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ABSTRACT

Motivation: Though vitally important to cell function, the
mechanism of protein—DNA binding has not yet been com-
pletely understood. We therefore analysed the relationship
between DNA binding and protein sequence composition,
solvent accessibility and secondary structure. Using non-
redundant databases of transcription factors and protein—-DNA
complexes, neural network models were developed to utilize
the information present in this relationship to predict DNA-
binding proteins and their binding residues.

Results: Sequence composition was found to provide suffi-
cient information to predict the probability of its binding to DNA
with nearly 69% sensitivity at 64% accuracy for the considered
proteins; sequence neighbourhood and solvent accessibility
information were sufficient to make binding site predictions
with 40% sensitivity at 79% accuracy. Detailed analysis of
binding residues shows that some three- and five-residue seg-
ments frequently bind to DNA and that solvent accessibility
plays a major role in binding. Although, binding behaviour
was not associated with any particular secondary structure,
there were interesting exceptions at the residue level. Over-
representation of some residues in the binding sites was
largely lost at the total sequence level, but a different kind
of compositional preference was observed in DNA-binding
proteins.

Availability: Online predictions of DNA-binding proteins and
binding sites are available at http://www.netasa.org/dbs-pred/
Contact: shandar@bse.kyutech.ac.jp

INTRODUCTION

The rapid progress in genome analysis has made available the
complete genome sequences of many organisms. Subsequent
annotation of the genes, enabling their function to be inferred

*To whom correspondence should be addressed at present address:
Department of Biochemical Science and Engineering, Kyushu Institute of
Technology, Fukuoka, lizuka 820 8502, Japan.

from sequence homology, is an important next step in the
post-sequence analysis of genomes. In that regard, X-ray
crystallographic and NMR spectroscopic analyses of DNA-
binding proteins, which play key roles in the regulation of
gene expression, have provided valuable information about
the general features of protein—-DNA interactions. In recent
years, for example, Luscombe and Thornton (2002) ana-
lysed amino acid conservation and the effects of mutations
on the binding specificity within protein—-DNA complexes.
Pabo and Nekludova (2000) developed geometrical models
for characterizing side chain—base interactions and in related
studies, Mandel-Gutfrend and Margalit (1998) and Mandel-
Gutfrend et al. (1998) demonstrated the importance of hydro-
gen bonding and hydrophobic and CH - - - O interactions to
protein—DNA interactions. Nadassy et al. (1999) analysed the
importance of the interface surface area between the protein
and the DNA for protein-DNA recognition. In addition, our
systematic analysis of the contacts between amino acids and
base pairs in a set of protein—-DNA complexes has enabled
us to construct models with which to predict the DNA target
sites of regulatory proteins (Kono and Sarai, 1999). Since then,
we have refined our analysis of base—amino acid interactions
and have applied it successfully to cognate, non-cognate,
symmetric and asymmetric binding of DNA-binding pro-
teins (Selvaraj et al., 2002). Still, the mechanism underlying
protein—DNA recognition is not yet completely understood.
In the present work, we analysed the characteristic fea-
tures of DNA-binding proteins and their binding sites in
order to determine the factors that distinguish binding pro-
teins from non-binding ones and binding residues from all
others. The data sets used for this analysis included (i) non-
redundant protein-DNA complexes containing information
about the structure and location of binding sites within DNA-
binding proteins and (ii) a non-redundant database of DNA-
binding proteins for which structural information and the
location of DNA-binding sites were not known. Amino acid
compositions, sequence information, secondary structure,
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solvent accessibility and the number of contacting residue%able 1. PDB codes of protein-DNA complexes selected for prediction of
were analyzed. binding sites

We found that the residue composition of DNA-binding

proteins has two levels of specificity. One of them is at the1ao2 1blo 1dp7 1hdd imdy_a  1lper 1tc3
sequence level, which can be used to classify sequencés74 lcOw_b  lecr 1hlo lmey_c  1pnr 1tf3
as binding or non-binding. The other is at the binding sitelaa lcdw  lgat  1lhry Imhd_a lpue_e 1tro_a

level,
inform

: . . . lazq 1cf7_a 1fjl_a lhwt Imnm lpvi_b 1tsr b
which, when coupled with residue nelghbourhood1b3t 1cig 1gcc 1if 1mse lpyi a  1ubd

ation and local structural information (particularly 1per a2 1cma 1gdt lign a  loct lrep.c  1xbra

solvent accessibility), can be helpful for locating binding 1bf5 1d02_a  1hcq 1ihf lpar b  1srs lyrn_a
sites in a totally new sequence, even if there is no homologybhm_a  1d66_a  lhcr limb_4  1pdn 1sve lysa

with known binding proteins. Among the properties studied,1Yui 2bop  2drp_a 2hdc  2gli scro 1 —
solvent accessibility was found to correlate most strongly with
binding. On the whole there was no tendency for binding

residues to occur in any particular secondary structure, though

there were a number of interesting exceptions to this gener- the key word ‘transcription factor’ this database

0.} papeojumoq

alization. Predictive models developed to make use of these included sequences from human only, and f_rag_rnentsi
findings achieved a fair degree of accuracy. were omitted. Redundancy was removed as in (ii) andg

MATERIALS AND METHODS CNTR-3332.
Data sets

Three
below:

@

(ii)

the resulting database contains 3332 sequences, calleg

Definition of a binding residue and of
different data sets were used for the studies describgsinding density

09-dno-olwapes

An amino acid residue within a protein sequence was desig-3
PDNA-62: This is a database of representative protein-nated as a binding residue if its side chain or backbone atomss:
DNA complexes from the Protein Data Bank (PDB) fell within a cutoff distance of 3.5 A from any atom within

(Table 1) that we used previously in related studies? binding DNA. In this work, the term binding site has often
(Selvarajet al., 2002). Identity among the sequencesbeen used to refer to the residues that are found to be bindr:’,-
is <25%, and the resolution of the structures is 2.5 Aing as defined above. This is somewhat different from the o
or better. more general meaning of binding site, which may refer to §
a region in protein, spanning several residues not necessarilys

NRTF-915: This is a non-redundant, representative

database from SWISS-PROT used for Compositicm_sequence neighbours. All residues in the PDNA-62 databaseé

based prediction of DNA-binding proteins, which were labelled as binding or non-binding according to this cri- 3
was limited to transcription factors for this étudy. A terion. Binding density was defined as the number of binding &

search in SWISS-PROT (version 39, available cm“neresidues within a segment of fixed size and was calculated%
at the time of this study) using ‘tran’scription factor’ o_nly_for those segments in which the central residue Was§
as a key word returned 1003 SWISS-PROT and 251med|ng.

TrEMBL entries Boeckmanet al., 2003. Redundancy DNA-binding segments and sequence motifs
among sequences was first removed by usiiy

HIT program from http://bioinformatics.burnham- from DNA-bindin Lo

. . X - g proteins in the PDNA-62 database to o
mst.org/cd-_g (Ltl'? al1._,h2.001) Wl'tth da_thrlejggld of 40% explore the possibility of frequently occurring segments or?cj:»
sequence identity. [This resulted in SequencesSequence motifs. A segment was defined as binding if any2

\li\fi:nglIr?z;xistehessezuséi?:[;}egﬁgimi%?gsrgg?ne anoth%lf the atoms from its central residue fell within the cutoff
biPseq distance from any atom of the DNA.
(Altschul et al., 1997). A data set was thus created, Y

by retaining only the representative ones such that nd.ocal and overall amino acid composition

two sequences in the resulting data set have more thafye collected statistics on amino acid residues around DNA
25% sequence identity. We call this database NRTFztoms within a sphere of 3.5 A. An attempt was then made
915. The criterion of sequence identity is similar tothatyy getermine whether there was a preference for any par-
used by Holm and Sander (1998) to cluster sequencegcylar amino acid composition. Frequency of occurrence
to reduce redundancy. for each residue type is calculated and corresponds to the

ewJoju

€¢0c 1®

(iif) CNTR-3332: A control database of sequences notrelative number of residues of that type out of all the

including transcription factors was generated byresidues that were found in the DNA-binding region of
searching for SWISS-PROT sequences excluded byproteins (as defined above). Thus, if there &enumber
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of residues of type, which bind to DNA, then relative occur- nput Layer——— Hidden Layer————————— Output Layer
rence ofi for the binding regions is given as 100R; / X R;).

The relative occurrence of residues in non-binding regions
is also defined in the same way. In contrasts to the above,
the overall composition of DNA-binding sequences refers
to the residue composition in the whole amino acid

sequence of the corresponding DNA-binding (or non-binding) | Residue
protein. ®

Residue

Calculation of solvent accessibility or accessible
surface area

Solvent accessibility or accessible surface area (ASA) values
of 62 protein—-DNA complexes were calculated usigsP
program (Kabsch and Sander, 1983). Absolute values of ASA, Connection
thus obtained are normalized to relative values as described Weights

in our earlier work (Ahmad and Gromiha, 2002).

Residue
(Ris2)

Fig. 1. Typical architecture of a neural network used for binding-site
Neural network design and training prediction. Each residue and its neighbour are represented by a 21-bit?
For composition-based prediction of DNA-binding sequencesvector in the input layer. The activation of thieth units in(i + 1)-th
a fully connected, layered neural network was constructedfyer is given by:X.1); = ZW;; Xix. Output layer activatiork,,
using 20 input units encoding the relative abundance of thé ransformed by a sigmoidal functidh = 1/1 + exp(X,), which
corresponding residue in a sequence. After varying the nums taken as the predicted probability of the residue to bind DNA.
ber of units, and hidden layers, it was found that a network
with three units in the hidden layer and a single output unit per-

formed slightly better than other choices. This neural networkwhether it was binding or not binding. The error function was

used for the prediction of DNA-binding sequences is namegye o of all the absolute errors in these probabilities for all
SeqPredNet. The data sets used here were the NRTF-91% . oqiques:

and CNTR-3332 sequences described above. The validation E — P_D
procedure was the same as in the other networks (see next o= Z [P — DI
paragraphs).

For sequence-based prediction of binding residues, threg yuional unit that carried information about the ASA of

different architectur_es were implemented to_ introduc_e S€%he central residue in the input layer. In all other respects,
uence and related information used in making predictionSg o eqnet-1 was the same aSitePredNet-2. In the third
In the first of these networks (we call &ttePredNet-1), the network GtePredNet-3), ASA information was sent through

residue abqut which a prediction was to be made and its wg units, all of which were setto zero except one that identified
nearest neighbours were encoded as 21-bit vectors (Ahme{ e residue type. The value of this unit was the same as the2
«Q

e al., 2003). The hidden layer consisted of two units, andrelative solvent accessibility or ASA calculated as described §

the output layer had just one unit (Fig. 1). Information abOUtin the next section. This allowed for residue-wise variation in

the residue and its neighbours was supplied to the input Iaye{he ASA-dependence of the binding

Whi.Ch was then.propagated through the network using a linear Training and validation in these three networks were

activation function, accomplished by first expanding the PDNA-62 database into

X+, = Z(Wijkxijk) @ a rgsidue—wise database of residues gnd thgir nei.ghboqrs _(two?

, L ) , ) neighbours were selected), along with their desired binding ¢

whereX;; is the activation of thg-th unit of thei-th layer,  state (1 for binding and 0 for non-binding). This database &

and ;i is the connection weight between thieh units of 5 then divided into three approximately equal parts. One

thei-th layer to thek-th unit of the next laye(i + 1). __part was used for training the network (training data). During

The final output received at the output layer (single unit)ine training the network weights were saved every time there
was transformed to a value between 0 and 1 using a sigmoidgjas an improvement in the second (test) data prediction. The

¥2ET6 /L LY I¥/0Z/2101He/So11eWI04ul0Iq/W0d dNo-olWapedE//Sdiy wody papeojumod

@)

In the second network (SitePredNet-2), we included one

griieldeg g uo is

function, final set of weights thus represented the stage in the train-
P = 1/[1+ exp(X,)] (2)  ing history when the value of the error function output for

whereP is the predicted probability, an, is the activation the test data was minimal. The third part of the data set (val-

of the unit in the output layer. idation data set) was kept aside from the training procedure

Experimental (desired) values of binding probabiliyfor and used for final validation of the predictions. The values
each residue was set to 1 or 0, respectively, depending ameported in this work are actually those obtained from the
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validation data. All six combinations of the three parts of the Sensitivity and specificity of the predictions were defined as:
data set were used for training, testing and validation, and

the reported values are the means of the validation results. Sensitivity= TP/(TP + FN) (6)
Similar procedures for cross-validation have been used previ- Specificity= TN/(TN + FP) 7)
ously in related studies (Cuff and Barton, 2000; Ahragal .,

2003). (T-True, F-False, P-Positive, N-Negative).

Manipulating the desired sensitivity of prediction Se':(;ttisir;d;t:jogp\gg?ié::;Oduced here as the average of the
The number of binding sites in the data set was quite small

(about 12%); consequently, the networks trained to minimize NP = (Sensitivity+ Specificity) /2 (8)

the error function defined by Equation (3) might have a low
sensitivity value. Selecting a lower probability threshold for
predicting binding would likely change this sensitivity, but
the added flexibility provided by this change would not be
more than 5-10%. This is because the experimental values
underlying the change in probability have only integer values In this work, term accuracy is employed to refer to this
(0 or 1), and the predicted probabilities also tend to haveast parameter, whereas NP may serve as a better measure &f
extreme values, causing the probability distribution to havepredictability in some cases, especially when data sizes in the:
sharp peaks near those values. This problem was overcome byo states are not balanced.
choosing the following biased error function during network
training:

Accuracy scores were simply the ratios of the number of &
correct predictions to the total number of predictions made.

Accuracy= (TP+TN)/(TP+ TN + FP+FN).

y wouly papeojumoq

P-value t-tests of significance were conducted for the
_ assessment of statistical relevance of quantities such as th

Ep = Eo/ explk » P) @) difference between solvent accessibility of binding and non-3
whereE, andE, are unbiased and biased error values, respedinding residuesP-value represents the probability that this 3
tively, andk is a constant that could be adjusted to give thedifference could have occurred by a statistical chance andS
most sensitive regions of the probability distribution valueshence a loweP-value suggests a greater significance of that 2
ranging from O to 1. However, this increase in the sensitivityresult. These’-values were obtained from the means, SD and
of the binding prediction is at the cost of specificity. In order tonumber of data items using the online public domatest
compare the results of predictions from one network to othersalculator available at http://home.clara.net/sisa/t-test.ntm
we calculated the average of sensitivity and specificity [called

‘net prediction’ (NP)], which is a fair measure of the total RESULTS AND DISCUSSION

amount of prediction quality obtained after training. Compositional specificity of DNA-binding
Accuracy scores proteins and binding sites

Correlation between the predictéfl) and desiredD) values  The residue-wise composition of the DNA-binding sequences'\’
was defined as the ratio of the covariance in the predicted andNRTF-915) and binding sites (PDNA-62) were calculated, to 4>
desired (experimental) states to the product of the standarassess any specificity present therein. Interestingly, the over=<
deviations (SDs) i andy: representation of some residues in the binding regions of 62<IJ
complexes was not reflected in the overall composition of 3 =

R = Sxy/Sxx * Syy (5) transcription factor sequences. For instance, charged reS|dues
(e.g. Arg and Lys) were significantly over-represented within w

the binding sites of these 62 complexes (Fig. 2), but theS

Sy = Z(P — P)(D —D,), same was not true for the overall composition of transcrip-

3
tion factors (Fig. 3). This is mainly because the specificity %
o
N
w

N OIWSpPEoE

61/L.L¥Iv/0C/219848/s01EewWl

ce

where

6

Sy, = [Z(p PO)Z] of binding-site residues is lost in the overall composition
due to the large number of non-binding residues present in
and the sequences. In addition, the bias in the overall frequency
of occurrence for the DNA-binding sequences seems to dif-
Syy = [Z(D D,) ] fer from that of the binding sites within these sequences,
suggesting there may be two levels of information present
Subscript 0’ represents the mean value of the correspondin DNA-binding proteins. Of particular significance is the
ing variable. This correlation is the same as conventionatesidue serine, which is highly over-represented in DNA-
Pearson’s coefficient of correlation, which gives identicalbinding sequences compared with the control data. Thus,
results as Matthews’ correlation for a two-state predictionserine seems to play an important role in the overall recog-
as discussed previously (Ahmad and Gromiha, 2002). nition of DNA targets. Higher occurrence of glycine in
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30 r
I Binding

95 | I Non-Binding
--4&--SD(B)
—&—SD (NB)

Percent occurrence

Residue

Fig. 2. Residue-wise occurrence of all residues in the binding and non-binding regions of 62 complexes. Percent occurrence of each residue
type in the binding and non-binding regions were calculated and the graph shows averages and standard deviations over all 62 proteins. SD
stands for standard deviation; B for binding and NB for non-binding regions.

Mean Percent occurrence

o

C—Control data

I Transcription factors
—a&— Control SD

— X — Transcription factors SD|

Residue

Fig. 3. Comparison of residue-wise composition of transcription factors (NRTF-915 data) and other proteins (CNTR-3332 data). SD stands

for standard deviation in the corresponding data.

these proteins also suggests that this residue may contribute
to conformational flexibility needed during the process of
binding.

RESIDUE POPULATIONS AROUND DNA

We considered the residue populations around DNA while
searching for specific environments that support binding.

Interestingly, within the cutoff distance (3.5 A), a very large
number of nucleic acid bases (more than 50%) were found
to be surrounded by just one residue, though there were sev-
eral bases that had two, three and more amino acid residues
within the cutoff distance. This suggests that, in some cases
two different amino acid residues may contribute to the two
hydrogen bonds needed for conferring specificity (Seeman
et al., 1976). It is quite possible that bases co-ordinated with

481

€202 Joquieldag z uo 15enB AQ 4ZEZ61/LL¥/7/02/2101E/SONEULIoJUI0IG/ W00 dNO olWapEedE/:SAY WOy Papeojumod



S.Ahmad et al.

25 4 Table 2. Selected triplets and quintets and the number of times they happen
to bind as compared with their total occurrence frequency
§ 20 -
o Sequence triplet/ Times binding Binding
§ 15 | quintet propensity (%)
]
g RER 6/13 46.1
g 109 QFN 4/6 66.7
e KHQ 3/4 75.0
5 | GKQ 3/3 100
GKS 3/3 100
KKI 4/4 100
0 ‘ ‘ ‘ ‘ ‘ VKC 3/3 100
0 2 4 6 8 10 PKT 5/7 71.4
Binding densiy (b) PKG 3/5 60.0
SNS 4/4 100
) _ ) o  PQF 4/6 66.7
Fig. 4. Relative occurrence of 11-residue binding patterns with dif-ore 4/4 100
ferent binding density values in 62 protein—-DNA complexes. Bindingrrc 3/3 100
density is defined as the number of binding residues within 11-residugRG 6/7 85.7
segments. Only segments with a binding central residue are plotte®RI 4/5 80.0
LRW 4/6 66.7
SRA ar7 57.1
) ] ) RRK 11/36 30.6
a higher number of residues may actually determine the ovekrk 11/42 26.2
all binding, while those with just one residue within the cutoff SSK 4/4 100
distance may be of secondary importance. ISN 3/4 75.0
MRERR 4/6 66.7
. . - . . PQFNL 4/6 66.7
Residue neighbour s and binding site density GAGIA 3/4 75.0
The numbers of DNA-binding sites within 11-residue seg-AGIAT 414 100
ments approximates a normal distribution with a maximum a-“AA 414 100
= 4 (Fig. 4). This indicates that DNA-binding is unlikely cane, o o
b =4 (Fig. 4). Th _ \ ng €Y GsnsL 414 100
to involve only a single residue—base interaction; more likelyornLr 4/6 66.7
several residues participate in the process. On the basis ®SQRE 4/4 100
that information, we collected a group of sequence fragment¥PQFN 416 66.7
comprised of DNA-binding triplets and quintets. We found a~SRSP 3/3 100
| of 893 DNA-binding triplets out of a possible maximum ITRGS 4/ 100
total o g triplets ol apo: _ SQREL 4/4 100
of 1481 (the number of DNA-binding sites in the entire dataprrka 4/6 66.7
set) from among 8000 possible triplets. Likewise, 1070 DNA-NLRWP 4/6 66.7
binding quintets were formed, and some notable examples ¢fRRLS 416 66.7
each are shown in Table 2. Some of these triplets and quinteg Ggﬁz 421/21 1%667
are thought to be sequence motifs, given their relatively highy sryr /6 66.7
frequency of occurrence and their high propensity for bindingmiterp 4/4 100
In addition, when these three- and five-residue patterns wenaTtiT a/4 100

arranged with respect to their central residue, we noticed that

Arg residues were frequently surrounded by residues such d’ge relative number of times a pattern shows binding may be thought of as the binding
,gropensity of the pattern.

Lys or Arg, suggesting that certain neighbours enhance Arg
ability to bind DNA. Similarly, Lys residues within binding
regions seem to favour Gly as their immediate neighbour on

either side (an observation, which becomes more interestinf SA and the probability of a residue binding
in view of the finding presented above that Gly residues ar&Ve next attempted to establish and quantify the relationship

more abundant in DNA-binding proteins). Interestingly, somebetween solvent accessibility and DNA-binding in two ways.
of the five-residue patterns (e.g. AGIAT, ITRGS, MSQRE, We first calculated the number of binding residues within dif-

£202 49qwa)dag pg uo 1senb Aq yZE261/LL1/7/02/9101E/SONEWIOUI0IG/ W0 dNO"oIWapeoE//:sd)y WOy papeojumod

SLKAA, MLTPD and IATIT) occur more frequently than ferent solvent accessibility ranges. Figure 5 shows that the

would be expected and always bind to DNA. These patternprobability of binding systematically increased as the ASA
are therefore thought to support binding, and their occurrencimcreased. Double-sided probabilitieB-yalues) have been

in DNA-binding proteins may help in locating binding sites. plotted to assess the significance of the difference, which have
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027 a particular secondary structure was thus defined as the relat-
ive number of times a residue in that structure happens to be
021 binding (Table 3). The last column of Table 3 gives the overall

binding propensity of the corresponding residues in any of the
six secondary structures. A value higher than this average for
any residue implies a preference for binding within the sec-
ondary structure in question. In contrast to ASA, there was
011 little preference for any particular secondary structure among
the binding residues (see last row). Nonetheless, there were
some notable features to these data. First, the highest value
(50%) was obtained for Trp when located within a turn con- g
formation. This may indicate that Trp has a strong preference 3
0 1020 2050 5040 4050 50m0 6070 7080 090 90100 for binding when it is in the turn conformation, but this con- 8
ASA range (%) clusion cannot be asserted very strongly, as there are very3
few total number of Trp residues, occurring in this secondary 3

0.15 -

Fraction of Binding Residues

0.05

p

Fig.5. Relative occurrence of residuesin binding regionsin diﬁerent?‘trucwre' ltwas r?otable t.hat Tyr and A.rg also prefer binding 3
ranges of solvent accessibility. in turn conformations. With the exception of Lys, it appears &
that residues with long side chains (Trp, Tyr and Arg) are more &
likely than average to be involved in DNA-binding when in §
a turn conformation. This may be because the greater lengthS

been found to be low (implying higher significance) in most
residues. These average ASA-values for the binding and no
bmdm% reglo_gs revealetljptr:m(t;r:e l|)|md|l_ng of r:jy_drrophoblc adnt t these locations is a little far.
aromatic residues (?Zg.' &, By, lle, Leu and .yr) seemed 1o Hydrophilic residues such as Asn and Ser, show a prefer-
have a higher specificity for solvent accessibility than other

. . . ence for binding within a helical conformation, which may
residues (Fig. 6P-value< 0.001)._Th|s may r eflect_ the fa(_:t mean that they are able to make better contact with the DNA-
that a large number of these residues are in buried region

th involved in bindi v when th o th Relix when in that conformation. This greater tendency to
SO they are nvolved In binding only when they come 10 the€y,;, 4 \\han in a helical conformation is shared to some extent
surface. Consequently, there is a better separation betwe%?/ Cys, His and Pro. In addition, Ala, Phe, Gly, Met and

blr'l‘dmg a'.q(;j non-hbmdlgg reS|dl;es n terlrnf Oflt)hiz ASAB’. di Val (mostly hydrophobic) appear to prefer a 3—10-helix over
shresidues snowedanegative correlation between bindiNgy, o - syryctures. Gin also seems to have a preference for th

and ASA. This negative relationship appears to arise becau%‘a—lo-helix, but the number of 3—10- helices formed by Gin
Air.] ;Og.“z aDll\la'Llige ntjmber Olf turnt_structuref],_ \r']?ry few Ofis less than 10 (including non-binding), making a conclus-

Yt\;l Ic Ihn | - as h“?” lcoanrrg.a lons are hig Iy chess-ive statement about this residue difficult. Despite the apparent 3
ible to the solvent, their low-binding propensity leads to apreferences shown by individual residues to bind within par- =

nggapve correlation bgtween binding gnd ASA' This Condu'ticular secondary structures, the overall abundance of bindingg
sion is however tentative due to a relatively higlfevalue of Q

difference in this residue. It also stands true forGquorwhichnaSidues within all 'secondary structures was very similar
) i o L (except beta-strand, which has a very low binding propensity)

a negative relationship between ASA and binding is accom(.l.able 3, bottom row)

panied by higherP-value. On the other hand, the negative ' '

relationship between ASA and Glu binding could be due toprediction of DNA-binding in proteins

conformational changes necessary to expose certain atoms

Glu at the cost of others.

of their side chains provides additional flexibility in the turn
onformation; thus binding may occur even if the backbone

dno-ol

q/woo

61/.Lv/$Foz/e0ne/SonBWIOMIO

ﬁg assess and utilize the compositional specificity of tran-
scription factors, we trained a neural netwdBkqPredNet) to

o o make predictions about the sequences binding to DNA. This g
Binding probability and secondary structure prediction simply calculates the relative abundance of each ©
We evaluated six secondary structural states for every residuesidue in the sequence and feeds the resultant 20-unit vec-
type and calculated the relative occurrence of each withirtor to the network. After trying different numbers of hidden
binding regions. As-test of significance as carried out for layers and units therein, a network with three hidden units
ASA does not seem to be viable due to a small number ofdescribed above) was found to give the best performance
binding sites, becoming even smaller when broken into eacfilable 4). The fact that the best predictions were made when
secondary structure for each protein. This leaves very littléhere were three units in the hidden layer indicates that the
statistical significance for most of the data obtained in thigelationship between composition and binding is non-linear
category. We therefore looked at thinding propensity of  and that some interplay between compositions of two or more
amino acid residue on the whole. The binding propensity ofesidues may be involved in giving a protein the capacity
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Fig. 6. Average ASA of residues in binding and non-binding regions and’tvalues of the significance in their difference (lowivalue
indicated greater statistical significance). B stands for binding and NB for non-binding residues. Correspordings representtest
probability that these differences could have occurred by chance. Most residues have a (statistically significant) higher ASA when
binding state.
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to bind DNA. A fairly high value of accuracy suggests that achieved by adding information about secondary structure org
DNA-binding proteins have some characteristic residue comabout more distant neighbours. This may be due to the fact thaft
position that is, however, not identical to the composition oflocal residue neighbourhood and structure carry only partial%

the binding sites. information about DNA binding. The remaining information S

must be contained in long-range contacts between distants
Prediction of aresidue's binding probability from residues. This inference is consistent with an earlier obser-§
its sequence neighbour hood vation that stability and conformation in proteins are in part S

. W
The results obtained when binding sites were predicted usinr%epe_ndent on long-range contacts (Gromiha and Selvarajjy
the three neural networks described in Methods section arg001; Gromihaet al., 1999). Moreover, due to the limited
summarized in Table 5. There was a lot of fluctuation in the®Mountof available binding data, networks of arbitrarily large
sensitivity and specificity of the predictions, which made it SiZ€ cannot be used without diminishing the reliability of
difficult to compare accuracy scores. In addition, introducingPredictions.

a biased error fu_nction duri_ng training altered the se_nsitiv-omine prediction of DNA binding

ity of the predictions: the bias constaintof the error bias
was varied from 1 to 2, so that the sensitivity of resultant

wlBdeg iz uo 1senb Aq

Online predictions for new sequences based on the abov

predictions for the training and test data sets was at lea EthOdS are av_aulable at wvx{w._netasa.org/dbs-pred/. Theg
40%. Actual prediction scores were calculated by choos etailed explanation of this prediction server (DBS-Pred) may

ing a probability cutoff above which a residue is designateab e seen at www.netasa.org/dbs-pred/description.html. &

as binding. Results reported in Table 5 were obtained at a

probability cutoff of 0.5. An additional 10—-20% sensitivity CONCLUSIONS

could be manipulated by changing the probability thresholdThe composition of binding regions differs significantly

of binding. from non-binding regions; however, the compositional spe-
For StePredNet-1, predictions were made using just the cificity of binding sites does not extend to the total com-

residue information; folStePredNet-2 and StePredNet-3,  position of the protein sequence, where it takes a different

additional ASA information was used, which gave a smallform. Although binding residues show no overall prefer-

(2%) improvement in prediction quality when measuredence for a secondary structure, some suggestive biases were

by ‘NP’, defined above. No significant improvement wasobserved (without much statistical significance, due to the
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Table 3. Residue-wise binding propensity of six secondary structures Table 5. Binding site cross-validation data prediction results from different
network designs

Residue Helix Beta Ex-beta G (3-10) T (Turn) S (bend) Overall

Network inputs SensitivitySpecificity Accuracy NP (%)
A 34 0 35 143 5.4 7.0 5.0 (%) (%) (%) (Sens:+ Spec.)2
C 70 0 5.7 0 0 5.6 45
D 4.8 0 0 0 5.2 1.7 3.3 Residuet 2 nbrs 40.6 76.2 73.6 58.4
E 40 0 1.9 5.3 1.1 75 3.8 (SitePredNet-1)
F 4.0 0 6.6 18.2 5.6 0 7.4 Residuet 2 32.2 86.2 79.9 59.3
G 63 0 7.0 14.3 6.0 10.2 8.1 nbrs+ 1bit ASA
H 203 0 13.0 5.9 88 233 15.2 (SitePredNet-2)
| 3.3 0 3.6 0 0 56 4.1 Residuet 2 40.3 81.8 79.1 61.1
K 218 0 265 9.1 19.8 21.9 23.0 nbrs+ 21bit ASA
L 27 71 06 0 5.6 5.2 2.7 (SitePredNet-3)
M 15 0 2.2 40.0 43 45 5.6
N 29.3 400 24.4 28.6 8.7 15.0 20.1
P 82 0 2.4 13.0 35 6.3 6.3
Q 170 0 182 37.5 3.9 17.1 15.0
R 362 0 279 22.2 39.4 38.6 35.4 il iall ful wh - L
S 220 0 57 105 13 122 15.2 will be especially useful when a new binding pro.telr? is
T 164 20.0 10.1 10.0 17.2 18.8 15.9 found with no significant homology with any known binding
Y 14 0 24 12.5 6.9 10.9 34 protein.
w 178 0 7.3 0 50.0 0 18.1
\4 186 0 115 7.7 24.0 26.7 16.6
Total 12.6 3.
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