SP, which is better than PSSM for
input encoding with the same data set PDPB-337 where
the results were a MCC of 0.5753 with 89.71 percent ACC,
56.58 percent SE, and 95.02 percent SP. The value of AUC
also denotes the comparison of performance and using
PSSM-PP as the feature for classification achieves 0.8991,
which improved the value of AUC (0.8764) using the
PSSM feature. Therefore, we have already proved that the
prediction performance of the classifier based on PSSM-PP
is better than that based on PSSM or other two features
(AAC and OBV), which was evaluated by fivefold cross
validation on PDBP-337.

To ensure that the results are completely independent of
the data set and evaluation method of fivefold cross
validation, we trained the RF model on the training data
set TR265 using PSSM-PP, PSSM, ACC, and OBV, respec-
tively, and applied the new models to predict DNA-binding
residues in the TS-72 test data set. Seen from Appendix I,
available in the online supplemental material, the value of
MCC also denotes the comparison of performance and
using PSSM-PP as the feature for RF model achieves 0.4826,
which improved the value of MCC (0.4537, 0.4218, 0.3752)
using the PSSM, ACC, and OBV, respectively. Therefore, in
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Fig. 6. Box plots of the two components of AAC features for binding and
nonbinding residues. (a) AAC_PC (1) feature represent the correlation
about polar amino acid with positive charge (b) AAC_H(2) feature
represent the correlation for weak hydrophobic residue.
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our research PSSM-PP is used as a significant feature
instead of PSSM.

Noticeable differences in the AAC features were found
between the binding and nonbinding residues. Using
AAC_PC(1) and AAC_H(2) as examples, Figs. 6a and 6b
show that binding and nonbinding residues display
contrasting behavior in terms of two components of the
AAC feature. The other six components of the AAC features
also show significant difference between binding and
nonbinding residues (see Appendix J, available in the
online supplemental material). We also calculated the p-
values of eight ACC components to measure the ability to
separate the binding residues from the nonbinding ones.
Each of the resulting p-values was less than 0.0001. These
results show that the AAC feature carries important
information about a residue binding to the DNA and plays
a significant role in distinguishing binding and nonbinding
residues. The results from Table 2 also highlight this
conclusion that when AAC features are combined with
PSSM-PP, the value of accuracy significantly increases and
achieves 92.34 percent. The propensity of DNA-protein
interactions can illuminate the importance of AAC features
that represent the dependency of amino acids about
polarity-charge and hydrophobicity: 1) from statistical
values in the previous research [22], it is obvious that the
charge and the polar property of the residues correlates well
with its binding probability, and 2) hydrophobic residues
tend to cluster on the surface of the protein, which means
that hydrophobic residues tend to be binding residues.
Moreover, those AAC features contain the information
about the correlation between a residue and its neighbor
residues having the same type. Therefore, the AAC features
capture more information than independent residues.

4 WEB SERVER

The DNABR web server (http://www.cbi.seu.edu.cn/
DNABR/) was developed for biological research on the
prediction of DNA-binding residues in proteins. Users can
submit an amino acid sequence in a FASTA format to the
web server for the prediction of binding residues. The
DNA-binding residues within the submitted sequence will
be predicted by the model constructed by a RF classifier on
the processed PDBP-337 training data set using novel
sequence-based features. The RF algorithm is computed
through the random Forest R package [43]. Because it is
time consuming to capture the PSSM-PP feature of the input
sequence, an e-mail address is required to send the results.
The predicted results will be sent back along with the
predicted DNA-binding residues marked with a “þ” and
the nonbinding residues marked with an “�,” along the
input sequence (see Appendix K, available in the online
supplemental material). The RI value is also calculated to
measure the prediction reliability and may range from 0 to
10 for presentation. The higher the value is, the more
reliable the prediction is.

5 CONCLUSIONS

In this report, an approach based on the RF classifier and
novel sequence-based features have been described for the

prediction of DNA-binding residues in proteins. In addi-
tion to the OBV feature, which captures the information
about a single amino acid, two novel features, PSSM-PP
and ACC, are also proposed in the present study as these
reflect the information about conservation and correlation
of physicochemical properties. Specifically, PSSM-PP de-
notes the evolutionary information combining conservation
information for the physicochemical properties of the
amino acids and AAC reflects the information about the
dependency of amino acids within the protein sequences.
The PSSM-PP and AAC features are original, and the
results of this study indicate that the predictive perfor-
mance can improve significantly when these two novel
features are applied. These new features capture more
information about the interaction between amino acids and
the DNA and have better capacity to classify binding
residues from nonbinding ones than described in previous
reports. The best RF classifier achieved a prediction
accuracy of 93.04 percent with a MCC of 0.6586 and BM
of 80.67 percent. The comparison to other methods
indicates that DNABR, using a RF algorithm combined
with the novel sequence-based features mentioned above,
is an excellent model for predicting DNA-binding residues
using only sequence information. The new method has
been implemented in a web server named DNABR for
biological research on the prediction of DNA-binding
residues. DNABR method achieves perfect performance
on prediction of DNA-binding residues.

The approach of feature selection and the method of the
model establishment could be used in the study on the
prediction of RNA-binding residues. For example, PSSMP-
PP which we proposed in this research contributed most to
improving the prediction performance of DNA-binding
residues in proteins. However, considering the difference
between mechanism of RNA-protein interaction and that of
DNA-protein interaction, the physicochemical properties
which constitute PSSM-PP should be selected based on
mechanism of RNA-protein interaction. We think that
RNA-binding residues in proteins can be also predicted
with high accuracy after DNABR method improved.
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