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Abstract
Motivation: Proteins play pivotal roles in biological systems, and precise prediction of their functions is indispensable for practical applications. 
Despite the surge in protein sequence data facilitated by high-throughput techniques, unraveling the exact functionalities of proteins still 
demands considerable time and resources. Currently, numerous methods rely on protein sequences for prediction, while methods targeting 
protein structures are scarce, often employing convolutional neural networks (CNN) or graph convolutional networks (GCNs) individually.
Results: To address these challenges, our approach starts from protein structures and proposes a method that combines CNN and GCN into a 
unified framework called the two-model adaptive weight fusion network (TAWFN) for protein function prediction. First, amino acid contact maps 
and sequences are extracted from the protein structure. Then, the sequence is used to generate one-hot encoded features and deep semantic 
features. These features, along with the constructed graph, are fed into the adaptive graph convolutional networks (AGCN) module and the multi- 
layer convolutional neural network (MCNN) module as needed, resulting in preliminary classification outcomes. Finally, the preliminary classifica
tion results are inputted into the adaptive weight computation network, where adaptive weights are calculated to fuse the initial predictions from 
both networks, yielding the final prediction result. To evaluate the effectiveness of our method, experiments were conducted on the PDBset and 
AFset datasets. For molecular function, biological process, and cellular component tasks, TAWFN achieved area under the precision-recall curve 
(AUPR) values of 0.718, 0.385, and 0.488 respectively, with corresponding Fmax scores of 0.762, 0.628, and 0.693, and Smin scores of 0.326, 
0.483, and 0.454. The experimental results demonstrate that TAWFN exhibits promising performance, outperforming existing methods.
Availability and implementation: The TAWFN source code can be found at: https://github.com/ss0830/TAWFN.

1 Introduction
Proteins’ roles within biological organisms are indispensable, 
encompassing vital life processes such as signal transduction, 
catalyzing metabolic reactions, and maintaining cellular struc
tures. Accurately identifying protein functions allows for a 
deeper understanding of disease mechanisms and holds promise 
for discovering new therapeutic targets (Eisenberg et al. 2000). 
Despite the surge in protein sequence data facilitated by high- 
throughput technologies, determining the precise functions of 
proteins still demands significant time and resources. For in
stance, when performing a BLAST (Altschul et al. 1997) se
quence alignment for a mouse protein LYPA2_MOUSE 
(Uniprot Symbol: Q9WTL7) with a sequence length of 231, it 
took 39 000 ms. If such sequence comparisons are extended to 
millions of protein sequences followed by analysis and annota
tion, significantly more time would be required. Therefore, 
many protein functions remain incompletely resolved. 
Developing an accurate and efficient protein function predic
tion method is thus of paramount importance. Protein function 
prediction involves analyzing a given protein sequence or re
lated information to infer the gene ontology (GO) terms it 
might possess. These GO terms consist of three categories: bio
logical process (BP), molecular function (MF), and cellular 
component (CC). Using GO:0031981 in the CC category as an 

example, it represents the volume surrounded by the nuclear 
membrane. Its ancestral graph is illustrated in Supplementary 
Fig. S1. Each term in every ontology category can be repre
sented as a directed acyclic graph, where parent nodes of 
broader functional terms point to child nodes of more specific 
functional terms. Current methods for predicting protein func
tions focus on three main areas: protein sequences, protein 
structures, and protein–protein interaction networks.

For protein sequences, Kulmanov et al. used convolutional 
methods on groups of three amino acids (Kulmanov et al. 
2018) and one-hot encoding with different convolutional ker
nels (Kulmanov and Hoehndorf 2020), incorporating BLAST 
sequence similarity (Altschul et al. 1997). One-hot encoding 
is sparse, so protein language models like ESM (Rives et al. 
2021), ProtTrans (Elnaggar et al. 2021), and UDSMProt 
(Strodthoff et al. 2020) are used. Zhu et al. proposed ATGO 
(Zhu et al. 2022), which uses a pre-trained language model 
for protein sequences embedded within a triple neural net
work architecture to predict protein functions. Yuan’s 
SPROF-GO (Yuan et al. 2023) and Kulmanov’s DeepGO-SE 
(Kulmanov et al. 2024) both use sequence features generated 
by pre-trained protein language models to enhance the pre
diction performance of GO terms.

Biomedical literature is also used for prediction. DeepText2GO 
predicts functions using textual representation and sequence 
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information (You et al. 2018), while DeepAF uses ESM for se
quence feature extraction (Zhao et al. 2023). However, not all 
proteins have literature available.

For protein–protein interaction networks, methods predict 
functions based on connected proteins sharing functions 
(Oliver 2020). NetGO transfers known functions of interact
ing proteins to the target protein (You et al. 2019), with 
NetGO 2.0 incorporating literature and sequence informa
tion (Yao et al. 2021). These methods depend on functionally 
annotated proteins.

Structure-based methods use protein structures as inputs 
for graph neural networks (GNN) like DeepFRI, using struc
tural models from PDB (Berman et al. 2020) and SWISS- 
MODEL (Waterhouse et al. 2018). Lai and Xu developed the 
GAT-GO method (Lai and Xu 2022), a graph attention net
work approach that significantly enhances protein function 
prediction by leveraging predicted structural information and 
protein sequence embeddings. AlphaFold2 is essential for 
predicting structures. EGNN combines embeddings from pre- 
trained models with graph representations from AlphaFold2 
(Boadu et al. 2023). HEAL uses AlphaFold2-predicted struc
tures and the PDB database, employing Transformers for pre
diction (Gu et al. 2023).

Currently, using CNN or graph convolutional network 
(GCN) alone presents the following issues:

1) Information loss can occur when using CNNs because 
their local receptive fields may not capture the global 
structure of proteins. If key features are spread over a 
large area, CNNs might miss them by only focusing on 
local regions. Similarly, with GCNs, if the protein struc
ture has complex relationships that the graph convolu
tional layers cannot fully capture, it can result in 
incomplete representation of the protein’s features. 

2) GCNs are more suitable for handling graph-structured 
data, while CNNs are better for sequence data. Using 
only one of these networks may not fully capture the di
verse information in proteins, leading to limitations in 
feature representation. When protein structures include 
both sequence and graph information, relying on just 
one type of network cannot fully utilize these different 
sources, limiting a complete understanding of the pro
tein structures. 

To address these issues, we propose a novel protein func
tion prediction method called the two-model adaptive weight 
fusion network. Our approach integrates CNN and GCN, 
leveraging both protein structure and protein language mod
els. Protein structures are processed to obtain corresponding 
protein sequences.

Our primary contributions can be summarized as follows:

� In the aspect of GCNs, we construct a graph input net
work using the processed protein sequence features and 
the protein contact map. We employ GCN encoders to 
capture short-range information and introduce 
Transformers to capture long-range information. To bet
ter understand the topological semantics, we utilize atten
tion mechanisms to generate graph representations. 

� In the convolutional network aspect, we use the processed 
protein sequence features as input. We employ a multi- 
layer convolutional encoder, where multiple convolu
tional layers are cascaded. Additionally, we integrate a 

feature pyramid structure with a multi-scale deep feature 
extractor to capture local features. Furthermore, we intro
duce a multi-head attention mechanism to capture long- 
range dependencies between multi-scale local features. 

� By employing adaptive weight computation, we fuse the 
preliminary prediction results from both networks to ob
tain the final prediction outcome. 

� We conducted extensive experiments comparing TAWFN 
with baseline methods, including Blast (Altschul et al. 
1997), FunFam (Das et al. 2015), DeepGO (Kulmanov 
et al. 2018), DeepGOPlus (Kulmanov and Hoehndorf 
2020), DeepFRI (Gligorijevi�c et al. 2021), GAT-GO 
method (Lai and Xu 2022), ATGO (Zhu et al. 2022), 
SPROF-GO (Yuan et al. 2023), DeepGO-SE (Kulmanov 
et al. 2024), and HEAL (Gu et al. 2023). The results dem
onstrate that our performance surpasses other state-of- 
the-art methods, such as DeepFRI (Gligorijevi�c et al. 
2021) and HEAL (Gu et al. 2023). Our model also exhib
its outstanding generality and excellent interpretability, 
indicating that combining both approaches leads to im
proved effectiveness. 

2 Materials and methods
2.1 Overview
The structure of TAWFN, as shown in Fig. 1, primarily con
sists of four modules: Input data generation module, adaptive 
GCNs module, multi-layer convolutional neural network 
module, and adaptive fusion module. We use the input data 
generation module to construct the inputs, then train the 
inputs using AGCN and MCNN. Finally, we fuse the results 
from both using an adaptive fusion network.

2.2 Input data generation
2.2.1 Sequence features
In this method, two types of sequence features for proteins 
are utilized. One is obtained through the ESM-1b language 
model (Rives et al. 2021) to acquire semantic encoding, while 
the other is one-hot encoding. (i) ESM-1b encoding utilizes 
the ESM-1b model (Rives et al. 2021) for protein sequence 
encoding. ESM-1b is a pre-trained language model based on 
large-scale protein sequences, similar to the BERT model 
(Kenton and Toutanova 2019) in the field of natural lan
guage processing. ESM-1b model is pre-trained on a vast pro
tein database to learn semantic information and patterns of 
protein sequences, enabling the mapping of protein sequences 
into a high-dimensional semantic space. In this method, a ma
trix of size L×1280 is obtained, where L represents the se
quence length, for subsequent input. (ii) For the protein 
sequences obtained from structures, they are encoded using 
one-hot encoding. In this representation, each amino acid is 
encoded as a specific number. For example, for a protein se
quence of length L, it is encoded into a 1D vector of length L, 
where each amino acid is replaced with a numerical identifier 
ranging from 0 to 20, representing the 20 common amino 
acids and one for a missing position. The missing position 
refers to an unknown amino acid not belonging to the 20 
common amino acids at a specific sequence position (Liu 
et al. 2016). This situation is considered during experiments. 
This encoding method retains the sequence information be
tween amino acids. To combine it with ESM-1b encoding 
and extend it to the same dimension, an embedding operation 
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is utilized to transform it into a 2D matrix of size L×96, 
facilitating subsequent combinations.

2.2.2 Construction maps
Based on the protein structure, contact maps are constructed, 
representing the distances between all pairs of amino acid res
idues in the protein structure. The protein contact maps are 
represented as a 2D matrix. We employ a distance threshold 
method, where carbon atoms in the protein are connected if 
the distance between them is within a specified distance 
threshold. Assuming there are two carbon atoms u; vð Þ, if 
u � vj j ≥ θ, i.e. it is less than the set threshold, then it is con
sidered that there is no connection between the two carbon 
atoms. Conversely, if u � vj j ≥ θ, i.e. it is greater than or 
equal to the set threshold, then it is considered that there is 
an edge connection between the two carbon atoms, where θ 
is the distance threshold. In this method, the threshold θ is set 
to 10Å. Finally, the edge index Eindex 2 R2×E corresponding 
to the protein structure is obtained, where E represents the 
number of edges.

2.3 Adaptive GCNs
Protein structure can be represented as a graph, where amino 
acid residues represent nodes, and the contacts between resi
dues represent edges. For the AGCN module, there are two 
sub-modules: AGCN1 and AGCN2. In AGCN1, the input 
consists of node features obtained from ESM-1b encoding 
and the relationships between residues obtained from the 
protein contact map, forming a graph. Since ESM-1b encod
ing carries more protein information compared to one-hot 
encoding, combining them weakens the information in ESM- 
1b. Therefore, in experiments, only the ESM-1b encoding is 
initially inputted as node features. Considering comprehen
sive feature information, in AGCN2, the input consists of 
node features obtained from the combination of one-hot 

encoding and ESM-1b encoding, along with the relationships 
between residues obtained from the protein contact map, 
forming a graph. The network structure of AGCN1 and 
AGCN2 is the same, with only different inputs during experi
ments. The AGCN structure is illustrated in Fig. 2.

After inputting into AGCN, the node features first undergo 
processing through the LSTM module. LSTM is effective in 
handling sequential data and can capture long-range depen
dencies within the sequence, thereby extracting richer feature 
representations. Afterwards, the node features are passed 
through three layers of GCN encoders, with each layer hav
ing the same structure. The node features and relationships 
between nodes are inputted into the GCN encoder. In each 
layer, the features of each node are updated iteratively by 
computing the features of adjacent nodes (nodes connected 
by edges to the current node). The computation formula of 
GCN is shown in Equation (1) 

Hlþ 1 ¼ ReLU ~D
� 0:5 ~A ~D

� 0:5
H lð ÞW lð Þ

� �

; (1) 

where H lð Þ represents the node feature matrix of the lth layer, 
W lð Þ is the weight matrix of the lth layer, ~A ¼ Aþ I is the ad
jacency matrix A added with self-connections (plus the iden
tity matrix), ~D is the degree matrix of ~A, and ReLU(.) is the 
non-linear activation function. After passing through the 
GCN network layers, sufficient local geometric information 
is embedded.

In this approach, inspired by the HEAL (Gu et al. 2023) 
method, a Transformer (Baek et al. 2021) model is intro
duced, similar to the multi-head attention mechanism, to cap
ture long-range features using learnable node features. In this 
mechanism, features for m nodes are randomly generated, 
and these generated node features are treated as query vectors 
after linear transformation. Simultaneously, the input node 

Figure 1. The TAWFN model graph. The model consists of four modules: (a) input data generation module: this module generates protein contact maps 
and sequence encoding features, including ESM-1b encoding and one-hot encoding. (b) AGCN module based on GCN: this module includes two sub- 
modules, AGCN1 and AGCN2. Both sub-modules share the same AGCN network while processing different inputs. It produces the preliminary prediction 
results, ygcn. (c) MCNN module based on CNN: this module generates preliminary prediction results, ycnn. (d) Adaptive fusion module: this module fuses 
the two preliminary prediction results, ygcn and ycnn, through computation to generate the final prediction scores.
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features are transformed through GCN and regarded as key 
(K) and value (V) vectors, respectively. The structure diagram 
of the multi-head attention mechanism (MHA) is illustrated 
in Fig. 3.

Splitting K, Q, and V into the specified number of heads, 
we calculate a set of weights by computing the similarity be
tween the query vector Qi 2 Rm×D and the key vector 
Ki 2 RL×D. This yields a set of weights, as shown in Equation 
(2), which are then used to weight the value vectors to ob
tain Ψ i 2 Rm×D. 

Ψ i ¼ softmax
Qi � Ki

>

ffiffiffiffiffi
D
p

 !

� Vi; (2) 

where Qi and Ki represent the query vector and key vector of 
the current head, respectively, their dot product is divided by 
a scaling factor. Then, the softmax function is applied to com
pute the attention weights, which are multiplied by the current 
value vector Vi 2 RL×D to calculate the weighted feature.

This attention mechanism allows the model to focus on 
node features most relevant to the query. Finally, all the 
weighted features computed by each head are concatenated 
together, as shown in Equation (3), to obtain A 2 Rm×D 

A ¼ Ψ1;Ψ2 . . . ;ΨH½ �: (3) 

According to the training settings, the value of m is contin
ually updated. When processing for the last time, m is set 

to 1, meaning that all node features of a protein sequence are 
aggregated into a single node feature representation, similar 
to setting the parameter to 1 in adaptive pooling layers, 
resulting in a single value. The entire process uses the multi- 
head attention mechanism to compute attention weights for 
node features and achieves a pooling-like operation, aggre
gating node features into a new representation. This opera
tion aims to capture global features of the entire 
protein structure.

The results obtained from AGCN1 and AGCN2 are merged 
through adaptive fusion to obtain the final result of AGCN, 
following the calculation process described in Equation (4) 

Afinal ¼ α � Aesmþ 1 � αð Þ � Aesm� onehot: (4) 

As shown in Equation (5), the result is fed into a fully con
nected layer, followed by ReLU activation, dropout layer, 
and sigmoid activation, to obtain the preliminary classifica
tion result of AGCN 

ŷgcn ¼ SigmoidðReLu W AfinalÞð Þð Þ; (5) 

where ŷgcn 2 R
C represents the predicted result of AGCN, C 

is the number of GO terms, and W denotes the weights of the 
fully connected layer, where ŷgcn each element represents the 
positive probability of each GO term.

During training, we utilize the cross-entropy loss function, 
as depicted in Equation (6). The cross-entropy loss function 

Figure 2. AGCN structure diagram. The input is a graph composed of node features and edge relationships. GCN1;GCN2; GCN3 represent three layers 
of GCN, which have the same structure. MHA is the multi-head attention module proposed in our method, and ygcn is the prediction output.

Figure 3. The structure of the multi-head attention (MHA). The input consists of the graph representation after being processed by the GCN encoder. The 
input undergoes GCN transformation, where a single-layer GCN, identical to the one used in the GCN encoder, is employed. This process generates key 
vectors (K) and value vectors (V) for the attention mechanism. Additionally, randomly generated features for m nodes serve as query vectors (Q), which 
are then split into multiple heads along with K and V for parallel computation. Each head computes the dot product between K and Q, resulting in a set of 
weight vectors (S). Multiplying S by V yields the weighted representations of m nodes. This operation is repeated until the last attention mechanism 
iteration is reached, at which point the entire node features are computed into a single node feature representation, effectively setting m to 1.
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is a commonly used loss function for multi-class classification 
problems. In protein function prediction, there are typically 
multiple different functional categories involved, making the 
cross-entropy loss function well-suited for this scenario 

L ¼ �
XM

m¼1

XC

n¼1

ðymnlog ŷmnð Þþ 1 � ymnð Þlog 1 � ŷmnð Þ; (6) 

where M represents the number of training sequences, C 
denotes the number of GO terms, ŷmn 2 [0, 1] represents the 
predicted probability, and ymn 2 f0, 1g denotes the ground 
truth for the mth sequence along the nth GO term.

2.4 Multi-layer convolutional neural network
The MCNN architecture, as shown in Fig. 4, is inspired by 
MMSMAPlus (Wang et al. 2023). MCNN consists of multi
ple layers of cascaded convolutional encoders that process 
the input sequence features. The input to MCNN is the node 
features composed of one-hot and ESM-1b. It starts with a 
three-layer cascaded convolutional encoder to extract local 
feature information. Then, the feature pyramid structure is 
integrated into the method to ensure scale invariance. After 
obtaining local features, further global features are extracted 
by introducing a multi-head attention mechanism (Yang 
et al. 2021).

The three layers of 1D convolution in MCNN serve to ex
tract and normalize the input protein sequence features. 1D 
convolution operates in a highly parallel manner, sliding con
volutional kernels along the sequence to capture local fea
tures at different positions within the protein sequence. 
Following this, batch normalization normalizes the convolu
tional output, enhancing the stability and convergence speed 
of the MCNN model, thereby accelerating the train
ing process.

Capturing more local features improves protein function 
prediction accuracy (Zhang et al. 2021). However, using too 
many convolution filters can make the network too complex 
and increase computation without improving performance 
(Kulmanov et al. 2018, Kulmanov and Hoehndorf 2020, 
Zhang et al. 2021). Following the MMSMAPlus approach 
(Wang et al. 2023), a feature pyramid is used to extract 
multi-scale features, as different scales offer valuable infor
mation (Bdaneshvar 2017). Convolutional layers are cas
caded, and features at three scales (512, 256, and 128) are 
upsampled, expanded to the same size, and then combined. 
Depthwise separable convolution and 1×1 convolution are 
then used to further extract multi-scale features.

To capture long-range dependencies, similar to the atten
tion mechanism in AGCN, MCNN also employs a multi- 

head attention mechanism, but it focuses more on extracting 
global information from the input sequence. We refer to this 
as the multi-head channel attention mechanism (MCAM), 
allowing each head to focus on different important features 
within the sequence and integrate these features through 
weighted fusion. The individual channel attention mechanism 
(CAM) structure for each head in MCAM is illustrated 
in Fig. 5.

After processing the features, we perform both average 
pooling and max pooling to obtain Mavg and Mmax, respec
tively. Following the idea of channel attention mechanism, 
Mavg and Mmax are separately input into a shared 1D convo
lution to derive M0avg and M0

max. These are then summed, 
passed through a sigmoid function to map the results to the 
range [0, 1], serving as the attention weights for each head, 
resulting in corresponding weight values Wi. Next, we multi
ply the original input feature M by the calculated attention 
weights Wi to obtain the processed feature Mi. To better cap
ture features at different scales, we employ the idea of multi- 
head attention mechanism, where each Ki adopts a different 
value, representing different convolution kernel sizes. Finally, 
the obtained Mi is used to automatically calculate the weights 
during training, as shown in Equation (7) 

Mfinal ¼
Xh

h¼1

αi �Mi s:t:αT1 ¼ 1;α≥0; (7) 

where Mfinal represents the feature result after processing 
with MCAM, h denotes the number of heads, αi represents 
the weight of the ith head, and Mi represents the feature after 
the ith channel attention mechanism.

In this process, we leverage multiple channel attention 
modules to obtain results for each head. It can weight infor
mation at different levels, generating multi-head attention 
representations. This highly parallel structure can effectively 
preserve crucial information while fully exploring the rich se
mantics of the input data.

During training, we also use the cross-entropy loss function 
[Equation (6)] as the loss function for MCNN. The output of 
MCNN is similarly passed through a fully connected layer, 
followed by ReLU activation, a dropout layer, and a sigmoid 
activation function, computed as shown in Equation (8) 

ŷcnn ¼ SigmoidðReLu W MfinalÞð Þð Þ; (8) 

where W represents the weights of the fully connected layer, 
ŷcnn 2 R

C denotes the prediction vector, and C is the number 
of GO terms. Each element of ŷcnn represents the positive 

Figure 4. The architecture of MCNN. The input to MCNN is the encoded node features. MCAM represents the proposed multi-channel attention 
mechanism, and ycnn denotes the prediction output.
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probability of each GO term and is also the preliminary clas
sification result of MCNN.

To obtain the final result, we combine the preliminary pre
dictions of AGCN and MCNN through joint decision- 
making. Using adaptive weighting calculation according to 
Equation (9), we derive the best prediction result. This ap
proach leverages the strengths of both GCN and CNN to 
thoroughly learn features 

f̂ ¼ α � ŷgcnþ 1 � αð Þ � ŷcnn: (9) 

Finally, we optimize the integrated prediction result using 
the cross-entropy loss function [Equation (6)] to obtain the fi
nal prediction result.

3 Experimental results
3.1 Dataset
We used the same dataset as HEAL (Gu et al. 2023), available 
at https://github.com/ZhonghuiGu/HEAL. The dataset 
includes 36 629 protein structures from the PDB database 
(PDBset) and 42 994 protein structures with GO terms from 
the AlphaFold protein structure database (AFset). The PDBset 
contains representative PDB chains with at least one functional 
annotation and high-resolution structures, divided into train
ing, validation, and testing sets at an 8:1:1 ratio. Experimental 
structures were extracted from the PDB for each sequence, and 
protein graphs were constructed. GO term annotations were 
obtained from SIFTS (Dana et al. 2019) and UniProtKB, with 
each sequence labeled with 489 MF, 1943 BP, and 320 CC 
terms. The AFset consists of 42 427 sequences in the AFset 
training set and 567 sequences in the AFset test set. Any 
sequences with over 25% identity to those in the AFset train
ing set or PDBset training set were removed from the AFset 
test set. Finally, 10% of the sequences were randomly selected 
from the AFset training set to form the validation set.

The sequences in the PDBset test set are grouped based on 
their homology, which is measured by comparing sequence 
similarities. We conduct experiments using different similar
ity thresholds to determine how similar two protein sequen
ces are. The thresholds we use are 30%, 40%, 50%, 70%, 
and 95%, allowing us to study performance at various levels 
of sequence homology.

3.2 Model training
During training, we employed the Adam optimizer (Kingma 
and Ba 2015) to train the proposed method TAWFN. The 
learning rates for AGCN and MCNN were set to 0.0001 and 
0.0005, respectively, with batch sizes of 48 and 64 and 100 

epochs. The implementation was based on PyTorch and 
PyTorch Geometric libraries (Fey and Lenssen 2019). To pre
vent unnecessary training when no improvement is observed, 
we utilized early stopping criteria with a patience of five 
epochs. Training was conducted on an NVIDIA GeForce 
RTX 3090 24G GPU.

3.3 Evaluation metrics
We primarily used the metrics Fmax (Radivojac et al. 2013), 
Smin (Clark and Radivojac 2013), and AUPR (Davis and 
Goadrich 2006) to evaluate the performance of our method. 
The Fmax metric represents the maximum F-value calculated 
across all prediction thresholds. The Smin indicates the seman
tic distance between predicted and true annotations, consid
ering the information content of each function. The AUPR is 
approximated using the trapezoidal rule to compute the area 
under the precision–recall curve, evaluating the model’s per
formance across different prediction thresholds. Lower Smin 
are preferable, while higher values for Fmax and AUPR indi
cate better performance. Additional details on how to com
pute these metrics can be found in Supplementary material.

3.4 Comparison of TAWFN with other state-of-the- 
art methods
We compared our method with several baseline methods. We 
evaluated the performance of these methods on the PDBset 
test set across three gene ontology domains: MF, BP, and CC. 
The results are summarized in Table 1. TAWFN outper
formed all other methods in all three gene ontology domains. 
TAWFN achieves AUPR scores of 0.718, 0.385, 0.488, Fmax 
scores of 0.762, 0.628, 0.693, and Smin scores of 0.326, 
0.483, 0.454 on the MF, BP, and CC tasks, respectively. 
Additionally, TAWFN was tested against other methods on 
the CAFA3 test set, and the results can be found in 
Supplementary Table S6. These results surpass the perfor
mance of the best GCN-based method HEAL. This indicates 
that our proposed TAWFN, which combines GCN and 
CNN, can more comprehensively learn features within pro
tein structures. Additionally, the MHA in AGCN effectively 
learns protein graph features through graph pooling, while 
the MCAM in MCNN captures global features of protein 
sequences. These factors contribute to the effectiveness of our 
method in protein function prediction.

3.5 Ablation study
For the MCNN and AGCN, we designed ablation experi
ments to validate the effectiveness of their combination, and 
verified the role of LSTM in AGCN. The results are shown in  
Table 2. It can be observed that the performance of MCNN 
is better than that of AGCN, indicating that the global 

Figure 5. The structure of the CAM.
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information generated by MCAM in MCNN is beneficial for 
protein prediction. Moreover, when both MCNN and 
AGCN are combined in the network, the performance is bet
ter than when each module predicts separately. This suggests 
that the combination not only improves the learning of fea
tures from both local and global perspectives but also focuses 
on details. Overall, our proposed method has an enhancing 
effect on protein function prediction performance.

3.6 Impact of other variables
We compared different configurations by varying the number 
of attention heads in MCNN and the number of GCN layers 
in AGCN. Specifically, we tested the effects of different num
bers of attention heads and GCN layers on model perfor
mance. Detailed results are presented in Supplementary 
Tables S1 and S2. The results show that simply increasing the 
number of attention heads in MCNN does not always im
prove performance. While more heads might enhance the 
model’s capacity, having too many can introduce redundant 
information, potentially decreasing prediction accuracy. 
Therefore, choosing the right number of heads is crucial. 
Similarly, adding more GCN layers in AGCN can enhance 
the model’s capability but also increases computational costs 
and may lead to overfitting, which reduces overall perfor
mance. Balancing model complexity and computational effi
ciency is essential. Based on these findings, we selected the 
optimal configurations: four attention heads for MCNN and 
three GCN layers for AGCN. This combination provides a 
good balance between performance and computa
tional efficiency.

3.7 TAWFN enhancements
3.7.1 TAWFN performance at different thresholds
To assess the generalization ability of TAWFN, we evaluated 
it on the PDBset test set, which contains sequences with 

different levels of homogeneity compared to the training set. 
The sequence similarity thresholds were set to 30%, 40%, 
50%, 70%, and 95%. We conducted experiments comparing 
TAWFN with DeepGO (Kulmanov et al. 2018), DeepFRI 
(Gligorijevi�c et al. 2021), and HEAL (Gu et al. 2023) 
(Supplementary Table S3 through S5).

Our method demonstrates superior performance across all 
five thresholds for MF, BP, and CC, outperforming other 
methods in terms of evaluation metrics. The combination of 
AGCN and MCNN results through adaptive weighting cal
culation yielded the best performance, indicating a better cap
ture of protein features compared to when HEAL solely used 
GCN in experiments. Additionally, the decrease in TAWFN’s 
evaluation metric values is more gradual as the homogeneity 
decreases, suggesting that the integration of protein language 
models and additional high-quality structures aids TAWFN 
in learning the relationship between structure and functional 
characteristics.

3.7.2 TAWFN in the AFset test set
Experimental validation was conducted on the AFset test set, 
which comprises protein structures predicted by AlphaFold2. 
This evaluation is crucial as our method is intended for appli
cation on previously unseen protein structures to predict their 
functionalities. As depicted in Fig. 6, our approach outper
forms methods solely based on GCNs [DeepFRI (Gligorijevi�c 
et al. 2021) and HEAL (Gu et al. 2023)] and also achieves 
better results compared to the upgraded version of DeepGO 
(Kulmanov et al. 2018), DeepGOPlus (Kulmanov and 
Hoehndorf 2020). These findings underscore the effectiveness 
of combining MCNN and AGCN, enabling a more compre
hensive learning of protein structure features, thereby captur
ing both structural and sequence characteristics for more 
accurate functional predictions.

Table 1. AUPR, Fmax, and Smin of different methods on PDBset test set.

Method AUPR(") Fmax(") Smin(#)

MF BP CC MF BP CC MF BP CC

BLAST 0.136 0.067 0.096 0.326 0.336 0.443 0.643 0.662 0.632
FunFams 0.37 0.256 0.265 0.573 0.498 0.64 0.542 0.58 0.512
DeepGO 0.391 0.189 0.258 0.576 0.50 0.589 0.475 0.578 0.553
DeepFRI 0.495 0.265 0.274 0.627 0.546 0.617 0.432 0.543 0.530
GAT-GO 0.66 0.381 0.479 0.633 0.492 0.547 0.437 0.521 0.466
ATGO 0.708 0.249 0.306 0.76 0.318 0.703 0.336 0.600 0.539
SPROF-GO 0.606 0.209 0.307 0.750 0.454 0.627 0.336 0.562 0.512
DeepGO-SE 0.495 0.233 0.423 0.654 0.566 0.636 0.435 0.53 0.481
HEAL 0.661 0.339 0.435 0.733 0.613 0.673 0.357 0.499 0.475
TAWFN 0.718 0.385 0.488 0.762 0.628 0.693 0.326 0.483 0.454

The bold texts indicate the maximum values in the table.

Table 2. Validating the impact of MCNN and AGCN on models on PDBset.

AGCN  
(without LSTM)

AGCN MCNN AUPR(") Fmax(") Smin(#)

MF BP CC MF BP CC MF BP CC

� 0.667 0.322 0.435 0.727 0.601 0.670 0.357 0.508 0.470
� 0.700 0.365 0.46 0.747 0.608 0.686 0.344 0.499 0.463

� 0.663 0.339 0.468 0.733 0.613 0.673 0.357 0.499 0.475
� � 0.718 0.385 0.488 0.762 0.628 0.693 0.326 0.483 0.454

The bold texts indicate the maximum values in the table.
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4 Conclusion
This article proposes a novel method that combines multi- 
layer convolutional neural networks and adaptive graph con
volutional neural networks, which has shown significant ef
fectiveness in predicting protein structure functions. 
Compared to other methods, ours achieved better results. In 
our experiments, besides simple one-hot feature encoding, we 
also utilized protein language models to generate sequence 
features. The ablation experiments demonstrated that the 
performance of AGCN and MCNN individually was inferior 
to their combination, thus validating the effectiveness of the 
integration. Additionally, testing on protein structures with 
lower homology to the training set from the AlphaFold2 
dataset also demonstrated stronger predictive capability, pro
viding strong support for the practical application of 
our method.

By integrating MCNN and AGCN, we can capture protein 
structure features from different perspectives and scales. 
Introducing multi-head attention mechanisms in both 
MCNN and AGCN, the MCAM in MCNN effectively cap
tures sequence features in protein structures, while the MHA 
in AGCN utilizes graph representation to capture relation
ships between protein structures from a global perspective. 
Moreover, the multi-scale feature extraction method allows 
us to comprehensively understand the complexity of protein 
structures, thereby improving the accuracy of protein func
tion prediction. The structure of proteins is closely related to 
their function, and MCNN and AGCN can model protein 
structure and corresponding sequence features from both lo
cal and global perspectives, thereby better understanding the 
relationship between structure and function. The integration 
of MCNN and AGCN improves the accuracy and interpret
ability of protein function prediction, providing researchers 
with powerful tools to explore the relationship between pro
tein structure and function. It also enables the fusion of cross- 
domain information, such as sequences, structures, and func
tional annotations. In future work, we aim to introduce more 
learnable features, utilize multi-view techniques, and predict 
novel protein structures.
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