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ABSTRACT
Motivation: Though vitally important to cell function, the
mechanism of protein–DNA binding has not yet been com-
pletely understood. We therefore analysed the relationship
between DNA binding and protein sequence composition,
solvent accessibility and secondary structure. Using non-
redundant databases of transcription factors and protein–DNA
complexes, neural network models were developed to utilize
the information present in this relationship to predict DNA-
binding proteins and their binding residues.
Results: Sequence composition was found to provide suffi-
cient information to predict the probability of its binding to DNA
with nearly 69% sensitivity at 64% accuracy for the considered
proteins; sequence neighbourhood and solvent accessibility
information were sufficient to make binding site predictions
with 40% sensitivity at 79% accuracy. Detailed analysis of
binding residues shows that some three- and five-residue seg-
ments frequently bind to DNA and that solvent accessibility
plays a major role in binding. Although, binding behaviour
was not associated with any particular secondary structure,
there were interesting exceptions at the residue level. Over-
representation of some residues in the binding sites was
largely lost at the total sequence level, but a different kind
of compositional preference was observed in DNA-binding
proteins.
Availability: Online predictions of DNA-binding proteins and
binding sites are available at http://www.netasa.org/dbs-pred/
Contact: shandar@bse.kyutech.ac.jp

INTRODUCTION
The rapid progress in genome analysis has made available the
complete genome sequences of many organisms. Subsequent
annotation of the genes, enabling their function to be inferred
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Department of Biochemical Science and Engineering, Kyushu Institute of
Technology, Fukuoka, Iizuka 820 8502, Japan.

from sequence homology, is an important next step in the
post-sequence analysis of genomes. In that regard, X-ray
crystallographic and NMR spectroscopic analyses of DNA-
binding proteins, which play key roles in the regulation of
gene expression, have provided valuable information about
the general features of protein–DNA interactions. In recent
years, for example, Luscombe and Thornton (2002) ana-
lysed amino acid conservation and the effects of mutations
on the binding specificity within protein–DNA complexes.
Pabo and Nekludova (2000) developed geometrical models
for characterizing side chain–base interactions and in related
studies, Mandel-Gutfrend and Margalit (1998) and Mandel-
Gutfrend et al. (1998) demonstrated the importance of hydro-
gen bonding and hydrophobic and CH · · · O interactions to
protein–DNA interactions. Nadassy et al. (1999) analysed the
importance of the interface surface area between the protein
and the DNA for protein–DNA recognition. In addition, our
systematic analysis of the contacts between amino acids and
base pairs in a set of protein–DNA complexes has enabled
us to construct models with which to predict the DNA target
sites of regulatory proteins (Kono and Sarai, 1999). Since then,
we have refined our analysis of base–amino acid interactions
and have applied it successfully to cognate, non-cognate,
symmetric and asymmetric binding of DNA-binding pro-
teins (Selvaraj et al., 2002). Still, the mechanism underlying
protein–DNA recognition is not yet completely understood.

In the present work, we analysed the characteristic fea-
tures of DNA-binding proteins and their binding sites in
order to determine the factors that distinguish binding pro-
teins from non-binding ones and binding residues from all
others. The data sets used for this analysis included (i) non-
redundant protein–DNA complexes containing information
about the structure and location of binding sites within DNA-
binding proteins and (ii) a non-redundant database of DNA-
binding proteins for which structural information and the
location of DNA-binding sites were not known. Amino acid
compositions, sequence information, secondary structure,
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solvent accessibility and the number of contacting residues
were analyzed.

We found that the residue composition of DNA-binding
proteins has two levels of specificity. One of them is at the
sequence level, which can be used to classify sequences
as binding or non-binding. The other is at the binding site
level, which, when coupled with residue neighbourhood
information and local structural information (particularly
solvent accessibility), can be helpful for locating binding
sites in a totally new sequence, even if there is no homology
with known binding proteins. Among the properties studied,
solvent accessibility was found to correlate most strongly with
binding. On the whole there was no tendency for binding
residues to occur in any particular secondary structure, though
there were a number of interesting exceptions to this gener-
alization. Predictive models developed to make use of these
findings achieved a fair degree of accuracy.

MATERIALS AND METHODS

Data sets
Three different data sets were used for the studies described
below:

(i) PDNA-62: This is a database of representative protein–
DNA complexes from the Protein Data Bank (PDB)
(Table 1) that we used previously in related studies
(Selvarajet al., 2002). Identity among the sequences
is <25%, and the resolution of the structures is 2.5 Å
or better.

(ii) NRTF-915: This is a non-redundant, representative
database from SWISS-PROT used for composition-
based prediction of DNA-binding proteins, which
was limited to transcription factors for this study. A
search in SWISS-PROT (version 39, available online
at the time of this study) using ‘transcription factor’
as a key word returned 1003 SWISS-PROT and 2514
TrEMBL entries Boeckmannet al., 2003. Redundancy
among sequences was first removed by usingCD-
HIT program from http://bioinformatics.burnham-
inst.org/cd-hi (Liet al., 2001) with a threshold of 40%
sequence identity. This resulted in 1486 sequences.
We aligned these sequences against one another
using pairwise sequence alignment programbl2seq
(Altschul et al., 1997). A data set was thus created,
by retaining only the representative ones such that no
two sequences in the resulting data set have more than
25% sequence identity. We call this database NRTF-
915. The criterion of sequence identity is similar to that
used by Holm and Sander (1998) to cluster sequences
to reduce redundancy.

(iii) CNTR-3332: A control database of sequences not
including transcription factors was generated by
searching for SWISS-PROT sequences excluded by

Table 1. PDB codes of protein–DNA complexes selected for prediction of
binding sites

1a02 1bl0 1dp7 1hdd 1mdy_a 1per 1tc3
1a74 1c0w_b 1ecr 1hlo 1mey_c 1pnr 1tf3
1aay 1cdw 1gat 1hry 1mhd_a 1pue_e 1tro_a
1azq 1cf7_a 1fjl_a 1hwt 1mnm 1pvi_b 1tsr_b
1b3t 1cjg 1gcc 1if1 1mse 1pyi_a 1ubd
1ber_a 1cma 1gdt 1ign_a 1oct 1rep_c 1xbr_a
1bf5 1d02_a 1hcq 1ihf 1par_b 1srs 1yrn_a
1bhm_a 1d66_a 1hcr 1lmb_4 1pdn 1svc 1ysa
1yui 2bop 2drp_a 2hdc 2gli 3cro_1 —

the key word ‘transcription factor’ this database
included sequences from human only, and fragments
were omitted. Redundancy was removed as in (ii) and
the resulting database contains 3332 sequences, called
CNTR-3332.

Definition of a binding residue and of
binding density
An amino acid residue within a protein sequence was desig-
nated as a binding residue if its side chain or backbone atoms
fell within a cutoff distance of 3.5 Å from any atom within
a binding DNA. In this work, the term binding site has often
been used to refer to the residues that are found to be bind-
ing as defined above. This is somewhat different from the
more general meaning of binding site, which may refer to
a region in protein, spanning several residues not necessarily
sequence neighbours. All residues in the PDNA-62 database
were labelled as binding or non-binding according to this cri-
terion. Binding density was defined as the number of binding
residues within a segment of fixed size and was calculated
only for those segments in which the central residue was
binding.

DNA-binding segments and sequence motifs
We collected statistics on three- and five-residue segments
from DNA-binding proteins in the PDNA-62 database to
explore the possibility of frequently occurring segments or
sequence motifs. A segment was defined as binding if any
of the atoms from its central residue fell within the cutoff
distance from any atom of the DNA.

Local and overall amino acid composition
We collected statistics on amino acid residues around DNA
atoms within a sphere of 3.5 Å. An attempt was then made
to determine whether there was a preference for any par-
ticular amino acid composition. Frequency of occurrence
for each residue type is calculated and corresponds to the
relative number of residues of that type out of all the
residues that were found in the DNA-binding region of
proteins (as defined above). Thus, if there areRi number
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of residues of typei, which bind to DNA, then relative occur-
rence ofi for the binding regions is given as 100∗ (Ri/�Ri).
The relative occurrence of residues in non-binding regions
is also defined in the same way. In contrasts to the above,
the overall composition of DNA-binding sequences refers
to the residue composition in the whole amino acid
sequence of the corresponding DNA-binding (or non-binding)
protein.

Calculation of solvent accessibility or accessible
surface area
Solvent accessibility or accessible surface area (ASA) values
of 62 protein–DNA complexes were calculated usingDSSP
program (Kabsch and Sander, 1983). Absolute values of ASA,
thus obtained are normalized to relative values as described
in our earlier work (Ahmad and Gromiha, 2002).

Neural network design and training
For composition-based prediction of DNA-binding sequences,
a fully connected, layered neural network was constructed
using 20 input units encoding the relative abundance of the
corresponding residue in a sequence. After varying the num-
ber of units, and hidden layers, it was found that a network
with three units in the hidden layer and a single output unit per-
formed slightly better than other choices. This neural network,
used for the prediction of DNA-binding sequences is named
SeqPredNet. The data sets used here were the NRTF-915
and CNTR-3332 sequences described above. The validation
procedure was the same as in the other networks (see next
paragraphs).

For sequence-based prediction of binding residues, three
different architectures were implemented to introduce seq-
uence and related information used in making predictions.
In the first of these networks (we call itSitePredNet-1), the
residue about which a prediction was to be made and its two
nearest neighbours were encoded as 21-bit vectors (Ahmad
et al., 2003). The hidden layer consisted of two units, and
the output layer had just one unit (Fig. 1). Information about
the residue and its neighbours was supplied to the input layer,
which was then propagated through the network using a linear
activation function,

X(i+1)j
=

∑
(WijkXijk) (1)

whereXij is the activation of thej -th unit of thei-th layer,
andWijk is the connection weight between thej -th units of
thei-th layer to thek-th unit of the next layer(i + 1).

The final output received at the output layer (single unit)
was transformed to a value between 0 and 1 using a sigmoidal
function,

P = 1/[1 + exp(Xo)] (2)

whereP is the predicted probability, andXo is the activation
of the unit in the output layer.

Experimental (desired) values of binding probabilityD for
each residue was set to 1 or 0, respectively, depending on

Residue
(RI-2)

Residue
(Ri)

Residue
(Ri+2)

P=1/1+exp(Xo)

Input Layer Hidden Layer Output Layer

Connection
Weights

Fig. 1. Typical architecture of a neural network used for binding-site
prediction. Each residue and its neighbour are represented by a 21-bit
vector in the input layer. The activation of thej -th units in(i +1)-th
layer is given by:X(i+1)j = �WijkXik . Output layer activationXo

is transformed by a sigmoidal functionP = 1/1 + exp(Xo), which
is taken as the predicted probability of the residue to bind DNA.

whether it was binding or not binding. The error function was
the sum of all the absolute errors in these probabilities for all
the residues:

Eo =
∑

|P − D| (3)

In the second network (SitePredNet-2), we included one
additional unit that carried information about the ASA of
the central residue in the input layer. In all other respects,
SitePredNet-1 was the same asSitePredNet-2. In the third
network (SitePredNet-3), ASA information was sent through
21 units, all of which were set to zero except one that identified
the residue type. The value of this unit was the same as the
relative solvent accessibility or ASA calculated as described
in the next section. This allowed for residue-wise variation in
the ASA-dependence of the binding.

Training and validation in these three networks were
accomplished by first expanding the PDNA-62 database into
a residue-wise database of residues and their neighbours (two
neighbours were selected), along with their desired binding
state (1 for binding and 0 for non-binding). This database
was then divided into three approximately equal parts. One
part was used for training the network (training data). During
the training the network weights were saved every time there
was an improvement in the second (test) data prediction. The
final set of weights thus represented the stage in the train-
ing history when the value of the error function output for
the test data was minimal. The third part of the data set (val-
idation data set) was kept aside from the training procedure
and used for final validation of the predictions. The values
reported in this work are actually those obtained from the

479

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/4/477/192324 by guest on 24 Septem
ber 2023



S.Ahmad et al.

validation data. All six combinations of the three parts of the
data set were used for training, testing and validation, and
the reported values are the means of the validation results.
Similar procedures for cross-validation have been used previ-
ously in related studies (Cuff and Barton, 2000; Ahmadet al.,
2003).

Manipulating the desired sensitivity of prediction
The number of binding sites in the data set was quite small
(about 12%); consequently, the networks trained to minimize
the error function defined by Equation (3) might have a low
sensitivity value. Selecting a lower probability threshold for
predicting binding would likely change this sensitivity, but
the added flexibility provided by this change would not be
more than 5–10%. This is because the experimental values
underlying the change in probability have only integer values
(0 or 1), and the predicted probabilities also tend to have
extreme values, causing the probability distribution to have
sharp peaks near those values. This problem was overcome by
choosing the following biased error function during network
training:

Eb = Eo/ exp(k ∗ P) (4)

whereEo andEb are unbiased and biased error values, respec-
tively, andk is a constant that could be adjusted to give the
most sensitive regions of the probability distribution values
ranging from 0 to 1. However, this increase in the sensitivity
of the binding prediction is at the cost of specificity. In order to
compare the results of predictions from one network to others,
we calculated the average of sensitivity and specificity [called
‘net prediction’ (NP)], which is a fair measure of the total
amount of prediction quality obtained after training.

Accuracy scores
Correlation between the predicted(P ) and desired(D) values
was defined as the ratio of the covariance in the predicted and
desired (experimental) states to the product of the standard
deviations (SDs) inx andy:

R = Sxy/Sxx ∗ Syy (5)

where

Sxy =
∑

(P − Po)(D − Do),

Sxx = √ [∑
(P − Po)

2
]

and

Syy = √ [∑
(D − Do)

2
]

Subscript ‘o’ represents the mean value of the correspond-
ing variable. This correlation is the same as conventional
Pearson’s coefficient of correlation, which gives identical
results as Matthews’ correlation for a two-state prediction,
as discussed previously (Ahmad and Gromiha, 2002).

Sensitivity and specificity of the predictions were defined as:

Sensitivity= TP/(TP+ FN) (6)

Specificity= TN/(TN + FP) (7)

(T-True, F-False, P-Positive, N-Negative).
Net prediction was introduced here as the average of the

sensitivity and specificity.

NP = (Sensitivity+ Specificity)/2 (8)

Accuracy scores were simply the ratios of the number of
correct predictions to the total number of predictions made.

Accuracy= (TP+ TN)/(TP+ TN + FP+ FN).

In this work, term accuracy is employed to refer to this
last parameter, whereas NP may serve as a better measure of
predictability in some cases, especially when data sizes in the
two states are not balanced.

P-value t-tests of significance were conducted for the
assessment of statistical relevance of quantities such as the
difference between solvent accessibility of binding and non-
binding residues.P -value represents the probability that this
difference could have occurred by a statistical chance and
hence a lowerP -value suggests a greater significance of that
result. TheseP -values were obtained from the means, SD and
number of data items using the online public domaint-test
calculator available at http://home.clara.net/sisa/t-test.htm

RESULTS AND DISCUSSION
Compositional specificity of DNA-binding
proteins and binding sites
The residue-wise composition of the DNA-binding sequences
(NRTF-915) and binding sites (PDNA-62) were calculated, to
assess any specificity present therein. Interestingly, the over-
representation of some residues in the binding regions of 62
complexes was not reflected in the overall composition of
transcription factor sequences. For instance, charged residues
(e.g. Arg and Lys) were significantly over-represented within
the binding sites of these 62 complexes (Fig. 2), but the
same was not true for the overall composition of transcrip-
tion factors (Fig. 3). This is mainly because the specificity
of binding-site residues is lost in the overall composition
due to the large number of non-binding residues present in
the sequences. In addition, the bias in the overall frequency
of occurrence for the DNA-binding sequences seems to dif-
fer from that of the binding sites within these sequences,
suggesting there may be two levels of information present
in DNA-binding proteins. Of particular significance is the
residue serine, which is highly over-represented in DNA-
binding sequences compared with the control data. Thus,
serine seems to play an important role in the overall recog-
nition of DNA targets. Higher occurrence of glycine in
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Fig. 2. Residue-wise occurrence of all residues in the binding and non-binding regions of 62 complexes. Percent occurrence of each residue
type in the binding and non-binding regions were calculated and the graph shows averages and standard deviations over all 62 proteins. SD
stands for standard deviation; B for binding and NB for non-binding regions.

Control data
Transcription factors

Transcription factors SD
Control SD

Fig. 3. Comparison of residue-wise composition of transcription factors (NRTF-915 data) and other proteins (CNTR-3332 data). SD stands
for standard deviation in the corresponding data.

these proteins also suggests that this residue may contribute
to conformational flexibility needed during the process of
binding.

RESIDUE POPULATIONS AROUND DNA
We considered the residue populations around DNA while
searching for specific environments that support binding.

Interestingly, within the cutoff distance (3.5 Å), a very large
number of nucleic acid bases (more than 50%) were found
to be surrounded by just one residue, though there were sev-
eral bases that had two, three and more amino acid residues
within the cutoff distance. This suggests that, in some cases
two different amino acid residues may contribute to the two
hydrogen bonds needed for conferring specificity (Seeman
et al., 1976). It is quite possible that bases co-ordinated with
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Fig. 4. Relative occurrence of 11-residue binding patterns with dif-
ferent binding density values in 62 protein–DNA complexes. Binding
density is defined as the number of binding residues within 11-residue
segments. Only segments with a binding central residue are plotted.

a higher number of residues may actually determine the over-
all binding, while those with just one residue within the cutoff
distance may be of secondary importance.

Residue neighbours and binding site density
The numbers of DNA-binding sites within 11-residue seg-
ments approximates a normal distribution with a maximum at
b = 4 (Fig. 4). This indicates that DNA-binding is unlikely
to involve only a single residue–base interaction; more likely,
several residues participate in the process. On the basis of
that information, we collected a group of sequence fragments
comprised of DNA-binding triplets and quintets. We found a
total of 893 DNA-binding triplets out of a possible maximum
of 1481 (the number of DNA-binding sites in the entire data
set) from among 8000 possible triplets. Likewise, 1070 DNA-
binding quintets were formed, and some notable examples of
each are shown in Table 2. Some of these triplets and quintets
are thought to be sequence motifs, given their relatively high
frequency of occurrence and their high propensity for binding.

In addition, when these three- and five-residue patterns were
arranged with respect to their central residue, we noticed that
Arg residues were frequently surrounded by residues such as
Lys or Arg, suggesting that certain neighbours enhance Arg’s
ability to bind DNA. Similarly, Lys residues within binding
regions seem to favour Gly as their immediate neighbour on
either side (an observation, which becomes more interesting
in view of the finding presented above that Gly residues are
more abundant in DNA-binding proteins). Interestingly, some
of the five-residue patterns (e.g. AGIAT, ITRGS, MSQRE,
SLKAA, MLTPD and IATIT) occur more frequently than
would be expected and always bind to DNA. These patterns
are therefore thought to support binding, and their occurrence
in DNA-binding proteins may help in locating binding sites.

Table 2. Selected triplets and quintets and the number of times they happen
to bind as compared with their total occurrence frequency

Sequence triplet/
quintet

Times binding Binding
propensity (%)

RER 6/13 46.1
QFN 4/6 66.7
KHQ 3/4 75.0
GKQ 3/3 100
GKS 3/3 100
KKI 4/4 100
VKC 3/3 100
PKT 5/7 71.4
PKG 3/5 60.0
SNS 4/4 100
PQF 4/6 66.7
QRE 4/4 100
RRC 3/3 100
TRG 6/7 85.7
RRI 4/5 80.0
LRW 4/6 66.7
SRA 4/7 57.1
RRK 11/36 30.6
KRK 11/42 26.2
SSK 4/4 100
ISN 3/4 75.0
MRERR 4/6 66.7
PQFNL 4/6 66.7
GAGIA 3/4 75.0
AGIAT 4/4 100
SLKAA 4/4 100
LPKVE 4/7 57.1
GSNSL 4/4 100
QFNLR 4/6 66.7
MSQRE 4/4 100
MPQFN 4/6 66.7
FSRSD 3/3 100
ITRGS 4/4 100
SQREL 4/4 100
DRRKA 4/6 66.7
NLRWP 4/6 66.7
RRRLS 4/6 66.7
TMRER 4/6 66.7
RGSNS 4/4 100
AATMR 4/6 66.7
MLTPD 4/4 100
IATIT 4/4 100

The relative number of times a pattern shows binding may be thought of as the binding
propensity of the pattern.

ASA and the probability of a residue binding
We next attempted to establish and quantify the relationship
between solvent accessibility and DNA-binding in two ways.
We first calculated the number of binding residues within dif-
ferent solvent accessibility ranges. Figure 5 shows that the
probability of binding systematically increased as the ASA
increased. Double-sided probabilities (P -values) have been
plotted to assess the significance of the difference, which have
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Fig. 5. Relative occurrence of residues in binding regions in different
ranges of solvent accessibility.

been found to be low (implying higher significance) in most
residues. These average ASA-values for the binding and non-
binding regions revealed that the binding of hydrophobic and
aromatic residues (e.g. Phe, Gly, Ile, Leu and Tyr) seemed to
have a higher specificity for solvent accessibility than other
residues (Fig. 6;P -value< 0.001). This may reflect the fact
that a large number of these residues are in buried regions,
so they are involved in binding only when they come to the
surface. Consequently, there is a better separation between
binding and non-binding residues in terms of their ASA.

Asn residues showed a negative correlation between binding
and ASA. This negative relationship appears to arise because
Asn forms a large number of turn structures, very few of
which bind DNA: as turn conformations are highly access-
ible to the solvent, their low-binding propensity leads to a
negative correlation between binding and ASA. This conclu-
sion is however tentative due to a relatively higherP -value of
difference in this residue. It also stands true for Glu for which
a negative relationship between ASA and binding is accom-
panied by higherP -value. On the other hand, the negative
relationship between ASA and Glu binding could be due to
conformational changes necessary to expose certain atoms of
Glu at the cost of others.

Binding probability and secondary structure
We evaluated six secondary structural states for every residue
type and calculated the relative occurrence of each within
binding regions. At-test of significance as carried out for
ASA does not seem to be viable due to a small number of
binding sites, becoming even smaller when broken into each
secondary structure for each protein. This leaves very little
statistical significance for most of the data obtained in this
category. We therefore looked at thebinding propensity of
amino acid residue on the whole. The binding propensity of

a particular secondary structure was thus defined as the relat-
ive number of times a residue in that structure happens to be
binding (Table 3). The last column of Table 3 gives the overall
binding propensity of the corresponding residues in any of the
six secondary structures. A value higher than this average for
any residue implies a preference for binding within the sec-
ondary structure in question. In contrast to ASA, there was
little preference for any particular secondary structure among
the binding residues (see last row). Nonetheless, there were
some notable features to these data. First, the highest value
(50%) was obtained for Trp when located within a turn con-
formation. This may indicate that Trp has a strong preference
for binding when it is in the turn conformation, but this con-
clusion cannot be asserted very strongly, as there are very
few total number of Trp residues, occurring in this secondary
structure. It was notable that Tyr and Arg also prefer binding
in turn conformations. With the exception of Lys, it appears
that residues with long side chains (Trp, Tyr and Arg) are more
likely than average to be involved in DNA-binding when in
a turn conformation. This may be because the greater length
of their side chains provides additional flexibility in the turn
conformation; thus binding may occur even if the backbone
at these locations is a little far.

Hydrophilic residues such as Asn and Ser, show a prefer-
ence for binding within a helical conformation, which may
mean that they are able to make better contact with the DNA-
helix when in that conformation. This greater tendency to
bind when in a helical conformation is shared to some extent
by Cys, His and Pro. In addition, Ala, Phe, Gly, Met and
Val (mostly hydrophobic) appear to prefer a 3–10-helix over
other structures. Gln also seems to have a preference for the
3–10-helix, but the number of 3–10- helices formed by Gln
is less than 10 (including non-binding), making a conclus-
ive statement about this residue difficult. Despite the apparent
preferences shown by individual residues to bind within par-
ticular secondary structures, the overall abundance of binding
residues within all secondary structures was very similar
(except beta-strand, which has a very low binding propensity)
(Table 3, bottom row).

Prediction of DNA-binding in proteins
To assess and utilize the compositional specificity of tran-
scription factors, we trained a neural network (SeqPredNet) to
make predictions about the sequences binding to DNA. This
prediction simply calculates the relative abundance of each
residue in the sequence and feeds the resultant 20-unit vec-
tor to the network. After trying different numbers of hidden
layers and units therein, a network with three hidden units
(described above) was found to give the best performance
(Table 4). The fact that the best predictions were made when
there were three units in the hidden layer indicates that the
relationship between composition and binding is non-linear
and that some interplay between compositions of two or more
residues may be involved in giving a protein the capacity
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Fig. 6. Average ASA of residues in binding and non-binding regions and theP -values of the significance in their difference (lowerP -value
indicated greater statistical significance). B stands for binding and NB for non-binding residues. CorrespondingP -values representt-test
probability that these differences could have occurred by chance. Most residues have a (statistically significant) higher ASA when in the
binding state.

to bind DNA. A fairly high value of accuracy suggests that
DNA-binding proteins have some characteristic residue com-
position that is, however, not identical to the composition of
the binding sites.

Prediction of a residue’s binding probability from
its sequence neighbourhood
The results obtained when binding sites were predicted using
the three neural networks described in Methods section are
summarized in Table 5. There was a lot of fluctuation in the
sensitivity and specificity of the predictions, which made it
difficult to compare accuracy scores. In addition, introducing
a biased error function during training altered the sensitiv-
ity of the predictions: the bias constantk of the error bias
was varied from 1 to 2, so that the sensitivity of resultant
predictions for the training and test data sets was at least
40%. Actual prediction scores were calculated by choos-
ing a probability cutoff above which a residue is designated
as binding. Results reported in Table 5 were obtained at a
probability cutoff of 0.5. An additional 10–20% sensitivity
could be manipulated by changing the probability threshold
of binding.

For SitePredNet-1, predictions were made using just the
residue information; forSitePredNet-2 and SitePredNet-3,
additional ASA information was used, which gave a small
(2%) improvement in prediction quality when measured
by ‘NP’, defined above. No significant improvement was

achieved by adding information about secondary structure or
about more distant neighbours. This may be due to the fact that
local residue neighbourhood and structure carry only partial
information about DNA binding. The remaining information
must be contained in long-range contacts between distant
residues. This inference is consistent with an earlier obser-
vation that stability and conformation in proteins are in part
dependent on long-range contacts (Gromiha and Selvaraj,
2001; Gromihaet al., 1999). Moreover, due to the limited
amount of available binding data, networks of arbitrarily large
size cannot be used without diminishing the reliability of
predictions.

Online prediction of DNA binding
Online predictions for new sequences based on the above
methods are available at www.netasa.org/dbs-pred/. The
detailed explanation of this prediction server (DBS-Pred) may
be seen at www.netasa.org/dbs-pred/description.html.

CONCLUSIONS
The composition of binding regions differs significantly
from non-binding regions; however, the compositional spe-
cificity of binding sites does not extend to the total com-
position of the protein sequence, where it takes a different
form. Although binding residues show no overall prefer-
ence for a secondary structure, some suggestive biases were
observed (without much statistical significance, due to the
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Table 3. Residue-wise binding propensity of six secondary structures

Residue Helix Beta Ex-beta G (3-10) T (Turn) S (bend) Overall

A 3.4 0 3.5 14.3 5.4 7.0 5.0
C 7.0 0 5.7 0 0 5.6 4.5
D 4.8 0 0 0 5.2 1.7 3.3
E 4.0 0 1.9 5.3 1.1 7.5 3.8
F 4.0 0 6.6 18.2 5.6 0 7.4
G 6.3 0 7.0 14.3 6.0 10.2 8.1
H 20.3 0 13.0 5.9 8.8 23.3 15.2
I 3.3 0 3.6 0 0 5.6 4.1
K 21.8 0 26.5 9.1 19.8 21.9 23.0
L 2.7 7.1 0.6 0 5.6 5.2 2.7
M 1.5 0 2.2 40.0 4.3 4.5 5.6
N 29.3 40.0 24.4 28.6 8.7 15.0 20.1
P 8.2 0 2.4 13.0 3.5 6.3 6.3
Q 17.0 0 18.2 37.5 3.9 17.1 15.0
R 36.2 0 27.9 22.2 39.4 38.6 35.4
S 22.0 0 5.7 10.5 1.3 12.2 15.2
T 16.4 20.0 10.1 10.0 17.2 18.8 15.9
V 1.4 0 2.4 12.5 6.9 10.9 3.4
W 17.8 0 7.3 0 50.0 0 18.1
Y 18.6 0 11.5 7.7 24.0 26.7 16.6

Total 12.6 3.6 8.6 10.5 9.5 13.1 11.8

This table shows the percent-binding event of the indicated secondary structures for
every residue, with the overall shown in the last column. If the propensity of a residue
in a given secondary structure is more than the corresponding value in the last column,
it would generally suggest a preference of the residue to bind in that conformation. Due
to scarcity of data in each of these states, these values are merely suggestive and not
conclusive. The last row shows that there is no real statistically preferred secondary
structure in which all the residues will prefer to bind. Some propensities very different
from averages have been highlighted.

Table 4. Mean validation data prediction results (SeqPredNet) for the
composition-based prediction of binding sequences at 50% probability cutoff

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

NP (%)
(Sens.+ Spec.)/2

Self-consistency 71.1 71.3 71.0 71.2
Cross-validation 64.5 68.6 63.4 66.1

scarcity of data at this stage)—i.e. some residues seem
to prefer to bind when in a particular secondary struc-
ture. DNA-binding sites can be predicted with moderate
success based on sequence information alone, and intro-
duction of solvent accessibility information improves those
predictions. Using the sequence information as the input,
DNA-binding sites are predicted and online system for such
predictions is provided. A residue-level approach to bind-
ing complements the motif-based approach, in the sense that
residue-wise information is likely to have a stronger capa-
city to locate previously undetermined binding motifs and
those binding regions, which may not be really conserved
enough to form a detectable motif. This method of prediction

Table 5. Binding site cross-validation data prediction results from different
network designs

Network inputs Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

NP (%)
(Sens.+ Spec.)/2

Residue+ 2 nbrs
(SitePredNet-1)

40.6 76.2 73.6 58.4

Residue+ 2
nbrs+ 1bit ASA
(SitePredNet-2)

32.2 86.2 79.9 59.3

Residue+ 2
nbrs+ 21bit ASA
(SitePredNet-3)

40.3 81.8 79.1 61.1

will be especially useful when a new binding protein is
found with no significant homology with any known binding
protein.
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