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ABSTRACT

BindN (http://bioinformatics.ksu.edu/bindn/) takes
an amino acid sequence as input and predicts
potential DNA or RNA-binding residues with support
vector machines (SVMs). Protein datasets with
known DNA or RNA-binding residues were selected
from the Protein Data Bank (PDB), and SVM models
were constructed using data instances encoded
with three sequence features, including the side
chain pKa value, hydrophobicity index and mole-
cular mass of an amino acid. The results suggest
that DNA-binding residues can be predicted at
69.40% sensitivity and 70.47% specificity, while pre-
diction of RNA-binding residues achieves 66.28%
sensitivity and 69.84% specificity. When compared
with previous studies, the SVM models appear to be
more accurate and more efficient for online pre-
dictions. BindN provides a useful tool for unders-
tanding the function of DNA and RNA-binding
proteins based on primary sequence data.

INTRODUCTION

Many proteins perform essential functions through interac-
tions with DNA or RNA molecules. For example, transcription
factors bind to specific DNA motifs in the promoters, resulting
in activation or repression of transcription (1). Protein–RNA
interactions play pivotal roles in both assembly and function
of ribosomes (2) as well as eukaryotic spliceosomes (3). Thus,
identification of the amino acid residues that recognize DNA
or RNA is important for understanding a variety of biological
processes.

Analysis of structural data has provided valuable infor-
mation about the mechanisms of protein–nucleic acid inter-
actions. At the atomic level, the interactions involve a
complex combination of hydrogen bonds, van der Waals
contacts and water-mediated bonds between amino acid resi-
dues and nucleotide bases (4,5). It has also been found that the

composition of DNA or RNA-binding residues is biased
towards basic and polar amino acids (e.g. arginine and serine),
while hydrophobic and acidic amino acids such as leucine
and glutamic acid are statistically under-represented at the
interaction interface (6–8). The information from structural
analysis has been used to predict DNA-binding residues in
solved protein structures (9,10).

However, it is still challenging to predict DNA or RNA-
binding residues directly from amino acid sequence data,
which are rapidly accumulating from many species. The prob-
lem for machine learning can be specified as follows: given the
amino acid sequence of a protein that is supposed to bind DNA
or RNA, the task is to predict which amino acid residues may
be located at the interaction interface. Both the structure of
the protein and the sequence of the target DNA or RNA are
assumed to be unknown. Recently, artificial neural networks
have been trained with sequence information and residue
solvent accessibility for prediction of DNA-binding residues
(8). The performance of the neural networks is at 40.3% sens-
itivity and 81.8% specificity. Evolutionary information in
terms of a position-specific scoring matrix (PSSM) has been
shown to enhance the predictive performance to 68.2% sens-
itivity and 66.0% specificity (11). To derive the PSSM, the
query sequence is searched against a large reference database
using the PSI-BLAST program (12). Thus, the PSSM-based
method is computationally intensive and may not be used for
efficient online predictions. Furthermore, PSSMs cannot be
derived for query sequences that have no homologues in
the reference database.

In the present work, support vector machines (SVMs) are
trained using three simple sequence features for the predic-
tion of DNA and RNA-binding residues. SVMs are a class
of relatively new machine learning algorithms, which have
recently been applied to a variety of biological problems
for pattern classification (13). When compared with neural
networks, SVMs may have advantages in their superior gen-
eralization power and the ability to avoid overfitting. We show
that the SVM models can predict DNA-binding residues at
69.40% sensitivity and 70.47% specificity, while prediction
of RNA-binding residues achieves 66.28% sensitivity and
69.84% specificity. Importantly, the three sequence features,
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including the side chain pKa value, hydrophobicity index and
molecular mass of an amino acid, are very efficient to compute
for online predictions. Thus, we have developed the BindN
web server (http://bioinformatics.ksu.edu/bindn/) for public
access to the SVM classifiers.

MATERIALS AND METHODS

Datasets

Two amino acid sequence datasets, PDNA-62 and PRINR25,
have been used to construct the SVM models for predicting
DNA and RNA-binding residues, respectively. The PDNA-62
dataset was derived from 62 structures of representative
protein–DNA complexes and had <25% identity among the
sequences (8,11). The PRINR25 dataset was collected in this
study from the protein–RNA complexes available at the
Protein Data Bank (PDB, http://www.rcsb.org/pdb/). We
selected 174 structures that had been determined by X-ray
crystallography with resolution better than 3.5 s. To remove
redundancy among the amino acid sequences, clustering ana-
lysis was performed using the blastclust program in the
BLAST package from NCBI (http://www.ncbi.nlm.nih.gov/
BLAST/download.shtml). The blastclust program was run
with the sequence identity threshold set to 25%, and the long-
est sequence in each cluster was selected for the non-redundant
dataset, PRINR25.

As in the previous studies (8,11), an amino acid residue
was designated as a binding site if the side chain or backbone
atoms of the residue fell within a cutoff distance of 3.5 s

from any atoms of the DNA or RNA molecule in the complex.
All the other residues were regarded as non-binding sites.
A Perl program was developed to take a set of structure
files as input and create an output file of amino acid sequences
with each residue labeled as a binding or non-binding site
according to the above criterion.

The lists of sequences in the PDNA-62 and PRINR25
datasets are provided in the supplementary material. The
PDNA-62 dataset contains 1215 DNA-binding residues and
6948 non-binding residues, while the PRINR25 dataset has
3239 RNA-binding residues and 18 519 non-binding residues.

Training and testing

SVMs were trained with residue-wise data instances extrac-
ted from the sequence datasets. Each data instance was a
subsequence of length w, where w was the sliding window
size set to eleven in this study. Other window sizes were also
tested, but the SVM classifiers constructed with w ¼ 11 gave
the best performance. From a protein sequence with n amino
acid residues, a total of (n � w + 1) data instances were
extracted. The target residue was positioned in the middle
of the subsequence, and the five neighboring residues on
each side provided context information for the target residue.
A data instance was labeled with 1 (positive) if the target
residue was DNA or RNA-binding, or �1 (negative) if the
target residue was non-binding.

Each residue was represented with three biochemical
features, including the side chain pKa value, hydrophobicity
index and molecular mass of the amino acid. For a data
instance with 11 residues, the input vector consists of 33
feature values. The biochemical features are very efficient

to compute for a given amino acid sequence, and appear to
be relevant for prediction of DNA and RNA-binding residues.
The side chain pKa value determines the ionization state of a
residue. Since the phosphate groups of nucleic acids are neg-
atively charged, the ionization state of amino acid side chains
affects the interaction with DNA or RNA molecules. In this
study, the side chain pKa values from (14) were used, and the
feature value was set to 7 for the amino acids with no side
chain pKa values. Hydrophobicity is a key factor in amino
acid side chain packing and protein folding. Hydrophobic
amino acids are often located inside globular proteins, but
under-represented at the DNA or RNA interaction inter-
faces (6–8). We used the hydrophobicity scale developed
by Kyte and Doolittle (15) to assign the feature values in
this study. Since each amino acid has a unique value of
molecular mass, this feature is used to represent the sequence
information. Molecular mass is also related to the volume
of space that a residue occupies in structures.

The SVMlight package (16) available at http://svmlight.
joachims.org/ was used to construct the SVM classifiers.
For a given set of binary-labeled training examples, SVM
maps the input space into a higher-dimensional space and
seeks a hyperplane to separate the positive data instances
from the negative ones (17). The optimal hyperplane maxim-
izes the separation margin between the two classes of training
data, and is defined by a fraction of the input data instances
close to the hyperplane (the so-called support vectors). The
distance measurement between the data points in the high-
dimensional space is defined by the kernel function. In this
study, we used the radial basis function (RBF) kernel

Kð~xx‚~yyÞ ¼ exp ð�gk~xx � ~yyk2Þ‚ 1

where x!and y! are two data vectors, and g is a training
parameter. A smaller g value makes the decision boundary
smoother. Another parameter for SVM training is the regular-
ization factor C, which controls the trade-off between low
training error and large margin (16). Different values for
the C and g parameters have been tested in this work to optim-
ize the prediction accuracy.

A 5-fold cross-validation approach was used to evaluate the
classifier performance. The positive and negative data
instances were distributed randomly into five sets or the
so-called folds. In each of the five iterative steps, four of
the five sets were used to build a classifier (training), and
then the classifier was evaluated using the remaining one
set (testing). The predictions made for the test data instances
in all the five iterations were combined and used to compute
the results presented in this paper. However, the SVM models
used by the BindN web server were constructed with all the
available data instances.

Classifier performance measures

The predictions made for the test data instances are compared
with the class labels (binding or non-binding) to evaluate the
classifiers. The overall accuracy is defined as

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
‚ 2

where TP is the number of true positives (binding residues
with positive predictions); TN is the number of true negatives
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(non-binding residues with negative predictions); FP is the
number of false positives (non-binding residues but predicted
as binding sites) and FN is the number of false negatives
(binding residues but predicted as non-binding sites). How-
ever, the overall accuracy alone could be misleading in
this case. Since there are more non-binding residues than
binding ones in the datasets, a classifier can achieve >85%
accuracy by simply predicting all the residues as negatives.
Thus, sensitivity and specificity of the predictions are also
computed as follows:

Sensitivity ¼ TP

TP þ FN
3

Specificity ¼ TN

TN þ FP
4

The receiver operating characteristic (ROC) curve is probably
the most robust approach for classifier evaluation (18). The
ROC curve is drawn by plotting the true positive rate (i.e.
sensitivity) against the false positive rate, which equals
to (1 � specificity). The area under the ROC curve (AUC)
can be used as a reliable measure of classifier performance
(19). Since the ROC plot is a unit square, the maximum value
of AUC is 1, which is achieved by a perfect classifier. Weak
classifiers and random guessing have AUC values close to 0.5.

RESULTS

Table 1 shows the performance of the SVM classifiers in
5-fold cross validations. The results have been obtained
using the training parameters, C ¼ 0.5 and g ¼ 0.1, which
give better results than other values for prediction of both
DNA and RNA-binding residues. The classifier for DNA-
binding residues achieves 70.31% overall accuracy with
69.40% sensitivity and 70.47% specificity. For RNA-binding
residues, predictions can be made at 69.32% overall accuracy
with 66.28% sensitivity and 69.84% specificity (Table 1).

The ROC curves for prediction of DNA and RNA-binding
residues are shown in Figure 1. These ROC curves have been
generated by varying the output threshold of the SVM clas-
sifiers and plotting the true positive rate against false positive
rate for each of the threshold values. The default output thresh-
old used by SVMlight is 0, thus all the outputs �0 result
in positive predictions and the outputs <0 give rise to negative
predictions. When higher thresholds are used, only the data
instances with relatively higher output values are predicted
as positives and thus the true positive rate (sensitivity)
becomes lower. Meanwhile, with higher thresholds, specificity
becomes higher but the false positive rate (1 � specificity)
gets lower. Therefore, each point on the ROC curve represents
the trade-off between sensitivity and specificity. The ROC
curves shown in Figure 1 are used by the BindN web server
to allow users to specify the desired level of specificity or
sensitivity (see below).

The ROC analysis shows that the classifier for DNA-
binding residues is slightly more accurate than the classifier
for RNA-binding residues, except at very low false positive
rates (Figure 1). The AUC values are 0.7524 and 0.7308 for
prediction of DNA and RNA-binding residues, respectively
(Table 1). These AUC values are significantly higher than that
of random guessing (0.5).

The SVM classifier for DNA-binding residues appears
to be better than the previous neural network predictors
constructed using the same dataset (PDNA-62). The SVM’s
average of sensitivity and specificity is 69.94%, whereas
the average (also called ‘net prediction’) was 61.1% for
the neural network trained with sequence information and
residue solvent accessibility (8). The PSSM-based approach
improved the ‘net prediction’ to 67.1% (11), but required
intensive computation for feature extraction. In contrast, the
three sequence features used in our approach are very efficient
to compute and thus well suited for online predictions.

For direct comparison of the SVM and neural network
classifiers, a separate test dataset has been collected from
the protein–DNA complexes available at PDB. As listed in
Supplementary Table 3, the test dataset contains 92 amino acid
sequences. These sequences show <30% identity among them
and with any sequences in the PDNA-62 dataset. Except for
the above constraints, the test dataset has been processed in
the same way as described for the PRINR25 dataset. Putative
DNA-binding residues have been predicted using both
BindN and DBS-PSSM. The DBS-PSSM web server available
at http://www.netasa.org/dbs-pssm/ was build using the
PSSM-based neural network approach (11). The predictions
have been made with the expected specificity at 72.3%, which
is allowed at the DBS-PSSM server (DBS-PSSM does not
allow users to specify their desired levels of specificity). As
shown in Table 2, the actual specificity levels achieved by
the two servers are close to the expected value. However,
BindN achieves a much higher level of sensitivity than

Table 1. Performance of the SVMs for prediction of DNA and RNA binding

residues in proteins

Prediction type Accuracy (%) Sensitivity (%) Specificity (%) ROC AUC

DNA-binding 70.31 69.40 70.47 0.7524
RNA-binding 69.32 66.28 69.84 0.7308

Figure 1. ROC curves for prediction of DNA and RNA-binding residues with
SVMs.
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DBS-PSSM (65.22 versus 36.73%). While the specificity
achieved by BindN (65.22%) is close to the expected value
based on the ROC analysis (67.19%), the actual specificity
of DBS-PSSM does not reach the expected level (60.2%) on
the new test dataset, probably owing to poor generalization
of the representative DNA-binding residues in the relatively
small training dataset (PDNA-62).

The SVM classifiers have been constructed using known
DNA or RNA-binding proteins. The residues that do not
bind to DNA or RNA have been used as the negative data
instances for training. To further evaluate the SVM classifiers,
we have analyzed a set of 100 proteins that do not interact with
DNA or RNA. The protein sequences listed in Supplementary
Table 4 have been selected randomly from the Swiss-
Prot database (http://www.expasy.org/sprot/). When these
sequences are analyzed using BindN with the expected spe-
cificity at 80% (default value), the actual specificity levels
achieved by the SVM classifiers are 81.58 and 80.86% for
the analysis of DNA and RNA-binding residues, respectively.
The results suggest that BindN is reliable in achieving
user-defined levels of specificity for various proteins. Thus,
putative DNA or RNA-binding proteins with uncharacterized

functional domains can be used as inputs to BindN. If the
number of predicted binding residues is significantly higher
than the expected number of false positives, the prediction
results may be used to guide experimental characterization
of these proteins.

To demonstrate that BindN can provide useful information
for understanding protein–nucleic acid interactions, we have
examined the predicted binding residues in the context of
three-dimensional structures. Figure 2 shows two representat-
ive examples of the results. In Figure 2a, putative DNA-
binding residues predicted by BindN for the mouse ETS-1
transcription factor are verified using the available structural
data (PDB ID: 1K79). The structure includes residues
331–440 of the ETS-1 protein, which was not used for
training the SVM classifier. The only homologue in the
PDNA-62 dataset is the PU.1 DNA-binding domain (PDB
ID: 1PUE), which has 28% sequence identity with the
ETS-1 peptide. As shown in Figure 2a, 10 of the 16 DNA-
binding residues (62.50%) are predicted correctly from
the amino acid sequence data. These true positives are high-
lighted in red. The residues in blue are the six false negatives
(DNA-binding residues but predicted as negatives). For the
88 non-binding residues, 79 or 89.77% are predicted
correctly (residues in green), which agrees well with the
desired level of specificity at 90%. Nevertheless, nine of
the non-binding residues are predicted incorrectly (false pos-
itives in yellow). In Figure 2b, putative RNA-binding residues
predicted for the archaeal protein L7Ae (box C/D RNA-
binding domain) are examined. Chain B of the structure
(PDB ID: 1RLG) is not included in the PRINR25 dataset,

Table 2. Performance comparison of the web servers for prediction of

DNA-binding residues

Web server Accuracy (%) Sensitivity (%) Specificity (%)

BindN 72.18 65.22 72.84
DBS-PSSM 67.82 36.73 70.79

(a) (b)

Figure 2. Representative prediction results shown in the context of three-dimensional structures. In each complex, the correctly predicted binding residues
(true positives) are in red and spacefill; the correctly predicted non-binding residues (true negatives) are in green and wireframe; the binding residues but
predicted as negatives (false negatives) are in blue and spacefill; the non-binding residues but predicted as positives (false positives) are in yellow and spacefill;
the nucleic acid molecule is shown in purple. (a) Putative DNA-binding residues predicted for the mouse ETS-1 transcription factor. The structure (PDB ID: 1K79)
includes residues 331–440 of the ETS-1 protein. Chain D of 1K79 was used as the input sequence to BindN with the expected specificity set to 90%. (b) Putative
RNA-binding residues predicted for the box C/D RNA-binding domain of the archaeal protein L7Ae. Chain B of the structure (PDB ID: 1RLG) was used for
BindN prediction with the expected specificity set to 90%.
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but shows 34% sequence identity with the training data,
1E7K_A (human spliceosomal 15.5 KDa protein). Correct
predictions are made for 6 of the 13 RNA-binding residues
(46.15%) and 96 of the 104 non-binding residues (92.31%).
Therefore, the predictions made by BindN can provide useful
information for understanding protein–nucleic acid interac-
tions. Such information may be used to guide experimental
studies such as site-directed mutagenesis for functional
characterization of DNA or RNA-binding proteins.

SERVER DESCRIPTION

On the BindN web page, users can enter an amino acid
sequence in FASTA format; choose the type of prediction
to be performed (either DNA or RNA-binding site prediction);
and specify the desired level of sensitivity or specificity for
the prediction results. The system uses the three biochemical
features to encode the input sequence as described in Materials
and Methods. The svm_classify program of the SVMlight
package (16) is then called to classify the amino acid residues
using one of the SVM models developed in this study. The
user-defined level of sensitivity or specificity is used to choose
the output threshold according to the ROC analysis discussed
above. To reduce the number of false positive predictions,
users may choose a specificity level higher than the default
value (80%). In addition, if the DNA or RNA-binding domain
is known, users may use the domain sequence instead of the
full-length protein sequence as the input to BindN. Since a
protein often has many more non-binding residues than bind-
ing ones, a long sequence, even with a high level of specificity,
may result in a number of false positive predictions. However,
the overall prediction accuracy appears to be at the same level
for the binding domains and other sequence regions (data not
shown).

As shown in Figure 3, the output report returned from
the BindN server includes the following three sections: (i) a
summary of the prediction results, including the number of
binding sites predicted, the expected sensitivity and spe-
cificity; (ii) an overview of the predictions with the binding
residues highlighted in red and the non-binding residues in
green and (iii) detailed information about the prediction for
each residue. For the summary, either sensitivity or specificity
is chosen by the user, and the other value is estimated using
the ROC curve shown in Figure 1. The overview can be used
to examine the distribution of the predicted DNA or RNA-
binding residues along the input sequence. In the output
report, binding residues are labeled with ‘+’ and non-binding
residues are labeled with ‘�’. The confidence of prediction is
based on the SVM output and computed as (1 � s), where s is
the expected sensitivity for positive predictions or specificity
for negative predictions if the SVM output is used as the
threshold in the ROC analysis. Intuitively, the confidence
value indicates where the SVM output is ranked when com-
pared with all the true positive or true negative predictions
in the cross-validation. For example, the fifth residue (I) of
the input sequence in Figure 3 gives the SVM output equal
to �1.9374 and has the confidence for negative prediction
equal to 0.9847, which indicates that only 1.53% of the
non-binding residues in the PDNA-62 dataset have SVM
outputs less than �1.9374. For the prediction overview, the

confidence level is computed as the floor of (10 · confidence)
so that it ranges from the lowest level 0 to the highest level
9 for presentation.

CONCLUSIONS

In this work, we have described a new SVM-based approach
for prediction of DNA and RNA-binding residues based on
amino acid sequence data. The average of sensitivity and
specificity reaches nearly 70% for prediction of DNA-binding
residues and 	68% for prediction of RNA-binding residues.
We have demonstrated that the prediction results can provide
useful information for understanding protein–nucleic acid
interactions. A web server, called BindN, has been developed
for efficient online predictions. Currently, work is being per-
formed to further improve the prediction accuracy by includ-
ing more sequence features for the input encoding. In addition,
the current system uses a fixed cutoff distance (3.5 s) to dis-
criminate binding residues from non-binding ones. This lim-
itation will be overcome by constructing a series of SVM
models with different cutoff distances and allowing users to
choose which model to be used for online predictions.

SUPPLEMENTARY DATA

Supplementary data are available at NAR Online.
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