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Abstract

Motivation: As fewer than 1% of proteins have protein function information determined experimentally, computationally
predicting the function of proteins is critical for obtaining functional information for most proteins and has been a major
challenge in protein bioinformatics. Despite the significant progress made in protein function prediction by the community
in the last decade, the general accuracy of protein function prediction is still not high, particularly for rare function terms
associated with few proteins in the protein function annotation database such as the UniProt.
Results: We introduce TransFew, a new transformer model, to learn the representations of both protein sequences and
function labels (Gene Ontology (GO) terms) to predict the function of proteins. TransFew leverages a large pre-trained
protein language model (ESM2-t48) to learn function-relevant representations of proteins from raw protein sequences
and uses a biological natural language model (BioBert) and a graph convolutional neural network-based autoencoder
to generate semantic representations of GO terms from their textual definition and hierarchical relationships, which
are combined together to predict protein function via the cross-attention. Integrating the protein sequence and label
representations not only enhances overall function prediction accuracy over the existing methods, but substantially
improves the accuracy of predicting rare function terms with limited annotations by facilitating annotation transfer
between GO terms.
Availability: https://github.com/BioinfoMachineLearning/TransFew
Contact: chengji@missouri.edu
Supplementary information: Supplementary data are available .
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1. Introduction

Proteins are essential molecules that play critical functional

roles in biological systems. Their functions encompass

catalyzing biochemical reactions, serving as structural

elements, transducing cellular signals, defending against

viruses, regulating gene activities, among others. Elucidating

protein functions is crucial for gaining valuable insights into

the molecular intricacies of biological systems. However,

experimentally determining protein function is a time

consuming and laborious process. Currently, fewer than

1% known proteins have function information determined

experimentally according to the statistics in UniProt[1].

Therefore, it is important to develop computational methods

to predict protein function from sequence and other relevant

information.

In the realm of protein function prediction, there are

two common challenges: (1) effectively integrating diverse

information sources, such as protein sequence, protein-protein

interaction, structural features, domain features, and biological

texts, to accurately predict protein functions [2], and (2)

accurately assigning rare or novel Gene Ontology(GO) terms

(labels) [3, 4] with few/no observations in labeled protein

function datasets to new proteins that may have the function.

It is harder to predict rare (low-frequency) GO terms than

common GO terms because the former is less represented than

the latter in the function datasets. But it is important to predict

rare GO terms because they are usually specific and highly

informative function classes that are more useful for generating

biological hypotheses than common ones. Moreover, a large

portion of all the GO terms are rather rare. Out of over 40, 000

GO terms in the three main Gene Ontology categories: Cellular

Component (CC), Molecular Function (MF), and Biological

Process (BP), around 20, 000 terms each are assigned to fewer

than 100 proteins experimentally [5]. Therefore, there is an
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urgent need to develop computational methods to predict rare

function terms for proteins whose function is described by them.

Predicting rare GO terms is analogous to the few-shot

learning problems [6] in various domains like computer vision[7,

8, 9], and natural language processing(NLP). For example, in

the classification task of named entity typing[10, 11] in NLP,

assigning rare entity types to entity names pose a similar

challenge, due to the increasing size and granularity of entity

types. Two kinds of methods, i.e., embedding-based methods

and generative methods, have been proposed to tackle this

challenge[12]. Embedding-based methods focus on learning

an embedding space associating low-level features of highly

annotated classes with semantic information of both highly

annotated classes and rarely annotated classes to transfer

knowledge from highly annotated classes to rarely annotated

ones with few annotations. Generative methods generate

features for rare classes based on samples from adequately

annotated classes, converting the problem into the conventional

supervised learning. In the protein function prediction, the

hierarchical structure and textual descriptions of GO terms

(classes/labels) provides us with the vital semantic information

to transfer knowledge from the well-annotated classes to the

ones with few or no annotations [13].

In this study, we introduce an embedding-based deep

learning method called TransFew to predict protein functions[2],

with an emphasis on improving the prediction of protein

function described by rare GO terms. TransFew generates a

function-relevant representations of a single protein sequence in

the sequence space using a pretrained protein language model

(i.e., ESM2[14, 2]) and multi-layer perceptrons (MLP). The

sequence representation of a protein is generated by multiple

MLP modules with residual connections each designed to

predict functions for proteins in terms of a specific group of

GO terms with similar annotation frequency, which therefore

cover all the GO terms from rare ones to common ones equally.

TransFew also generates a semantic representation of all the GO

terms (labels) in the label space from their textual description

(definition) and their hierarchical relationships in the Gene

Ontology graphs (e.g., the inheritance and composition

relationships (i.e., similarity) between GO terms) using a

graph convolutional neural network (GCN)-based auto-encoder

and a biological natural language model (BioBert) [15, 16],

which facilitates the transfer of annotations from common GO

terms to rare ones according to their relationships. TransFew

then uses a joint feature label embedding technique based

on the cross attention to integrte the label representations

and sequence representations to accurately predict protein

functions.

TransFew not only improves the overall accuracy of

protein function prediction over several existing sequence-based

function prediction methods, but also substantially enhances

the prediction of rare GO terms.

2. Materials and Methods

The overall architecture of TransFew is illustrated in Figure

1. It has three components: (1) a query processor consisting

of multiple MLPs to extract function-relevant sequence

representations from a protein sequence (query), (2) a label

processor to extract label representations for all the GO terms

(labels), and (3) a joint feature-label embedding network to

combine sequence and label representations to predict the

function of a protein. One TransFew model was trained to

predict the GO terms in each of the three GO function

categories (molecular function (MF), cellular component (CC)

and biological process (BP)), respectively.

2.1. Query processor
The query processor is to generate the function-relevant

sequence representations for proteins. Protein function terms

have very different annotation frequency in the labeled protein

function datasets. Here, the annotation frequency of a GO

term is the number of proteins that are labelled to have it as

function. Rare GO terms are the ones that only occur to be

the function labels of a small number of proteins. Generating a

simple representation for all the GO terms together regardless

of their frequency allows the commons GO terms dominate the

rare (low-frequency) GO terms, which can reduce the accuracy

of predicting them. Therefore, we partitioned GO terms into

n groups for a Gene Ontology category (i.e., MF, CC or BP)

based on their annotation frequency, and design n MLPs to

learn a representation for the n group separately (Figure 1A),

which allows each MLP to focus on learning a representation

in terms of the GO terms in each group including the ones

consisting of rare GO terms. Specifically, the GO terms of BP

were partitioned into three groups and the GO terms of CC and

MF into two groups. The statistics for the partitions is shown

in Table 1

Each MLP (i.e., MLPi) takes as input the sequence features

of a protein generated by a large pretrained protein language

model, ESM2 t48[14] from its sequence, and outputs a vector

qi ∈ RD∥Gi∥ , where ∥Gi∥ is the number of GO terms in

a GO group Gi. ESM-2t48 [14] accepts the sequence of a

protein as input and generates feature embeddings at multiple

layers. Here, the per-residue embeddings of the last layer (48th

layers) are taken out and averaged by the mean aggregator

to generate the embedding of the protein, whose dimension

is 5120. For a protein sequence exceeding the length limit of

ESM2 t48, i.e., 1022 residues, it is divided into chunks of length

1022 except the last chuck that may have fewer than 1022

residues, each of which is processed by ESM2 t48 separately.

The embeddings for all the chunks are concatenated as the

embedding of the full protein sequence. In addition to using

ESM-2t48 to generate input features for the MLP, we also tried

to use multiple sequence alignments (MSAs) [19] and InterPro

domain annotations [20, 21, 22, 23] of proteins to generate input

features for the MLPs. The details of generating MSAs and

InterPro domain annotations are described in Supplementary

Note 1 and Supplementary Note 2. However, according to

the ablation study, adding them on top of the features based

on ESM-2t48 does not improve protein function prediction

accuracy, and therefore they are not included into the final

version of TransFew.

The detailed architecture of a MLP of generating the

representation of a protein from its sequence features is depicted

in Figure 1B. The MLP has multiple blocks, each of which has a

fully connected linear layer, followed by a batch normalization

layer and a Gaussian Error Linear Unit (GELU). The input for

each block except for the last one is added to its output via a

skip connection, resulting in a residual network. The output of

the last block is used as input for a sigmoid function to predict

the probability of each GO term represented as logit.

The entire query processor, along with all other components,

is jointly trained. Each MLP is specifically tailored to predict

the GO terms within its corresponding protein group prior to

integration with other TransFew components. The output qi (a
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Fig. 1. The overall architecture of TransFew. (A) The three components of TransFew: a query processor(top left) to generate sequence representation

using multi-layer perceptrons (MLPs) and ESM2, a label processor(top right) to extract label representations using Biobert [17] and a graph convolutional

neural networks (GCN)-based auto-encoder[18], and a joint feature-label embedding network to combine sequence and label representations via the cross

attention for a MLP to make final function prediction. (B) The detailed design of a typical MLP module used in TransFew.

Table 1. The partition of GO terms into groups according to

their annotation frequency for three gene ontologies (BP, MF, and

CC). MF and CC terms are partitioned into two groups according

to the frequency threshold of 30 respectively, while BP terms are

partitioned into three groups because BP has many more GO terms

than MF and CC. The last column reports the number of GO terms

in each partition.

Ontology Partition Number of GO Terms

BP 1 - 5 7892

BP 6 - 30 6977

BP > 30 6415

MF 1 - 30 6040

MF > 30 1183

CC 1 - 30 2083

CC > 30 873

vector of predicted logits of the GO terms in a group Gi) that

a MLP generated for an input protein is the representation

of the protein in terms of the GO terms in the group. The

representations from all the MLPs are combined as the final

query representation of the protein in terms all the GO terms

in a gene ontology (MF, CC, or BP), which is the output of the

query processor.

The combination process involves employing a scatter

operation[24, 25], wherein the values produced by each MLP

are distributed within the query representation tensor to match

the predefined order of the GO terms.

2.2. Label processor
The label processor in Figure 1A is used to generate

semantic representations for all the GO terms (labels) under

consideration. Two types of label data, i.e., the relations

between GO terms in a GO Graph and the definition of GO

terms (the textual descriptions) are used as input for the label

processor.

The relationships between GO terms (nodes) in a GO graph

are represented by an adjacency matrix A, where each row

encodes the relationships of a node. The entry Aij is set to

1 if node i is an ancestor of j or equal to j, and 0 otherwise. A

encodes the hierarchical relationships between the GO terms.

For the definitions of the GO terms, we collected the textual

description of each GO term, which contains what the term

represents as well as reference(s) to the original source of the

information. The textual description of each GO term is used by

a pre-trained biomedical language model, BioBert [15, 16], to

generate an embedding for it. The dimension of the embedding

(De) is 768, which is set by BioBERT. The embedding is

considered the semantic features of each GO term.

The hierarchical relationships and the semantic embeddings

of the GO terms are integrated by a graph auto-encoder

model [18] to generate the representation of all the GO terms

(labels). The input for the model is a GO graph, in which

the relationships between nodes (GO terms) are stored in the
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matrix A and the feature of each node is its semantic embedding

generated from the textual description of its GO term. The

model uses an encoder-decoder architecture, where the encoder

is a two-layer graph convolutional network (GCN)[26] defined

as:

GCN(X,A) = ÃReLU(ÃXW0)W1

Ã = D
− 1

2 AD
− 1

2

(1)

W1 and W2 are the weight matrices, Ã is the symmetrically

normalized form of the A, and X is the matrix of the semantic

embeddings of all the GO terms. ReLU denotes the ReLU

activation function. We use the inner product decoder to

reconstruct A as Â from the embeddings Z outputted by the

GCN model as follows:

Z = GCN(X,A) and Â = σ(ZZ
⊤
) (2)

where σ(·) is the logistic sigmoid function. The graph auto-

encoder model was pretrained to reconstruct the GO Graph, A,

from A itself and the semantic embeddings of the GO terms,

through the self-supervised learning. After the training, the Z

(Z ∈ RDc×De) extracted from the bottleneck layer of the GCN-

based autoencoder is used as the label representation, where Dc

is the number of GO terms and De represents the dimension

of the label representation (in this work De = 1024). It is

worth noting that the label representation is independent of

any protein.

Additionally, we investigated two alternative encoder

architectures, such as Graph Attention Networks (GAT) [27, 28]

and Graph Transformer (TransformerConv) [29] to combine the

features of the textual description and GO term relationships,

but they did not perform better than the the GCN-based

auto-endcoder (see Supplementary Note 4).

2.3. Joint feature-label embedding network
We designed a joint-label embedding network to match and

combine the sequence representation of a protein generated by

the query processor and the label representation of all the GO

terms generated by the label processor to predict the GO terms

for the protein (Figure 1A).

Different from one previous work [30] using a bilinear

function to score the match between a given protein query (q)

and ontology terms and another work [13] applying a scoring

function based on softmax and 1D convolutional network

to match them, we developed a cross attention-based joint

embedding model to measure the association between query

proteins and GO terms to improve protein function prediction.

Given the label representation Z ∈ RDc×De , and the query

protein representation q ∈ RDc , TransFew converts the query

representation q to u ∈ RDm using a linear layer as follows:

u = W⊤
q q, and Wq ∈ RDc×Dm , and constructs two memory

components: key K ∈ RDc×Dm and value V ∈ RDc×Dm

from Z, using two embedding matrices Wk ∈ RDb×Dm and

Wv ∈ RDb×Dm respectively. The cross attention between the

representation of a query protein q and the representation of

all the GO term (gi ∈ RDe , i ∈ {1, 2, ...Dc}) is computed as:

Attention(u,K, V ) = softmax(
uK⊤
√
dk

)V
(3)

where dk = Dm.

The representation of the query protein and the cross

attention are combined by a MLP with a residual connection to

predict the probability of GO terms (y) for the query protein

as follows:

y = sigmoid(W
⊤
(o + u))

(4)

where W ∈ RDc×Dm and o = Attention(u,K, V )

The entire model (Figure 1A) including the feature-label

embedding network, the query processor, and the pretrained

label processor was optimized by minimizing the binary cross-

entropy loss between predictions and true labels. It is worth

noting that the protein function prediction problem is a multi-

label classification problem, in which a protein may have

multiple correct labels.

2.4. Data Sets
We collected proteins from the UniProtKB/Swiss-Prot data

repository that were released by November 2022 for training

and validation. The proteins were split into the training

dataset and test dataset according to the 90% - 10% ratio.

The functional annotations (GO terms) of the proteins were

obtained from from UniProt, and the GO ontology graph as

well as GO textual data were collected from the Gene Ontology

Resource[31, 4]. To get all the terms (labels) associated with

a protein, we first retrieved its immediate GO terms provided

in UniProt and then for each immediate GO term we traveled

up the GO graph to retrieve all its ancestor GO terms. Only

the GO terms with relatively strong evidence codes: EXP,

IDA, IPI, IMP, IGI, IEP, TAS, IC, HTP, HDA, HMP, HGI,

HEP are used as the function labels for each protein, following

the criteria used in the Critical Assessment of Functional

Annotation (CAFA) [32].

To create an independent test dataset, we obtained

proteins in the UniProtKB/Swiss-Prot database whose function

annotation were released in December 2023. This test dataset is

called Test all. Moreover, we used MMseqs [33] to filter out the

sequences in Test all that have more than 30% identity with

the sequences in the training dataset to create a redundancy

reduced dataset - Test novel, which is used to test how well

TransFew can generalize to new proteins that have little or no

sequence similarity with the training proteins.

The number of proteins in the training dataset, validation

dataset, Test all dataset, and Test novel dataset for each gene

ontology category (MF, CC, and BP) is reported in Table 2.

Table 2. The number of proteins in training, validation, Test all,

and Test novel datasets for each of the three GO categories (BP,

MF, and CC).

Ontology Train Validation Test all Test novel

BP 82, 989 9, 221 6, 366 4, 292

MF 70, 773 7, 864 2, 857 1, 800

CC 83, 620 9, 292 3, 756 2, 342
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3. Results & Discussions

3.1. Benchmarking TransFew with three baseline
methods on the test datasets

We compared TransFew with three baseline methods (Näıve,

Tale, and NetGO3[34, 22, 21]) on the Test all dataset in

terms of multiple metrics of evaluating protein function

prediction, including Fmax, Area under the Precision-Recall

curve (AUPR), weighted Fmax, and Smin of measuring the

uncertain/missing information in function predicitons [35, 36,

37] (see the detailed definition of the evaluation metrics in

Supplementary Note 5).

The Näıve method simply uses the frequency of Gene

Ontology (GO) terms in the training dataset to make

predictions.

Tale [38] is a transformer-based method that integrates

protein sequence and label features to predict protein

function by jointly embedding sequence and hierarchical label

information. Although Tale and TransFew are common in

combining sequence and label features, they have several

significant differences. Firstly, TransFew incorporates both

hierarchical relationships and textual definitions to generate

label representations, while Tale only uses the former. Secondly,

TransFew extracts sequence embeddings of a protein using a

pre-trained language model (ESM2), whereas Tale uses its own

encoder to generate the embeddings. Thirdly, the MLPs to

generate sequence representations of proteins in terms of both

common and rare GO terms, the GCN-based auto-encoder

of generating label representations , and the cross attention

mechanism of combining the sequence and label representations

in TransFew are all different from the network architecture

used in Tale. It is also worth noting that Tale combines its

machine learning predictions with the homology-based function

predictions made by DIAMOND [39] to further improve its

performance. We ran a locally installed Tale to obtain its

predictions for the test proteins.

NetGO3[34, 22, 21] is a highly sophisticated ensemble

method combining the outputs of seven individual function

prediction methods using different sources of input information:

Naive prediction based on GO term frequency, BLAST-KNN

based on k-nearest neighbors of BLAST search), LR-3mer

based on the logistic regression of the frequency of amino

acid trigrams, LR-InterPro based on the logistic regression

of InterPro features encompassing rich domain, family, and

motif information, Net-KNN which extracts and incoporates

protein-protein interaction network information from STRING

database[40] into the system, LR-Text utilizing the text data

about proteins extracted from PubMed[41], and LR-ESM that

generates embeddings for each protein using ESM-1b[42] for

a learning-to-rank algorithm to predict function. We utilized

the NetGO3 web server to obtain its predictions for the test

proteins.

The results of TransFew, Naive, Tale and NetGO3 on the

Test all dataset are presented in Table 3A. TransFew performs

best in all three GO categories in terms of all the metrics among

all the situations except one. In some cases, the improvement

over the second best performing method is substantially. For

instance, Fmax of TransFew for predicting GO terms in BP

is 0.605, 40% higher than 0.431 of NetGO3. The precision-

recall curves of the four methods for the three gene ontology

categories (BP, MF, and CC) on the Test all dataset are

visualized in Figure 2 respectively. The outermost curve above

all the other curves is that of TransFew. Its improvement of

predicting the GO terms in BP is particularly substantial.

On the Test novel dataset consisting of proteins that have

≤ 30% sequence identity with the proteins in the training data,

TransFew also performs best among all the methods in all three

GO categories among all the situations except one (Table 3B).

The performance of TransFew on Test novel is only slightly or

moderately lower than on Test all in terms of different metrics,

indicating that it generalizes well to new test proteins that have

no or little sequence identity with the training proteins.

It is worth noting that TransFew is a pure machine learning

method, while NetGO3 and Tale combines machine learning

predictions and homology-based function annotation transfer

to make final prediction. The results show that a pure end-to-

end machine learning method like TransFew can perform better

than ensemble methods based on both machine learning and

homology transfer for protein function prediction.

Fig. 2. The Precision-Recall curves of TransFew, Naive, Tale and NetGO3

for the three ontologies (BP, MF, and CC) on the Test all dataset,

respectively. The circled red dot highlights the point where each method

achieves the highest Fmax
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Table 3. The performance of TransFew, Naive, Tale, and NetGO3 on the test datasets in the three GO categories (BP, MF,

and CC). (A) The results on all the new proteins in Test all. (B) The results on Test novel comprised of proteins that have ≤
30% sequence identity with the proteins in the training dataset of TransFew. Bold font highlights the best result. TransFew

was trained using all the GO terms with at least one annotation in the training dataset.

(A) On Test all

Methods
Fmax (↑ ) WFmax (↑ ) AUPR ( ↑ ) Smin ( ↓ )

BP MF CC BP MF CC BP MF CC BP MF CC

Naive 0.246 0.374 0.539 0.209 0.309 0.349 0.127 0.143 0.425 32.826 10.986 9.779

Tale 0.290 0.581 0.648 0.252 0.554 0.529 0.169 0.530 0.688 32.786 8.109 8.104

NetGO3 0.431 0.659 0.696 0.397 0.637 0.597 0.352 0.616 0.669 28.278 6.749 7.146

TransFew 0.605 0.717 0.736 0.585 0.703 0.643 0.501 0.555 0.734 18.024 5.483 6.379

(B) On Test novel

Methods
Fmax (↑ ) WFmax (↑ ) AUPR ( ↑ ) Smin ( ↓ )

BP MF CC BP MF CC BP MF CC BP MF CC

Naive 0.245 0.367 0.552 0.206 0.321 0.365 0.121 0.137 0.434 31.439 10.366 9.312

Tale 0.289 0.563 0.659 0.252 0.540 0.539 0.168 0.496 0.703 31.296 7.812 7.719

NetGO3 0.423 0.632 0.707 0.391 0.616 0.602 0.342 0.565 0.674 27.150 6.684 6.756

TransFew 0.567 0.667 0.732 0.543 0.653 0.634 0.461 0.494 0.719 18.638 6.061 6.338

3.2. Performance of predicting rare GO terms
We investigated how well TransFew predicted the rare GO

terms with low frequency (few annotations). We group GO

terms with <= 100 annotations into 20 groups according

to their number of annotations (frequency) in the training

data at an interval size of 5. The average AUPRC scores of

TransFew, Tale, and NetGO3 predicting the GO terms in each

group for BP, MF, and CC are shown in Figure 3. TransFew

outperforms Tale for all the groups and NetGO3 for most

groups. Particularly, its improvement of predicting GO terms

in BP over Tale and NetGO3 is very substantial. The average

AUPR score of TransFew predicting rare GO terms in BP is

usually a few times that of Tale and NetGO3. For the rarest

GO terms with ≤ 5 annotations, the AUPR score of TransFew

is also substantially higher than NetGO3 and Tale for BP, MF,

and CC.

The AUPR score of TransFew for different GO term groups

only moderately oscillates with respect to their annotation

frequency. The Pearson’s correlation between the AUPR of

TransFew and the annotation frequency of the GO terms in BP,

MF, CC, MF and BP is only 0.20, 0.33, and 0.28, respectively.

The results indicate its performance is rather robust with the

respect to the change of the annotation frequency of GO terms.

3.3. The contributions of different components and
implementations of TransFew

We tested how different components or implementations of

TransFew influenced its performance. MLP (Interpro), MLP

(MSA), and MLP (ESM) denote the three implementations of

using the Interpro domain features, the MSA features, and

the sequence features generated by ESM2 t48 respectively to

generate the sequence representation for function prediction,

without using the label representation at all. TransFew stands

for the final implementation that combines the sequence

representation generated from the ESM2 t48 features and the

label representation to predict protein function. TransFew +

MSA + Interpro is the same as TransFew except that it uses

ESM2 t48 features together with the MSA and Interpro features

to generate the sequence representation. MLP (Interpro), MLP

(MSA), and MLP (ESM) were trained on the GO terms that

have at least 30 annotations, while TransFew and TransFew +

MSA + Interpro were trained on the GO terms with at least

one annotation. The results of the different implementations

are shown in Table 4.

Among the three methods of using only sequence

representations to predict protein function, MLP (ESM)

performs better than MLP (Interpro) and MLP (MSA) in terms

of all the metrics for all three gene ontologies, indicating that

the ESM2 t48 features are better than the MSA features and

the Interpro features for generating sequence representations

for protein function prediction.

TransFew that combines the sequence representation

generated by ESM2 t48 and the label representation generated

from the GO graph and the text description of GO

terms performs better than MLP (ESM) without using the

label representation in all but two situations, indicating

that integrating the sequence representation and the label

representation can generally improve protein function prediction.

It is a little surprising to observe that TransFew performs

better than TransFew + MSA + Interpro that use the

ESM2 t48 features with additional MSA and Interpro features

to generate the sequence representation, suggesting that adding

the MSA and Interpro features on top of the ESM2 t48 features

does not improve the performance. The reason might be

that adding the additional features does not increase relevant

information much but the complexity of the model, leading

to the deterioration of the generalization performance. Indeed,

Supplementary Note 3 shows that TransFew + MSA + Interpro

fits the training data better than TransFew but performs worse

on the validation data than TransFew.
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Fig. 3. The AUPR score of three methods (TransFew, Tale, and NetGO3) predicting relatively rare GO terms in each GO group within an interval

of annotation frequency for the three gene ontologies (BP, MF, and CC). The X-axis represents the annotation frequency of the GO term groups. The

Y-axis represents the average AUPR.

Table 4. The performance of different components or implementations of TransFew on the Test all dataset in the three GO

categories (BP, MF and CC). TransFew is the final version of the method in this work. Interpro, MSA, ESM, and TransFew+

stand for MLP (Interpro), MLP (MSA), MLP (ESM), and TransFew + MSA + Interpro, respectively.

Methods
Fmax (↑ ) WFmax ( ↑ ) AUPR ( ↑ ) Smin ( ↓ )

BP MF CC BP MF CC BP MF CC BP MF CC

Interpro 0.368 0.632 0.667 0.330 0.604 0.547 0.281 0.596 0.729 29.809 7.219 7.494

MSA 0.372 0.628 0.671 0.332 0.600 0.549 0.285 0.592 0.677 29.616 7.504 7.635

ESM 0.515 0.690 0.735 0.478 0.662 0.638 0.471 0.654 0.788 22.875 6.367 6.551

TransFew 0.605 0.717 0.736 0.585 0.703 0.643 0.501 0.555 0.734 18.024 5.483 6.379

TransFew+ 0.351 0.679 0.716 0.296 0.659 0.617 0.235 0.497 0.629 30.323 6.265 6.964
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4. Conclusion and Future Work

In this work, we present a new approach (TransFew) combining

the information in the input space (the protein sequence

space) and the output space (the function label space) to

improve protein function prediction, particularly the accuracy

of predicting rare function terms (GO term labels with few

annotations). In the input space, we use a large pretrained

protein language model to generate features for a protein

sequence, which are then mapped to the protein function

space defined by both common and rare GO terms to create

a function-relevant representation for the protein. Learning the

unbaised representations of proteins in terms of both common

and rare GO terms makes it possible to predict them on the

equal footing. In the output space, we use a graph convolutional

neural network-based auto-encoder to combine the textual

definition of GO terms and the inheritance and composition

relationships between GO terms in the GO graphs to generate

the semantic representations for all the GO terms, capturing

the similarity between GO terms to facilitate the transfer of

annotation from common GO terms to rare ones.

The representations in the input space and the output space

are integrated by a novel cross-attention mechanism to build

the associations between the protein representation and the

label representation, which are used to predict the final function

terms for the protein. TransFew not only performs better than

two highly sophisticated protein function prediction methods

on newly released test proteins, but also can predict the rare

GO terms more accurately, demonstrating the approach of

representing and combining the data of GO terms and proteins

is effective in predicting all kinds of GO terms.

Our experiment also demonstrates that the sequence

features generated by a large protein language model

(ESM2 t48) is sufficient to create a functional-relevant

representation of protein sequences that is more useful for

protein function prediction than the features generated from

multiple sequence alignments (MSAs) and Interpro domain

features. Even though this does not rule out the usefulness

of MSAs and Interpro domain features, it does show that

very large pretrained protein language models can effectively

capture the evolutionary patterns in protein sequences relevant

to protein function prediction.

Even though three modalities of data including protein

sequences, textual description of GO terms, and hierarchical

relationship between GO terms have been integrated by

TransFew to predict protein function, other relevant modalities

of protein data [43] such as protein structures, protein-

protein interaction, hypothetical function annotations based

on homology transfer, and the textual description of proteins

have not be explored in this work. In the future, we plan

to add all these modalities into our approach, harnessing the

combined power of diverse features to further enhance the

accuracy and robustness of protein function prediction. One

promising avenue is to leverage multi-modal language models

for protein function prediction, as demonstrated in computer

vision [44, 45, 46] and a recent bi-modal protein language model

[47]. By adopting such an approach, we can potentially learn a

comprehensive representation of proteins encompassing protein

sequence, structure, interaction, gene ontologies, and prior

human knowledge to improve protein function prediction.
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sensitive protein sequence searching for the analysis of

massive data sets. Nature biotechnology, 35(11):1026–1028,

2017.

34. Ronghui You, Shuwei Yao, Yi Xiong, Xiaodi Huang,

Fengzhu Sun, Hiroshi Mamitsuka, and Shanfeng Zhu.

NetGO: improving large-scale protein function prediction

with massive network information. Nucleic Acids Research,

47(W1):W379–W387, 05 2019.

35. Wyatt T Clark and Predrag Radivojac. Information-

theoretic evaluation of predicted ontological annotations.

Bioinformatics, 29(13):i53–i61, 2013.

36. Naihui Zhou, Yuxiang Jiang, Timothy R Bergquist,

Alexandra J Lee, Balint Z Kacsoh, Alex W Crocker,

Kimberley A Lewis, George Georghiou, Huy N Nguyen,

Md Nafiz Hamid, et al. The cafa challenge reports

improved protein function prediction and new functional

annotations for hundreds of genes through experimental

screens. Genome biology, 20(1):1–23, 2019.

37. Yuxiang Jiang, Tal Ronnen Oron, Wyatt T Clark, Asma R

Bankapur, Daniel D’Andrea, Rosalba Lepore, Christopher S

Funk, Indika Kahanda, Karin M Verspoor, Asa Ben-Hur,

et al. An expanded evaluation of protein function prediction

methods shows an improvement in accuracy. Genome

biology, 17(1):1–19, 2016.

38. Yue Cao and Yang Shen. TALE: Transformer-based protein

function Annotation with joint sequence–Label Embedding.

Bioinformatics, 37(18):2825–2833, September 2021.

39. Benjamin Buchfink, Chao Xie, and Daniel H Huson. Fast

and sensitive protein alignment using diamond. Nature

methods, 12(1):59–60, 2015.

40. Damian Szklarczyk, Andrea Franceschini, Stefan Wyder,

Kristoffer Forslund, Davide Heller, Jaime Huerta-Cepas,

Milan Simonovic, Alexander Roth, Alberto Santos,

Kalliopi P Tsafou, et al. String v10: protein–protein

interaction networks, integrated over the tree of life.

Nucleic acids research, 43(D1):D447–D452, 2015.

41. Quoc Le and Tomas Mikolov. Distributed representations

of sentences and documents. In International conference

on machine learning, pages 1188–1196. PMLR, 2014.

42. Alexander Rives, Joshua Meier, Tom Sercu, Siddharth

Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott,

C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological

structure and function emerge from scaling unsupervised

learning to 250 million protein sequences. PNAS, 2019.

43. Renzhi Cao and Jianlin Cheng. Integrated protein function

prediction by mining function associations, sequences,

and protein–protein and gene–gene interaction networks.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.11.584495doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.11.584495
http://creativecommons.org/licenses/by/4.0/


10 TransFew

Methods, 93:84–91, 2016.

44. Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, et al.

Learning transferable visual models from natural language

supervision. In International conference on machine

learning, pages 8748–8763. PMLR, 2021.

45. Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,

Katherine Millican, Malcolm Reynolds, et al. Flamingo: a

visual language model for few-shot learning. Advances in

Neural Information Processing Systems, 35:23716–23736,

2022.

46. Julián N Acosta, Guido J Falcone, Pranav Rajpurkar, and

Eric J Topol. Multimodal biomedical ai. Nature Medicine,

28(9):1773–1784, 2022.

47. Michael Heinzinger, Konstantin Weissenow, Joaquin Gomez

Sanchez, Adrian Henkel, Martin Steinegger, and Burkhard

Rost. Prostt5: Bilingual language model for protein

sequence and structure. bioRxiv, pages 2023–07, 2023.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.11.584495doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.11.584495
http://creativecommons.org/licenses/by/4.0/

	Introduction
	 Materials and Methods
	Query processor
	Label processor
	Joint feature-label embedding network
	Data Sets

	Results & Discussions
	Benchmarking TransFew with three baseline methods on the test datasets
	Performance of predicting rare GO terms
	The contributions of different components and implementations of TransFew

	Conclusion and Future Work
	Acknowledgments

