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Abstract

Protein–DNA interaction is critical for life activities such as replication, transcription and splicing. Identifying protein–DNA binding
residues is essential for modeling their interaction and downstream studies. However, developing accurate and efficient computational
methods for this task remains challenging. Improvements in this area have the potential to drive novel applications in biotechnology
and drug design. In this study, we propose a novel approach called Contrastive Learning And Pre-trained Encoder (CLAPE), which
combines a pre-trained protein language model and the contrastive learning method to predict DNA binding residues. We trained the
CLAPE-DB model on the protein–DNA binding sites dataset and evaluated the model performance and generalization ability through
various experiments. The results showed that the area under ROC curve values of the CLAPE-DB model on the two benchmark datasets
reached 0.871 and 0.881, respectively, indicating superior performance compared to other existing models. CLAPE-DB showed better
generalization ability and was specific to DNA-binding sites. In addition, we trained CLAPE on different protein–ligand binding sites
datasets, demonstrating that CLAPE is a general framework for binding sites prediction. To facilitate the scientific community, the
benchmark datasets and codes are freely available at https://github.com/YAndrewL/clape.
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INTRODUCTION
The interaction of protein and ligands dominates almost all the
life activities in organisms, including interactions of protein–
protein, protein–small molecules and protein–nucleic acids. As
carriers of genetic information, DNA molecules binding with pro-
teins play a crucial role in many biological processes, includ-
ing DNA transcription, replication, expression, signal transduc-
tion and metabolism [1, 2]. In prokaryote and eukaryote species,
approximately 3% and 7% of genomes encode DNA-binding pro-
teins, respectively [3]. Transcription factors (TFs) are a represen-
tative group of DNA-binding proteins that regulate transcrip-
tion by binding to specific DNA sequences known as motifs. TFs
are involved in various biological processes, including immune
response [4] and maintenance of pluripotency of stem cells [5],
and the dysfunctions of TFs are related to numerous human
diseases, such as various types of cancer and neurodegenerative
diseases [6, 7]. In addition, other DNA-binding proteins such as
histone, DNA polymerase and DNA topoisomerase also play crit-
ical roles in biological activities and are associated with human
diseases [8, 9].

Identifying the DNA-binding sites of a protein is the initial
step for modeling protein–DNA binding properties. Several
experimental approaches have been developed for identifying
protein–DNA interaction in vivo or in vitro, such as systematic
evolution of ligands by exponential enrichment and chromatin

immunoprecipitation [10, 11]. In addition, structural biology
approaches have been applied to determine the DNA-binding
residues and areas, including X-ray crystallography and nuclear
magnetic resonance. Although experimental methods based
on molecular biology have made significant contributions over
the past few decades, these methods are time consuming and
resource intensive. Therefore, computationally predicting DNA-
binding residues with machine learning methods is attractive.

The vital step in building a predictor is representation learning,
where discriminative features play a crucial role in improving
model performance. Typically, models utilize features extracted
from a collection of protein sequences to fully leverage evolu-
tionary information. The commonly used methods involve PSI-
BLAST [12] and HHblits [13], which produce multiple sequence
alignment described as a position-specific scoring matrix (PSSM).
Extensive studies show that evolutionary information leads to
significant improvement in DNA-binding prediction tasks [14, 15].
The secondary structure information of the given protein can
also be applied as the initial feature, which can be generated
by DSSP [16] using protein structure or PSIPRED [17] using pro-
tein sequence. Several models have been developed to complete
the task and can be roughly divided into sequence-based and
structure-based models. Sequence-based models extract features
from protein sequences alone, while structure-based models use
features of crystal protein structures. BindN [18] used several
amino acid properties as sequence features, applying a support
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vector machine (SVM) model to classify the DNA-binding residues;
BindN+ [14] improved the model performance by adding the
PSSM feature. Currently, advanced predictors are focused on deep
learning methods, with DeepDISE [19] and DBPred [15] using a
convolutional neural network (CNN) as the classifier, EL_LSTM
[20] applying a recurrent neural network (RNN) as the back-
bone network and ProNA2020 [21] using a multi-layer perceptron
(MLP). A few models start with predicted protein structures or
experimentally solved structures. NucBind [22] predicted protein
structures by template-based models and then used an SVM-
based machine learning method to complete the downstream pre-
diction. GraphBind [23] integrated sequence-based and structure-
based features, employing graph neural network (GNN) as the
classifier.

Protein structures contain all the necessary information
derived from the protein sequence. Hence, in general, structure-
based models demonstrate better performance than sequence-
based models_ENREF_31. However, to ensure model performance,
structure-based models require accurate protein structures as
input [23, 24]. Consequently, the prediction of DNA-binding
sites based on protein sequences remains an important and
pressing research problem. Currently, the performance of existing
sequence-based models is still unsatisfactory for practical appli-
cation, and the feature extraction process often relies on manual
design, which fails to generate a refined initial representation
[24]. As a result, there is a pressing need to develop an end-to-
end model without using handcrafted features. Pre-training and
contrastive learning are two widely used representation learning
techniques. Pre-training utilizes the information of a large scale
of unlabeled data to train the model in an unsupervised manner
and transfers the model parameters to downstream tasks for
fine-tuning or feature extraction [25], which is widely used in
tasks such as protein property and structure prediction [26, 27].
Contrastive learning aims to discover a representation space
where samples from the same class are close to each other, while
those from the different classes are distant, which effectively
enhances the representative ability of protein embeddings and
the model performance in related fields such as protein–ligand
interaction prediction [28, 29]. In addition, the vast majority of
models did not take into account data imbalance issues, which we
complemented by applying class-balanced focal loss in our task.

In this study, we integrated pre-training and contrastive
learning techniques to devise the Contrastive Learning And
Pre-trained Encoder (CLAPE), which enabled the prediction of
ligand-binding sites of a protein sequence. CLAPE received the
raw protein sequence data in FASTA format and generated
ligand-binding sites without pre-computing manually designed
features, which is an end-to-end prediction model. Specifically, we
trained CLAPE-DB on DNA-binding datasets and demonstrated
that it surpassed current sequence-based models by learning a
discriminative embedding space. In addition, we illustrated that
CLAPE could serve as a general framework for predicting ligand-
binding sites exclusively based on protein sequence information,
thereby improving the comprehension of the feature extraction
process and the development of the model architecture for future
research.

RESULTS
The model architecture of CLAPE
The existing models for identifying protein–DNA binding sites
could be divided into two categories. The first category

combines handcrafted features and classification models (Sup-
plementary Figure 1 available online at http://bib.oxfordjournals.
org/). Handcrafted features may include amino acid physico-
chemical properties and protein structural information, while the
models may include machine learning models such as support
vector machine and random forest. The second category aims to
predict DNA-binding sites in an end-to-end fashion (Supplemen-
tary Figure 1 available online at http://bib.oxfordjournals.org/)
and often employs large-scale deep learning models. However,
the first approach typically necessitates laborious manual feature
extraction processes, while the second approach demands high
computational resources and training time.

We took advantage of both approaches to propose CLAPE, a
protein–ligand binding sites prediction framework to generate
the binding probabilities of a given protein sequence. The over-
all architecture of CLAPE is depicted in Figure 1, which com-
prised three main modules: the sequence embedding module,
the backbone network module and the loss computation module.
The sequence embedding module utilized ProtBert [30], a pre-
trained protein language model, to encode protein sequences and
generate features. The features were then passed through the
backbone network, which in CLAPE was a four-layer 1DCNN. The
loss computation module employed a contrastive loss function
guided by binary classification loss. Finally, the classification head
utilized a Softmax function to transform the prediction scores of
the backbone network into the classification probabilities.

CLAPE is a highly flexible framework, allowing customization
of each essential component. In the loss computation module,
one may employ different contrastive loss functions such as that
proposed in DrLIM [31] or lifted structure loss [32], and other
backbone models, such as MLP and RNN, were also suitable for
use with CLAPE.

The pre-trained model was used as a feature extractor to
avoid tedious manual feature extraction procedures. However,
researchers may choose to fine-tune the pre-trained model, which
has been shown to produce better performance but requires
higher computational and time consumption [33] resembling the
training scheme described in Supplementary Figure 1 available
online at http://bib.oxfordjournals.org/. Furthermore, multiple
pre-trained protein language models can be applied to the
sequence embedding module [34].

CLAPE-DB accurately predicted the DNA-binding
sites with a better generalization ability
We evaluated the performance of the proposed CLAPE-DB (CLAPE
DNA-binding) model on two protein–DNA datasets, as described
in Table 1. To assess the performance of CLAPE-DB, we conducted
experiments on both Dataset1 and Dataset2 using independent
testing sets TE46 and TE129, respectively. We compared the results
with existing DNA-binding sites prediction tools based on protein
sequence input. CLAPE-DB outperformed other methods on both
datasets (Table 2 and Table 3). Specifically, in TE46, CLAPE-DB
trained on TR646 outperformed the second-best model DBPred
[15] by a large margin, achieving a specificity of 0.835, a recall of
0.747, a precision of 0.306, an F1-score of 0.434, an MCC of 0.401
and an AUC of 0.871 in Dataset1 (Table 2), yielding a significant
improvement over DBPred by 6.5%, 5.5%, 25.9%, 19.9%, 25.3% and
9.6%. Notably, DBPred used a manual feature extraction process,
and a similar CNN model as CLAPE-DB, highlighting the advan-
tages of using pre-trained models over handcrafted features.

Moreover, we trained and evaluated CLAPE-DB on Dataset2,
and compared it with other existing tools (Table 3). CLAPE-DB
also achieved better predictive capability on this dataset. Dataset2
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Figure 1. Schematic representations of the overall architecture of the CLAPE model. The CLAPE model consists of three primary modules: the sequence
embedding module for generating protein sequence representations using a pre-trained protein language model named ProtBert; the backbone network
module for downstream processing of protein embeddings, which is flexible by applying different types of mainstream neural networks such as
MLP, CNN, RNN and GNN; and the loss computation module for computing binary classification class-balanced focal loss and contrastive loss for
backpropagation to update the model parameters of the backbone model. In the triplet center loss part, for an anchor sample, the positive sample
refers to the learnable cluster center within the same class as the anchor sample, while the negative sample corresponds to that from a different class
as the anchor sample. In the class-balanced focal loss part, the effective number is a coefficient that weights different sample numbers. All strategies
share a classification module for generating classification scores between 0 and 1, which contains a Softmax function.

Table 1: Summary of benchmark protein–DNA binding datasets

Datasets Dataset1 Dataset2

TR646 TE46 TR573 TE129

DNA-binding residues 15 636 965 14 479 2240
Non-binding residues 298 503 9911 145 404 35 275
% of binding residues 4.98 8.87 9.06 5.97

Table 2: Comparison of CLAPE-DB with other sequence-based methods on TE46

Models Spe Rec Pre F1 MCC AUC

DRNAPred 0.692 0.677 0.185 0.291 0.226 0.755
DNAPred 0.655 0.671 0.157 0.254 0.194 0.730
SVMnuc 0.666 0.668 0.154 0.250 0.192 0.715
NCBRPred 0.674 0.677 0.165 0.265 0.207 0.713
DBPred 0.784 0.708 0.243 0.362 0.320 0.794
CLAPE-DB 0.835 0.747 0.306 0.434 0.401 0.871

Table 3: Comparison of CLAPE-DB with other sequence-based methods on TE129

Models Spe Rec Pre F1 MCC AUC

DRNAPred 0.937 0.233 0.190 0.210 0.155 0.693
DNAPred 0.954 0.396 0.353 0.373 0.332 0.845
SVMnuc 0.966 0.316 0.371 0.341 0.304 0.812
NCBRPred 0.969 0.312 0.392 0.347 0.313 0.823
CLAPE-DB 0.955 0.464 0.396 0.427 0.389 0.881
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Figure 2. Evaluation of CLAPE-DB model performance. (A) Receiver operating characteristic (ROC) curves of DBPred and CLAPE-DB models. CLAPE-DB
showed a larger area under ROC curve (AUC) than DBPred, indicating a better generalization ability. (B) Precision–recall (PR) curves of DBPred and CLAPE-
DB models. (C) Comparison of different backbone models, where we used an LSTM model to represent RNN. (D) t-SNE dimension reduction plot of the
first layer output of a randomly initialized 1DCNN model. (E) t-SNE dimension reduction plot of the first layer output of CLAPE-DB. (F) t-SNE dimension
reduction plot of the original sequence features generated by ProtBert. All of (C–F) were tested and plotted using TE46, with cream-colored and red data
points indicating non-binding sites and DNA-binding sites, respectively.

was proposed as a benchmark dataset for structure-based mod-
els, and we compared the metrics of several structure-based
models (Supplementary Table 1 available online at http://bib.
oxfordjournals.org/). Although CLAPE-DB did not incorporate any
structure information, it outperformed the structure-based mod-
els such as COACH-D, NucBind and DNAbind. Notably, the Graph-
Bind model used predicted protein structure exhibited a poor
performance with an AUC of 0.816, lower than that of CLAPE-DB.
The results suggested that structure-based models required accu-
rate protein structure to achieve acceptable prediction results.
Moreover, compared to the structure-based models, CLAPE-DB
used only a pre-trained language model and a simple backbone
network to process the data, which reduced the model complexity
and enhanced the inference speed, while maintaining accuracy.

To test the generalization ability of CLAPE-DB, we trained a
model on Dataset1 and tested it on Dataset2 (Figure 2A and B),
and DBPred was also tested as the same strategy for a fair com-
parison. The prediction metrics of CLAPE-DB surpassed DBPred by
a large margin, AUC and area under PR curve (AUPR) of CLAPE-DB
were 0.865 and 0.394, respectively, while the metrics of DBPred
standalone version were 0.526 and 0.068, which was slightly
higher than a random choice result. Besides, the result of CLAPE-
DB was merely lower than CLAPE-DB trained on TR573 (0.871
and 0.881, respectively), showing that our proposed model had
a superior generalization ability compared to the DBPred model.
For further clarification of the generalization ability of CLAPE-DB,
we selected the dataset TE181 (Supplementary Table 2 available
online at http://bib.oxfordjournals.org/) created by Yuan et al.

[35], which is unseen in both Dataset 1 and Dataset2, and tested
the performance of CLAPE-DB trained on TR573 for an impartial
evaluation with existing models. CLAPE-DB still showed a bet-
ter performance than other sequence-based models and most
structure-based models (Supplementary Table 3 and Supplemen-
tary Table 4 available online at http://bib.oxfordjournals.org/).
The data quality and quantity could vary across the datasets,
which makes it hard to capture the latent distribution, and it is
worth noting that the gains of model performance on Dataset1
are significantly higher than that on Dataset2 compared to other
models, which further validates that our proposed model has
superior generalization ability.

Backbone network comparison and feature
visualization of CLAPE-DB
We compared the performance of different mainstream backbone
networks, including MLP, RNN and CNN, and we used an LSTM
model to represent the RNN model. 1DCNN model achieved
the best performance among the three commonly used models
(Figure 2C). Although RNN was specifically designed for sequence
modeling tasks, our finding suggested that the CNN was more
suitable for predicting DNA-binding sites. This might be because
RNN models process sequential data from left to right, whereas
DNA-binding residues are predominately determined by spatial
structures rather than simple sequential order. While CNN
models the protein sequences using sliding windows, which
incorporate relative positional information of amino acids
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Table 4: Model performance using different loss functions

Loss functions AUC AUPR

Cross-entropy 0.849 0.438
Cross-entropy + TCL 0.861 0.445
Focal loss 0.865 0.459
Focal loss + TCL 0.871 0.463

inherently, amino acids are treated as independent tokens in RNN
models [36].

We compared the embedding space generated by the CLAPE-
DB model and an untrained, randomly initialized 1DCNN model,
and utilized t-SNE (t-distributed Stochastic Neighbor Embedding)
dimension reduction method. Our results showed that CLAPE-DB
learned a discriminative embedding space, while the data points
were randomly distributed in the space after being processed
by the untrained model (Figure 2D and E). Moreover, CLAPE-DB
was able to effectively distinguish the DNA-binding and non-
binding samples in the embedding space of each layer, with the
distinction becoming more pronounced as the convolutional layer
approached the output layer (Supplementary Figure 2 available
online at http://bib.oxfordjournals.org/). In addition, we plotted
the dimension reduction result of the raw features generated by
ProtBert, which showed that the raw features were not well sepa-
rated before model processing. Our results showed that CLAPE-
DB was effective at distinguishing data samples from different
classes (Figure 2F).

Contrastive learning improved the model
performance
In the loss computation module, CLAPE-DB utilized a combination
of triplet center loss (TCL) [37] and class-balanced focal loss
[38, 39]. To analyze the effectiveness of the loss functions, we
performed ablation studies. TCL and focal loss generated dis-
criminative embeddings in high-dimensional space, and both loss
functions led to better performance than the commonly used
cross-entropy loss (Table 4). In addition, the model performance
decreased when solely applying classification or contrastive loss
(Table 4). Therefore, the joint loss is focal loss guided by the
triplet center loss. Furthermore, the improvement in the AUPR
value indicated that class-balanced focal loss and contrastive
learning methods showed a better ability to cope with imbalanced
datasets.

We also visualized the embeddings generated by the first layer
using focal loss only and jointly using focal loss and TCL. As
expected, though the embeddings of DNA-binding sites and non-
binding sites separated to a certain extent, the embeddings gener-
ated by joint loss functions showed a single clustering center, and
the positive and negative samples were more discriminative (Sup-
plementary Figure 3 available online at http://bib.oxfordjournals.
org/). The single and uniform cluster center could benefit the
classification performance according to the previous studies
[37, 40].

Parameter impact of loss functions
The hyperparameters were utilized in TCL and class-balanced
loss matter in model training and inference; therefore, we ana-
lyzed and adjusted the hyperparameters in the loss functions. We
adjusted the hyperparameter γ in class-balanced focal loss from 1
to 10 and observed the AUC and AUPR values remained relatively
stable within a specific range, but with an increase of γ , both
metrics displayed a significant decline (Figure 3A). To verify our

findings, we conducted further tests with γ values of 0.5 and 20.
Finally, we adopted a γ value of 5.

The cluster centers in TCL were randomly initialized, and
we tested the model performance by adjusting the parameter
learning rate and margin (m). Previous studies suggested that the
learning rate for optimizing the cluster center should be relatively
large [40]. However, we found that the AUC value was the highest
when the learning rate was set to a relatively small value of 0.01
(Figure 3B). The margin was another crucial hyperparameter in
TCL, and we intuitively visualized the distance distribution of
TR646 to guide our choice of parameter m. The distances from
negative to positive and positive to negative were distributed from
7 to 12 (Figure 3C). Thus, we adjusted the margin value based
on the distribution plot. We found that the AUC was maximized
when the margin was set to 9, which was consistent with our
expectations (Figure 3D).

CLAPE-DB captured the properties distribution of
amino acids
It is widely acknowledged that protein–DNA binding preferences
are reflected in the sequences and structures of proteins and DNA
[41]. For instance, proteins can bind DNA modules via hydrogen
bonds and hydrophobic interactions. Such biological phenomena
are related to the amino acid composition and properties of
proteins.

To this end, we performed a statistical analysis of the amino
acid composition of DNA-binding sites and non-binding sites
using the TE129 dataset. Lysine, arginine and tyrosine were the
predominant amino acid types in the DNA binding sites, while
alanine and leucine were the primary amino acid types in the non-
binding sites (Figure 4A). Furthermore, we compared the amino
acid type distribution of predicted results and the ground truth
(Figure 4B) and used the Kullback–Leibler (KL) divergence to mea-
sure the distance of discrete distributions. The shapes of distribu-
tions of prediction and ground truth were quite similar, and the
forward and reverse KL divergence were 0.024 and 0.028, respec-
tively, which were close to 0, indicating that the two distributions
were semblable. Our results demonstrated that CLAPE-DB could
accurately capture the amino acid composition features of DNA-
binding residues.

In addition, we analyzed the physicochemical properties of
amino acids by extracting features from protein sequence and
structure, and subsequently tested several selected properties,
such as hydrophobicity, charge, secondary structure and solvent
accessibility. The t-SNE dimension reduction visualization
revealed that different types of amino acid physiochemical
properties were segregated into various clusters (Supplementary
Figure 4A–D available online at http://bib.oxfordjournals.org/).
Our results illustrated that the large-scale pre-trained protein
language model ProtBert was capable of effectively learning
the properties of amino acids. Such models were identified as
appropriate feature extractors to replace handcrafted descriptors,
which is congruent with previous studies [24].

Moreover, CLAPE-DB was proved successful in predicting not
only the distribution of amino acids but also their properties.
The binding sites predicted by CLAPE-DB exhibited a similar
composition of different properties to the real DNA-binding sites
(Figure 4C–F).

Comparative and empirical case study
To intuitively visualize and compare the prediction performance
of DNA-binding residues of CLAPE-DB, we selected two protein
structures for illustration purposes: multiple antibody resistance
regulator (MarR) families (PDB ID: 5H3R, chain A, denoted as
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Figure 3. Hyperparameter optimization of loss functions. (A) Trends in the AUC and AUPR metrics with varying parameter γ . Both metrics reached
their maximum values when γ was set to 5. (B) Trend in the AUC metric with varying learning rate of the triplet center loss (TCL). The AUC reached its
maximum value when the learning rate was set to 0.01. (C) Distance distribution of negative and positive samples, where the distance was defined as
the maximum Euclidean distance between a given sample and the sample from the opposite class. The embedding used to calculate the distance was
the raw sequence embedding generated from ProtBert. (D) The trend in the AUC metric with varying margin of TCL. The AUC reached its maximum
value when the margin was set to 9.

5H3R_A) and transcription repressor protein CouR (PDB ID: 6C2S,
chain A, denoted as 6C2S_A). CLAPE-DB made an accurate predic-
tion of DNA-binding sites, while DBPred only captured a limited
number of true positive sites, highlighting the superior prediction
ability of CLAPE-DB. In addition, the majority of false-positive sites
were located in close proximity to binding sites (Figure 5A–F). Our
results suggested that CLAPE-DB effectively learned the amino
acid properties that were spatially adjacent and the structural
information without relying on protein structures.

DNA molecules are negatively charged and tend to bind the
positively charged regions of proteins. The structure of the pro-
tein–DNA binding area could be divided into several domains with
specific patterns [42]. Empirical observations and computational
properties can be utilized to infer the DNA-binding sites from
the protein structure. However, such methods have significant
limitations. Firstly, some proteins, such as intrinsically disordered
proteins, are unstructured when not bound by ligands like DNA
[43]. Secondly, the inferred probable DNA-binding sites using the
surface charge distribution and protein structure are often quite
different from the real binding sites. To illustrate the limitations
of empirical analysis, we selected two protein structures: the tran-
scription regulatory protein FadR (PDB ID: 5GPC, chain A, denoted

as 5GPC_A) and bacteria quorum-sensing repressor protein RsaL
(PDB ID: 5J2Y, chain A, denoted as 5J2Y_A). In both protein struc-
tures, multiple possible binding sites were identified based on
the charge distribution (Figure 5G and J), and it was difficult to
determine which part of the protein would bind the major or
minor groove of DNA. However, CLAPE-DB precisely distinguished
the binding sites, and the false-positive sites were not influenced
by the other positively charged locations (Figure 5H and I and
Figure 5K and L). It should be noted that the empirical binding
site identification relied on the experimental structures, which
was limited when lacking protein structures or using inaccurately
predicted structures.

CLAPE was a general ligand-binding sites
prediction framework
CLAPE could serve as a general framework for predicting other
ligand-binding sites, including protein–RNA and antibody–
antigen binding sites. (Figure 6A and B). We collected benchmark
datasets of protein–RNA and antibody–antigen binding sites
(Supplementary Table 5 available online at http://bib.oxfordjourn
als.org/) and trained CLAPE on these datasets. The resulting
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Figure 4. Analysis of amino acid composition and properties. (A) Distribution of amino acid composition in DNA-binding sites and non-binding sites.
(B) Comparison of the distribution of experimental DNA-binding sites with predicted binding sites. (C–F) Comparison of the distribution of amino acid
physicochemical properties and structural properties of real DNA-binding sites with predicted binding sites. (C–F) represents hydrophobicity, secondary
structure, charge and solvent accessibility, respectively.

models were denoted as CLAPE-RB (CLAPE RNA-binding) and
CLAPE-AB (CLAPE-Antibody). Both CLAPE-RB and CLAPE-AB
performed well on the testing sets, with CLAPE-AB achieving
the AUC of 0.920 (Supplementary Table 6 available online at
http://bib.oxfordjournals.org/), which was relatively high and
could be applied to accurately predict the paratope of a given
antibody sequence. Moreover, the AUC of CLAPE-RB trained on
TE161 was 0.830 (Supplementary Table 6 available online at http://
bib.oxfordjournals.org/), which surpassed the existing sequence-
based RNA-binding sites models [44, 45]. We also plotted the ROC
and AUC curves to visualize the overall model performance of
CLAPE-RB and CLAPE-AB (Figure 6C and D).

Furthermore, we trained CLAPE-RB on a separate protein–
RNA dataset comprising TR495 and TE117 (Supplementary
Table 7 available online at http://bib.oxfordjournals.org/), which
were widely used benchmarks for structure-based models.
CLAPE-RB outperformed existing sequence-based models in
predicting RNA-binding sites on TE117. While the performance
of CLAPE-RB was marginally lower than that of the structure-
based model GraphBind, it performed better than Nucleic, a
CNN model predicting RNA-binding sites based on grids of
the protein surface (Supplementary Table 8 available online at
http://bib.oxfordjournals.org/). Similarly, CLAPE-RB outperformed
GraphBind based on inaccurately predicted protein structure,
which highlighted the potential of CLAPE to overcome the
limitations of structure-based models. Our results indicated
that CLAPE was a versatile framework that could predict ligand-
binding sites of a given protein sequence for a range of ligands.
Furthermore, our experiments demonstrated that CLAPE was an
effective predictor of ligand-binding sites, even in the absence of
structural information, achieving relatively high performance.

DISCUSSION
Protein–DNA binding plays an essential role in many life activ-
ities, and studies on the binding properties contribute to the

understanding of genome transcription and regulation. Accurate
identification of DNA-binding sites of proteins is a crucial step
in modeling the protein–DNA interactions. Various models have
been developed using machine learning and deep learning tech-
niques to identify DNA-binding sites from protein sequence or
structure [15, 23]. However, current tools rely on tedious man-
ual feature extraction processing, which is time consuming and
redundant. In addition, the accuracy of sequence-based models
still needs to be increased, and the performance of the structure-
based models is affected mainly by the accuracy of protein struc-
ture. Given these limitations, it is imperative to develop a satisfac-
tory sequence-based model that utilizes protein sequence infor-
mation alone to predict DNA-binding sites. To address the existing
challenges and improve the performance of the sequence-based
models, we proposed CLAPE, a deep learning framework that
combines a large-scale pre-trained protein language model and
contrastive learning technique to predict DNA-binding sites of a
given protein sequence accurately.

In this study, we presented the overall architecture of CLAPE,
which was composed of three main components. Firstly, we uti-
lized a pre-trained model, ProtBert, without fine-tuning, to con-
duct feature extraction. Secondly, we employed a 1DCNN to pro-
cess the sequence feature and generate the classification score.
Finally, we jointly optimized a class-balanced focal loss and a
contrastive triplet center loss to address the issue of imbalanced
data, which resulted in a more discriminative embedding space
with a single cluster center.

The proposed CLAPE-DB model for predicting DNA-binding
sites demonstrated superior performance compared to existing
sequence-based models on two benchmark datasets, as indicated
by all metrics, with an AUC of 0.871 and 0.881, respectively. Fur-
thermore, in cases where accurate protein crystal structures were
unavailable, CLAPE-DB outperformed structure-based models by
a large margin. In addition, we evaluated the generalization ability
of the CLAPE-DB model on independent datasets and found that
CLAPE-DB exhibited better generalization performance than the
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Figure 5. Comparative and empirical case studies. (A–C) Analysis of the DNA-binding sites for protein 5H3R_A, where (A) represents the experimental
result, (B) and (C) represent the results predicted by CLAPE-DB and DBPred, respectively. (D–F) Analysis of the DNA-binding sites for protein 6C2S_A,
where (D) represents the experimental result, (E) and (F) represent the results predicted by CLAPE-DB and DBPred, respectively. Magenta residues
indicate the experimental binding sites and true positives predicted by the models, green residues indicate the false positives generated by the models
and gray residues indicate non-binding residues. Orange double-helix structures represent DNA molecules. (G–H) Comparison of the surface charge
distribution and DNA-binding sites for protein 5GPC_A between the experimental and CLAPE-DB predicted results. (J–L) Comparison of the surface
charge distribution and DNA-binding sites for protein 5J2Y_A between the experimental and CLAPE-DB predicted results. Blue and red residues indicate
positively and negatively charged residues, respectively. The dashed circles in (G) and (I) indicate the human-predicted DNA-binding sites based on
electrostatics.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/1/bbad488/7505238 by guest on 17 April 2025



Protein–DNA binding sites prediction | 9

Figure 6. General binding sites prediction ability of CLAPE. (A–B) Binding diagrams of protein–RNA (PDB ID: 5GAN) and antibody–antigen (PDB ID: 1OAY),
demonstrating the ability of CLAPE to predict protein–ligand binding sites. (C–D) ROC and PR curves of CLAPE-RB and CLAPE-AB models. CLAPE-RB
achieved an AUC of 0.830 and an AUPR of 0.511, while CLAPE-AB achieved an AUC of 0.920 and an AUPR of 0.568.

second-best model, DBPred. These results suggested that CLAPE-
DB effectively learned the underlying latent distribution of DNA-
binding sites.

To mitigate the effects of imbalanced data, we implemented
the class-balanced focal loss in our proposed CLAPE model. There
were several augmentation approaches from the aspect of the
dataset, such as [46] (SMOTE) to interpolate new data in the
embedding space. We also tested several data augmentation
strategies, including SMOTE, nearest neighbor and random noise
methods on Dataset1 (Supplementary Table 9 available online at
http://bib.oxfordjournals.org/). Furthermore, incorporating the
newly solved protein–DNA complexes into the dataset could
enhance the prediction performance and generalization ability
of the model.

Our study demonstrated that a large-scale pre-trained pro-
tein language model could extract protein sequence features

effectively, eliminating the need for designing handcrafted fea-
tures. In this study, we only evaluated the ProtBert as the feature
extractor, but other pre-trained protein models such as RITA [47]
and ESM-2 [48], as reviewed in detail by Hu et al. [34], could be used
for feature generation. Here, we tested the performance of CLAPE-
DB applying a larger protein language model ESM-2 as the feature
extractor, which contained more parameters than ProtBert, and
the model performance of CLAPE-DB was improved using ESM-
2, which was consistent with our expectation (Supplementary
Table 10 available online at http://bib.oxfordjournals.org/). Fur-
thermore, fine-tuning the model is also a choice under sufficient
computational resources. Here, we fine-tuned the last three layers
of the ESM-2 model and obtained a better performance in vari-
ous metrics (Supplementary Table 11 available online at http://
bib.oxfordjournals.org/). As mentioned above, various contrastive
losses can be applied to CLAPE including both supervised loss,
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such as triplet center loss used in our work, and unsupervised
loss such as InfoNCE. We evaluated the model performance under
the InfoNCE loss, which is comparable with TCL (Supplementary
Table 12 available online at http://bib.oxfordjournals.org/). To be
pointed out, we picked TCL as one of the possible contrastive
loss functions to illustrate that the proposed CLAPE model is a
general protein–ligand binding sites prediction model, and various
contrastive losses may lead to superior and inferior performance
compared with TCL.

Although the CLAPE-DB was designed for sequence-based pre-
diction tasks, it is possible to use the features generated by
the pre-trained model for the structure-based model, as demon-
strated in related studies [49]. In addition, we conclude that CLAPE
is a general prediction framework for identifying ligand-binding
sites of a given protein sequence based on the results of our
experiments.

Overall, the deep learning model CLAPE proposed in our study
achieved high performances in predicting both DNA- and ligand-
binding sites by combining pre-trained models with contrastive
learning methods. The promising and general framework can be
applied in future studies to facilitate protein function annotation,
protein engineering and drug discovery.

METHODS
Dataset description
In this study, we evaluated and compared the performance of our
proposed model, CLAPE, with existing classifiers using two widely
used benchmark datasets, denoted as Dataset1 and Dataset2.
The training and testing datasets were denoted as TR and TE,
respectively. Both datasets were preprocessed by similar proce-
dures to improve the robustness of models and avoid bias due to
the imbalanced data distribution, such as reducing the sequence
similarity using a cutoff of 30% with CD-HIT [50]. The binding sites
were defined similarly in both datasets as residues with a distance
less than 0.5 plus the sum of the Van der Waals radius of the two
nearest atoms between the residue and the nucleic acid molecule.
Table 1 provides a summary of the benchmark datasets, and the
details of both datasets are described below.

Dataset1 was introduced by the study of the DBPred model,
a sequence-based deep learning method for predicting DNA-
binding residues [15]. The dataset was composed of 646 proteins
as the training set (TR646) with 15 636 DNA-binding sites and
298 503 non-binding sites, and 46 proteins as the testing set (TE46)
with 956 DNA-binding sites and 9911 non-binding sites.

Dataset2 was originally proposed by the study of GraphBind, a
structure-based GNN model for identifying nucleic-acid-binding
residues [23]. This dataset consisted of protein–DNA complex
structural data extracted from the BioLiP database [51], with
573 proteins as a training set (TR573) with 14 479 DNA-binding
residues and 145 404 non-binding residues, and 129 proteins as
a testing set (TE129) with 2240 DNA-binding residues and 35 275
non-binding residues. GraphBind employed a data augmentation
approach on the training set to alleviate the impact of the data
imbalanced issue, hence we used the same augmented data
annotations as GraphBind.

To assess the prediction capability of our proposed model
CLAPE on diverse ligand-binding sites, we gathered three dif-
ferent datasets comprising protein–RNA and antibody–antigen
interactions. The protein–RNA datasets were created by Xia et al.
based on the GraphBind model, and Patiyal et al. [45], based on
the pprint2 model. The antibody–antigen dataset was collected
from the SAbDab database[52] . To ensure a fair comparison

with existing models, we applied the same data preprocessing
procedure as used for defining DNA-binding sites.

Protein sequence embedding
The protein sequences were first input into ProtBert [30], a pre-
trained model, to generate high-dimensional embeddings. Prot-
Bert is a member of the ProtTrans family of pre-trained models
and is based on the BERT architecture. The ProtTrans models
were trained on large-scale protein sequences and have been
commonly used for predicting protein structure and properties.
The dimension of the protein embedding generated by ProtBert
was 1024. It is important to note that ProtBert was not fine-tuned
during subsequent training steps, and the sequence embedding
process was performed using HuggingFace’s Transformers Python
package [53].

Backbone 1DCNN model and classification head
We utilized a one-dimensional convolutional neural network
(IDCNN) as our backbone model to obtain a residue-level clas-
sification score. To maintain the same length of input and output
protein sequence and obtain a unified token-level classification
result, we applied padding for different convolutional kernel sizes.
The stride of every layer was set to 1, and we utilized rectified
linear unit as an activation function to introduce nonlinearity
to the model. We applied dropout and batch normalization
techniques to enhance the robustness and generalization ability
of the model. Our CLAPE-DB model consisted of four 1DCNN
layers as the backbone model. The raw dimension was 1024,
and the output dimension of the four layers were 1024, 128,
64 and 2, respectively. The classification head part contained
a Softmax function to scale the output value between 0 and
1 as a mutually exclusive prediction score, representing the
classification probability of DNA-binding sites.

Binary classification loss function
We applied a class-balanced focal loss to address the data imbal-
ance issue. The focal loss was introduced by Lin et al. [38] and
places more emphasis on classes with fewer samples in the loss
function. It also considers the difficulty of samples based on the
classification probability provided by the classifier. The focal loss
is formulated as follows:

FL
(
pt

) = −αt
(
1 − pt

)γ log
(
pt

)
(1)

where pt is the classification probability of a particular class, 1−pt

is the modulator and γ is a hyperparameter to adjust the weight of
hard and easy samples. In the original paper, α is also a parameter
to give the weight of minority and majority samples, which is
influenced by γ . We applied an effective number to reweight the
focal loss, which was proposed by Cui et al. [39]. Effective number
was proposed to model the real space covered by all samples,
which could be used as a weight for imbalanced data. The class-
balanced focal loss can be formulated as

Lfocal = − 1−β

1−βny

∑C
i=1

(
1 − pt

i

)γ log
(
pt

i

)
(2)

where En = (1 − βn) / (1 − β) refers to the effective number of the
class; we set β to 0.999 in our study according to Cui et al. [39]. The
class-balanced focal loss was jointly optimized with contrastive
loss, as described in the following parts.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/1/bbad488/7505238 by guest on 17 April 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad488#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


Protein–DNA binding sites prediction | 11

Contrastive learning loss
We applied a contrastive loss named triplet center loss (TCL) [37],
which is a supervised approach that takes into account the labels
of the training data, which finds a high-dimensional embeddings
space that represents residues, which makes the DNA-binding
residues and non-binding residues far away from each other and
forces the residues of different classes to be close to respective
cluster centers. Here, the cluster center is learnable and was
randomly initialized at the beginning of the training process. The
formulation of TCL can be mathematically expressed as follows:

Ltc = ∑M
i=1 max

(
D

(
fi, cyi

)
+ m − min

j �=yi
D

(
fi, cj

)
, 0

)
(3)

where cyi is the center of the given class yi, and fi refers to
the classification probability predicted by the model. D indicates

the Euclidean distance between residue embeddings: D
(
fi, cyi

)
=

1
2

∣∣∣fi − cyi

∣∣∣2
2
. The total loss was weighted by class-balanced focal

loss and TCL using a hyperparameter λ, which was set to 0.1 in our
study after searching, and the loss function could be formulated
as follows:

L = Lfocal + λLtc (4)

The backpropagation stops at the embedding generated by
ProtBert, which means we did not fine-tune the pre-trained lan-
guage model.

Evaluation metrics
In this study, we employed several classification evaluation
metrics to ensure consistency with the previous studies. The
threshold-dependent metrics included specificity (Spe), precision
(Pre), recall (Rec), F1-score and Matthews correlation coefficient
(MCC). The metrics can be formulated as follows:

Spe = TN
TN + FP

(5)

Pre = TP
TP + FP

(6)

Rec = TP
TP + FN

(7)

F1 = 2 × Pre × Rec
Pre + Rec

(8)

MCC = TP × TN − FN × FP√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(9)

where TP, FP, TN and FN stand for true positive (number of
residues that are correctly classified as DNA-binding sites), false
positive (number of residues that are incorrectly classified as
DNA-binding sites), true negative (number of residues that cor-
rectly classified as non-binding sites) and false negative (num-
ber of residues that incorrectly classified as non-binding sites),
respectively. Specifically, specificity indicates the portion of cor-
rectly predicted non-binding sites, precision measures the accu-
racy of residues predicted as DNA-binding sites, recall measures
the portion of DNA-binding residues successfully discovered by
the model, and F1-score is the harmonic mean of precision and
recall. MCC evaluates the prediction ability of both positive and
negative classes of the model and is commonly used in imbal-
anced data. Besides, we plotted the receiver operating characteris-
tic (ROC) curve and precision–recall curve to illustrate the overall

performance of a model and used two threshold-independent
metrics area under ROC curve and area under PR curve as numer-
ical evaluations of both curves.

Key Points

• Existing models are limited by tedious handcrafted fea-
ture extraction processing or high demand for computa-
tional resources.

• CLAPE-DB outperformed existing sequence-based mod-
els with a better generalization ability.

• CLAPE is a general model for predicting protein–ligand
binding sites based on pre-trained protein language
model and contrastive learning.
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Supplementary data are available online at http://bib.oxfordjournals.
org/.
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