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Abstract

Motivation: Facing the increasing gap between high-throughput sequence data and limited functional insights, com-
putational protein function annotation provides a high-throughput alternative to experimental approaches.
However, current methods can have limited applicability while relying on protein data besides sequences, or lack
generalizability to novel sequences, species and functions.

Results: To overcome aforementioned barriers in applicability and generalizability, we propose a novel deep learning
model using only sequence information for proteins, named Transformer-based protein function Annotation through
joint sequence–Label Embedding (TALE). For generalizability to novel sequences we use self-attention-based trans-
formers to capture global patterns in sequences. For generalizability to unseen or rarely seen functions (tail labels), we
embed protein function labels (hierarchical GO terms on directed graphs) together with inputs/features (1D sequences)
in a joint latent space. Combining TALE and a sequence similarity-based method, TALEþ outperformed competing
methods when only sequence input is available. It even outperformed a state-of-the-art method using network infor-
mation besides sequence, in two of the three gene ontologies. Furthermore, TALE and TALEþ showed superior gener-
alizability to proteins of low similarity, new species, or rarely annotated functions compared to training data, revealing
deep insights into the protein sequence–function relationship. Ablation studies elucidated contributions of algorithmic
components toward the accuracy and the generalizability; and a GO term-centric analysis was also provided.

Availability and implementation: The data, source codes and models are available at https://github.com/Shen-Lab/
TALE.

Contact: yshen@tamu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The explosive growth of protein sequence data in the past decade,
largely thanks to next-generation sequencing technologies, has pro-
vided enormous information and opportunities for biological and
pharmaceutical research. In particular, the complex and intricate re-
lationship between sequences, structures and functions of proteins is
fascinating. As experimental function annotation of proteins is often
outpaced by sequence determination, computational alternatives
have become both fundamental in exploring the sequence–function
relationship and practical in predicting functions for growing un-
annotated sequences (including de novo designs). According to the
2020_01 release of UniProt (UniProtConsortium, 2019), there were
around 5.6�105 non-redundant sequences manually annotated in
Swiss-Prot but over two orders of magnitude more (around
1.8�108) sequences awaiting full manual annotation in TrEMBL.

Protein functions are usually described based on Gene Ontology
(GO), the world’s largest source of systematic representation of gene

functions (Ashburner et al., 2000). There are more than 40 000 GO
terms across three domains: Molecular Function Ontology (MFO),
Biological Process Ontology (BPO) and Cellular Component
Ontology (CCO). Within each ontology, GO terms are structured
hierarchically as a directed graph with a root node. Each protein can
be annotated with more than one GO term on three ontologies (thus
a multi-label classification problem). If a protein is annotated with
one GO term, then can also be annotated by all corresponding an-
cestral GO terms. Such a hierarchical constraint is present in many
other ontologies as well, such as text ontology (Baker and
Korhonen, 2017) and image ontology (Deng et al., 2009).

From the perspective of input type, computational methods for
protein function annotation can be classified as sequence- (Fa et al.,
2018; Kulmanov and Hoehndorf, 2020; Zhou et al., 2019a), struc-
ture- (Yang et al., 2015), network- (Fan et al., 2020; Gligorijevi�c
et al., 2018; Kulmanov et al., 2018; You et al., 2019; Zhang et al.,
2019) and literature-based (Kahanda and Ben-Hur, 2017; You
et al., 2018a), whereas all but sequence-only methods have limited
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scope of usage due to data availability. Specifically, although struc-
tural information is important for understanding protein functions
(e.g. Stewart et al., 1998; Wrapp et al., 2020), it is often not readily
available: 0.01% of the TrEMBL sequences (UniProt 2020_01) have
corresponding structural entries in Protein Data Bank (PDB), and
this ratio increases to 1% if considering structural models in SWISS-
MODEL Repository (SWR). Similarly, only around 7% of the
TrEMBL sequences have interaction entries in STRINGdb
(Szklarczyk et al., 2016), not to mention that the network informa-
tion can be noisy and incomplete. We note that structure, network,
and literature data can be especially missing for novel sequences
where computational function annotation is needed the most. We
therefore focus on sequence-based methods in this study.

Predicting protein function from sequence alone is a challenging
problem where each sequence can belong to multiple labels and
labels are organized hierarchically. Critical Assessment of protein
Function Annotation (CAFA) has provided an enabling platform for
method development (Friedberg and Radivojac, 2017; Jiang et al.,
2016; Radivojac et al., 2013; Zhou et al., 2019b) and witnessed
still-limited power or scope of current methods. Sequence similarity-
based methods (Buchfink et al., 2015; Jones et al., 2005) leverage se-
quence homology, although their success is often limited to homo-
logues and alignments to detect homology can be still costly.
Recently, deep learning has emerged as a promising approach to im-
prove the accuracy (Fan et al., 2020; Gligorijevi�c et al., 2018;
Kulmanov et al., 2018; Kulmanov and Hoehndorf, 2020; Rifaioglu
et al., 2019; Zhang et al., 2019), where sequences are often inputs/
features and GO terms are labels. However, as deep learning is a
data-hungry technique, these methods often have to get rid of a large
number of GO terms (labels) with few annotations, leading to nar-
row applicability. For instance, DeepGOPlus (Kulmanov and
Hoehndorf, 2020) only considered over 5000 GO terms with at least
50 annotated sequences each, which only accounts for less than
12% of all GO terms.

We set out to overcome aforementioned barriers and boost the
generalizability to sequences with low similarity as well as unseen or
rarely seen functions (also known as tail labels) compared to the
training data. To that end, we propose a novel approach named
Transformer-based protein function Annotation through joint se-
quence–Label Embedding (TALE). Our contributions are as follows.
First, TALE replaces previously used convolutional neural networks
(CNN) with self-attention-based transformers (Vaswani et al.,
2017) which have made a major breakthrough in natural language
processing and recently in protein sequence embedding (Duong
et al., 2020; Elnaggar et al., 2020; Rives et al., 2020). Compared to
CNN, transformers can deal with global dependencies within the se-
quence in just one layer, which helps detect global sequence patterns
for function prediction much easier than CNN-based methods do.
Second, TALE jointly embeds sequence inputs/features and hierarch-
ical function labels (GO terms) into a latent space. By considering
similarities among function labels and sequence features, TALE can
easily deal with tail labels. Third, unlike previous methods that only
consider GO terms as flat labels and enforce hierarchy ad hoc after
training, TALE considers the hierarchy among labels through regu-
larization during training. Last, we propose TALEþ, by using an en-
semble of top three TALE models and a sequence similarity-based
method, DIAMOND (Buchfink et al., 2015), in convex combination
(similar to DeepGOPlus) to reach the best of both worlds.

Over the CAFA3 test set, TALEþ outperformed six competing
methods including GOLabeler (You et al., 2018b), the top perform-
er in CAFA3 for two of the three ontologies. Over a more recent and
complex test set, TALEþ outperformed all other methods including
NetGO (You et al., 2019), the upgraded version of GOLabeler (You
et al., 2018b) in all three ontologies when only sequence information
is used. Importantly, TALE and TALEþ significantly improved
against state-of-the-art methods in challenging cases where test pro-
teins are of low similarity (in sequence, species and label) to training
examples. The results prove that our model can generalize well to
novel sequences, novel species and novel functions.

The rest of the article is organized as follows. We will first dis-
cuss in Methods the dataset used in the study. We will then

introduce TALE and TALEþ models in details besides baselines and
end the section with evaluation metrics. We will start the Results
section with overall performance comparison. We will then delve
into the analysis of model generalizability in sequence, species and
function. Lastly, we will report an ablation study to delineate the
major algorithm contributors to TALE’s improved accuracy and
improved generalizability; and we will report GO term-centric ana-
lysis of TALEþ predictions.

2 Materials and methods

2.1 Datasets
In this study we consider two annotation time-split datasets: the
standard CAFA3 dataset (Zhou et al., 2019b) and our curated
dataset. The CAFA3 dataset is used for wider comparison with
community performance. Our curated dataset, larger and more
updated, is used for controlled comparison and in-depth analysis
such as generalizability analysis, ablation study and term-centric
assessment.

CAFA3 dataset. We download the CAFA3 dataset, which
includes a training set and a (no-knowledge) test set with experimen-
tal annotations published before September 2016 and between
September 2016 and November 2017, respectively. For hyper-par-
ameter tuning we randomly split 10% from the training set to be the
validation set (thus training and validation sets are not time-split
here). The sequence statistics of the CAFA3 dataset and its splits are
provided in Table 1. Ontologies here include the molecular function
ontology (MFO), biological process ontology (BPO) and cellular
component ontology (CCO).

Our dataset. We download the UniProtKB/Swiss-Prot dataset re-
lease-2015_12 (last modified on January 20, 2016), release-
2017_12 (last modified on January 30, 2018) and the latest release-
2020_05 (last modified on December 2, 2020). Consistent with
CAFA protocols (Zhou et al., 2019b), only sequences with high-
quality function annotations are retained, i.e. those with at least one
annotation within the following 8 experimental evidence codes:
EXP, IDA, IPI, IMP, IGI, IEP, TAS and IC. We use the remaining
sequences annotated by January 20, 2016, since January 30, 2018,
and between (but not including) the two dates as training, test and
validation sets, respectively. And we remove any test sequence that
exists in the training or validation set (100% sequence identity). The
sequence statistics of our curated dataset and its splits are also pro-
vided in Table 1.

For either dataset, we train all models on the corresponding
training set and tune their hyperparameters using the validation set.
We then retrain models under their optimal hyperparameters, using
both the training and the validation sets, and assess them on the cor-
responding test set.

Table 1. Statistics of sequences and GO terms in various ontologies

and splits

Dataset Statistics MFO BPO CCO

#Seq in training set 32 499 48 150 45 537

#Seq in validation set 3611 5350 5059

CAFA3 #Seq in Train. þ Val. 36 110 53 500 50 596

#Seq in test set 1137 2392 1265

#GO terms 6239 19 462 2434

#Seq in training set 34 996 51 345 49 957

#Seq in validation set 3327 2861 2300

Ours #Seq in Train. þ Val. 38 323 54 206 52 257

#Seq in test set 1916 2836 2084

#Seq in test set without net

info.

1140 1743 1189

#GO terms 6381 19 939 2574
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2.1.1 Hierarchical relationships between GO terms

We download the identities and the hierarchical relationships be-
tween function labels (GO terms) from Gene Ontology (Ashburner
et al., 2000)—‘go-basic’ release 2016-06-01 and 2020-12-08 for
CAFA3 and our dataset, respectively. We consider ‘is a’ and ‘part of’
relationships in all three ontologies: Molecular Function Ontology
(MFO), Biological Process Ontology (BPO) and Cellular
Component Ontology (CCO); and do not consider cross-ontology
relationships for now. In this way we obtain three separate ontolo-
gies, each of whose topology is a directed acyclic graph (DAG). For
each annotation in each ontology, we additionally propagate anno-
tations all the way from the corresponding GO term to the root
node. Finally, those GO terms without a single annotated sequence
are removed and not considered in this study. We note that other
studies could remove GO terms with less than 10, 50 or even 250
annotated sequences and consider much less GO terms than we do.
The statistics of GO terms on the two datasets over three ontologies
are shown in Table 1.

2.2 TALE and TALE1
We will describe the details of our methods in this subsection. The
overall architecture of TALE is shown in Figure 1. The model has
two inputs: a protein sequence and the label matrix (for capturing
hierarchical relationships among all GO terms). It is worth mention-
ing that the label matrix is a constant matrix for a given ontology,
thus being fixed during both stages of training and inference. The
model itself consists of feature (sequence) embedding, label (func-
tion) embedding, joint similarity modules, as well as fully connected
and output layers. We will introduce these components in the fol-
lowing subsections.

Notations. We use upper-case boldfaced letters to denote a ma-
trix (e.g. X), lower-case boldfaced letters to denote a vector (e.g. x)
and lower-case letters to denote a scalar (e.g. x). We use subscripts
of a matrix to denote a specific row, column or element (e.g. Xi for
the ith row of X; X ;i for the ith column; and Xi,j for the entry in the
ith row and the jth column of X). We also use subscripts to denote
scalar components of a vector (e.g. xi for the ith entry of the vector
x). We use superscript T on a matrix to represent its transpose.

2.2.1 Sequence embedding

Let A denote the set of 20 standard amino acids, 5 non-standard
amino acids (‘B’,‘O’,‘U’,‘X’,‘Z’) and the padding symbol. For a
given input protein sequence s 2 An of length n, we embed each
character (residue) into an h-dimensional continuous latent space
through a trainable lookup matrix W seq and positional embedding,
as described in Vaswani et al. (2017). The embedded matrix X 2
R

n�h is fed through a transformer encoder that consists of multiple
multi-head attention layers. The advantage of such ‘self-attention’
layers compared to convolution layers is that self-attention can eas-
ily and quickly capture long-term dependencies within a whole se-
quence, whereas convolution can only capture dependencies of
residues within neighborhoods determined by convolutional kernels.
We denote the output matrix of the transformer encoder with
P 2 R

n�h, where h is the aforementioned hidden dimension.

2.2.2 Label embedding

For each GO term (label) i in a given ontology, we embed it into a c-
dimensional binary vector !i2f0,1g1�c where c is the total number
of labels, and the jth element is only non-zero and 1 when the col-
umn GO term j is GO term i or its ancestor. In this way, we embed
all GO terms in the ontology with a label matrix !2f0,1gc�c whose
ith row !i is the embedding of label i. When ordering column GO
terms j, we use depth-first topological sorting for each basic ontol-
ogy (a DAG) and create a linear order of GO terms (nodes) where a
parent node is before its child nodes. In practice, our model’s output
(predicted probability vector for all labels i) is invariant to the col-
umn order of ! [see Supplementary Section S3 of the Supporting
Information (SI)].

Similar to the sequence embedding, we use a trainable lookup
matrix W label 2 R

c�h to encode ! as Q 2 R
c�h, where

Qi ¼ !i �W label: (1)

Unlike sequence input, the label matrix ! is fixed for each ontology
and thus not needed to be further encoded using a transformer
encoder.

2.2.3 Joint sequence–label similarity

We inspect the contributions of individual amino acids to individual
function labels, by calculating the matrix product between P and Q
to measure the joint similarity between the sequence and the label:

M ¼ softmaxðP �QTÞ; (2)

where the softmax is row-wise. Mi;j suggests the ‘closeness’ or simi-
larity score between amino acid i and label j. For each amino acid i,
we further consider the contributions from other amino acids, by
applying a 1D convolutional layer to M (along the row direction
with the columns as channels), followed by a max-pooling layer.
The output of the max-pooling layer is first normalized, and then
used for weighting the sequence encoding matrix P:

e ¼ PT � a; (3)

where a 2 R
n�1 is the output of the max-pooling after column-wise

softmax.

2.2.4 Fully connected and output layers

The output of the joint similarity module, e 2 R
h�1, would go

through two fully connected (FC) layers, with the sigmoid activation
function at the second FC layer. The output of the model ŷ 2 R

c�1 is
the predicted probabilities for individual GO terms in the ontology,
where the ith component is the predicted probability of label i for a
given input sequence.

2.2.5 Loss and hierarchical regularization

To train model parameters, we first consider the binary cross-en-
tropy loss:

L0 ¼ �1

c

Xc

i¼1

yi � ŷi þ ð1� yiÞ � ð1� ŷiÞ (4)

However, if we only use L0, trained models may make predic-
tions violating the hierarchical constraint of function annotation.
For instance, the predicted score (probability) of a child GO term
may be larger than those of its ancestors. To mitigate such hierarch-
ical violation, we additionally introduce an additional, a hierarchical
regularization term:

R ¼ 1

jEj
X
ði;jÞ2E

maxð0; ŷj � ŷiÞ ¼
1

jEj
X
ði;jÞ2E

ReLUðŷj � ŷiÞ; (5)

where E is the set of all edges in the ontology graph, and (i, j) is one
edge in E where node i and j are the parent and the child, respectively.
Therefore, our overall loss function is a weighted sum of both terms:

Sequence
Embedding

Protein Sequence

Label
EmbeddingGO Label Matrix

Transformer
Encoder

Conv1d

Fully-
Connected

Layer

 Max-
pooling

Matrix Multiplication

Row/Column-wise Softmax

Matrix Transpose

Outputs

Probabilities of 
GO Terms

Fig. 1. The architecture of TALE. Note that the GO label matrix is fixed for each

ontology
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L ¼ L0 þ kR, where k, the regularization constant to control the bal-
ance between the two terms, is treated as a hyper-parameter and
tuned along with other hyper-parameters using the validation set.

2.2.6 Hyperparameter tuning and unsupervised pre-training

The hyperparameters include those for the transformer architecture
(number of layers, hidden dimension and number of heads) and
training (learning rate and regularization factor k). They are grid-
searched and tuned according to the validation-set performance
(Fmax). Except k, hyperparameters’ candidate values follow the ori-
ginal transformer (Vaswani et al., 2017) or its lighter versions (due
to limited computational resources). k is tuned on grids between 0
and 100 in two stages. More details can be found in Supplementary
Section S1.2. The candidate and optimal values of all hyperpara-
meters can be found in Supplementary Tables S1 and S2, respective-
ly. When other hyperparameters are fixed at the optimal values, the
best validation performances are plateaued for k between 0.1 and 1,
whereas inferior performances are found for k¼0 or k¼100.

We additionally include unsupervised pre-training as an option
so that a large amount of unlabeled sequences (specifically, over 49
million UniRef50 sequences) can be exploited. For each hyperpara-
meter combination, the pre-trained transformer encoder’s parame-
ters provide ‘warm’ starting points during supervised training. More
details can be found in Supplementary Section S1.1. Interestingly,
pre-training was not found to improve validation Fmax
(Supplementary Fig. S2) and thus not used thereinafter
(Supplementary Section S1.2).

2.2.7 Ensemble model of TALE1
So far we have introduced all components of TALE. In order to re-
duce the variance of predicted scores and their generalization errors,
we use the simple average of the outputs from multiple models (cor-
responding to top-K hyperparameter combinations) as the final
TALE predictions (see details in Supplementary Section S1.2). The
ensemble size K is tuned based on the validation set and is set to be
3 (3), 2 (3) and 2(3) on MFO, BPO and CCO, respectively, for the
CAFA3 (our) dataset. Their corresponding hyperparameter values
are reported in Supplementary Table S2.

Similar to DeepGOPlus (Kulmanov and Hoehndorf, 2020), we
further use a convex combination of TALE (the simple average) and
DIAMONDScore (Buchfink et al., 2015) as final outputs of TALEþ:

ŷTALEþ ¼
a
K

XK

i¼1

ŷTALE; i þ ð1� aÞŷDIAMOND (6)

where ŷTALE;i is from the ith best TALE model based on the valid-
ation set. The choice of the sequence alignment program was not
optimized for accuracy but adopted for its much faster speed and
similar sensitivity compared to BLAST. After tuning on the valid-
ation set, the best as for three ontologies were set to be 0.4 for
MFO, 0.4 for BPO and 0.6 for CCO in the CAFA3 dataset, and 0.4
for MFO, 0.5 for BPO and 0.6 for CCO in our dataset. TALE can
be regarded as a special case of TALEþ when a¼1.

2.3 Experiment details
We compare TALE and TALEþ to six competing methods, includ-
ing baselines, latest published methods and top performers in
CAFA. They include a naive approach using background frequency
of GO terms (Zhou et al., 2019b); sequence similarity-based
DIAMONDScore (Buchfink et al., 2015); deep learning-based
DeepGO (with network information) (Kulmanov et al., 2018) and
recent extensions (without network information) DeepGOCNN and
DeepGOPlus (DeepGOCNN þ DIAMONDScore) (Kulmanov and
Hoehndorf, 2020); NetGO (You et al., 2019) that merges the net-
work information and its earlier sequence-based GOLabeler (You
et al., 2018b). More implementation details of TALE and TALEþ,
including hyperparameter tuning, are in Supplementary Section S1.
More details about competing methods are in Supplementary
Section S2.

For DeepGO, DeepGOCNN and DeepGOPlus, we used their
codes published on GitHub and trained the models on CAFA3 and
our datasets. Training details of these and our models are in
Supplementary Section S2. Note that the number of free parameters
in TALEþ (9 models total, counting three ensembles of size 3 for 3
ontologies) is less than 40% of that in DeepGOPlus (Supplementary
Table S4). For NetGO, we only had access to its webserver (version
1.1 released on February 22, 2020). As the latest NetGO webserver
was updated after CAFA3 and may use training examples in the
CAFA3 test set, a fair comparison to NetGO was not possible. We
thus instead used the CAFA3 official assessment (AuPRC being un-
available) (Zhou et al., 2019b) of GOLabeler (You et al., 2018b), a
top performer in CAFA3 and NetGO’s earlier version, for numerical
comparison on the CAFA3 dataset.

2.4 Evaluation
For a test set Dtest, we use two evaluation metrics: Fmax and
AuPRC. Fmax is the official, protein-centric evaluation metric used
in CAFA. It is the maximum score of the geometric average of aver-
aged precision and recall over proteins for all thresholds:

Fmax ¼ max
t

2PreðtÞ � RecðtÞ
PreðtÞ þ RecðtÞ

 !
; (7)

where PreðtÞ and RecðtÞ are the averaged precision and recall at
threshold t. Specifically,

PreðtÞ ¼ 1

QðtÞ
XQðtÞ
k¼1

yk � ŷkðtÞ
jŷkðtÞj1

RecðtÞ ¼ 1

jDtestj
XjDtest j

k¼1

yk � ŷkðtÞ
jykj1

;

(8)

where Q(t) is the number of samples that have least one non-zero
label in Dtest; yk is the true label vector of kth sample in Dtest, and
ŷkðtÞ is the predicted label vector of the kth sample in Dtest at thresh-
old t. For the calculation, we iterated t incrementally from 0 to 1 at
a stepsize of 0.01.

AuPRC is a standard metric in machine learning for evaluating
the binary classification performance, especially suitable for highly
imbalanced data, which is often the case in protein function annota-
tion. In multi-label classification, we concatenate all the label vectors
and use canonical AuPRC (single-label) to evaluate the performance.

3 Results

We perform comprehensive evaluation of our models from several
perspectives. We will start with comparing them to aforementioned
competing methods on various ontologies and test sets. We will pro-
ceed to assess the capability of all models to generalize to novel
sequences, novel species and novel functions relative to the training
set. We will also conduct an ablation study for TALE and TALEþ
to delineate the contributions of their various algorithmic compo-
nents to overall performances and various generalizability. We will
conclude with GO term-centric analysis of TALEþ predictions.

3.1 Performance on the CAFA3 test set
We first compare TALE and TALEþ with competing methods over
the CAFA3 testset. The results are shown in Table 2. Overall,
TALEþ achieved the best performance on biological process (BPO)
and cellular component (CCO); and was the second best (next to
GOLabeler) on molecular function (MFO). Compared to
GOLabeler (the top performer in the official assessment of CAFA3),
TALEþ improved the Fmax from 0.400 to 0.431 (by 8%) on BPO
and from 0.610 to 0.669 (by nearly 10%) on CCO while having a
slightly worse Fmax on MFO (0.615 versus 0.620). Speaking of
TALE without the help of similarity-based DIAMONDScore, it tied
with GOLabeler being the third best on BPO (next to TALEþ and
DeepGOPlus, both of which use DIAMONDScore); and it achieved
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the second best on CCO (only next to TALEþ; and improving Fmax

from 0.610 to 0.654 by 7% compared to GOLabeler).

3.2 Performance on our test set
We then compare TALE and TALEþ with competing methods over

our larger and newer test set and show the results in Table 3.
Overall, TALEþ again achieved the best performance in BPO and
CCO; and had the second best in molecular function (MFO). The

best performer in MFO, NetGO was also the second best performer
in BPO and the third in CCO. Specifically, compared to NetGO,

TALEþ improved Fmax from 0.423 to 0.459 (by 9%) in BPO and
from 0.636 to 0.677 (by 6%) in CCO; and it had worse Fmax
(0.703 versus 0.667) in MFO. TALE alone without adding similar-

ity-based DIAMONDScore outperformed all other methods except
our own TALEþ in CCO: compared to NetGO, TALE alone
improved Fmax from 0.636 to 0.658 (by 4%). It is noteworthy that

NetGO uses additional network information that is not used in
TALE or TALEþ. Such network information is often not available
to proteins and, in such cases, TALEþ outperformed NetGO in all
three ontologies including MFO, as shown in Table 4.

The performance difference among the three ontologies, as
observed in both datasets, can be attributed to the structure and
complexity of the ontology as well as the available annotations
(Jiang et al., 2016). Similarity-based DIAMONDScore performed
much better than the naive approach (and did well among all
methods) in MFO but worse in CCO. This observation echoes
the hypothesis that sequence similarity may carry more informa-
tion on basic biochemical annotations than cellular components.
Interestingly, CCO is also the ontology where TALE and
TALEþ did the best—even TALE alone was better than all
methods other than TALEþ and adding similarity-based
DIAMONDScore to TALE resulted in less help than it did in
MFO and BPO.

Table 2. The performance of TALE and TALEþ against competing methods on the CAFA3 test set

Fmax AuPRC

Ontology MFO BPO CCO MFO BPO CCO

Naive 0.331 0.253 0.541 0.312 0.173 0.483

DIAMONDScore 0.532 0.382 0.523 0.461 0.304 0.500

DeepGO 0.392 0.362 0.502 0.312 0.213 0.446

DeepGOCNN 0.411 0.388 0.582 0.402 0.213 0.523

DeepGOPlus 0.552 0.412 0.608 0.502 0.313 0.564

GOLabelera 0.620 0.400 0.610 / / /

TALE 0.548 0.398 0.654 0.471 0.317 0.626

TALEþ 0.615 0.431 0.669 0.548 0.370 0.652

Note: Boldfaced are the top performance (Fmax or AuPRC) for each ontology.
aTop performer in CAFA3, GOLabeler’s Fmax results (AuPRC being unavailable) are obtained from the official assessment (Zhou et al., 2019b). Its upgraded

version NetGO is only available in a webserver whose training set may include CAFA3 test sequences, thus not compared.

Table 3. The performance of TALE and TALEþ against competing methods on our test set

Fmax AuPRC

Ontology MFO BPO CCO MFO BPO CCO

Naive 0.407 0.281 0.599 0.329 0.198 0.545

DIAMONDScore 0.582 0.359 0.548 0.505 0.207 0.448

DeepGOa 0.423 0.231 0.523 0.345 0.134 0.478

DeepGOCNN 0.476 0.266 0.616 0.419 0.162 0.563

DeepGOPlus 0.634 0.384 0.632 0.587 0.235 0.578

NetGOa 0.703 0.423 0.636 0.634 0.311 0.623

TALE 0.578 0.336 0.658 0.514 0.247 0.635

TALEþ 0.667 0.459 0.677 0.604 0.326 0.643

aNote that both DeepGO and NetGO use network information besides sequence, whereas other methods including TALE and TALEþ use sequence alone.

Note: Boldfaced are the top performance (Fmax or AuPRC) for each ontology.

Table 4. The performance of TALE and TALEþ against competing methods on the portion of our test set that does not have network infor-

mation available

Fmax AuPRC

Ontology MFO BPO CCO MFO BPO CCO

Naive 0.416 0.283 0.597 0.324 0.198 0.548

DIAMONDScore 0.571 0.367 0.528 0.488 0.210 0.450

DeepGO 0.423 0.253 0.572 0.336 0.213 0.523

DeepGOCNN 0.461 0.273 0.625 0.391 0.167 0.576

DeepGOPlus 0.631 0.396 0.644 0.575 0.246 0.604

NetGO 0.643 0.396 0.643 0.592 0.222 0.544

TALE 0.539 0.346 0.669 0.485 0.258 0.649

TALEþ 0.661 0.473 0.693 0.591 0.249 0.669

Note: Boldfaced are the top performance (Fmax or AuPRC) for each ontology.

Sequence to function via joint embedding 2829

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/18/2825/6182677 by N
anjing Agricultural U

niversity user on 19 Septem
ber 2023



3.3 Performance on our test set without network

information
Protein–protein interaction (PPI) network information can be very
useful in boosting the accuracy of computational protein function
annotation. However, its availability can be limited and, when avail-
able, its quality can also be limited (noisy and incomplete). Table 1
shows that only round 40% of our test set has corresponding net-
work information in STRINGdb, which is already biased consider-
ing that all test sequences have already been functionally annotated
with experiments until now. In reality, only 7% of TrEMBL sequen-
ces have corresponding STRINGdb entries available, regardless of
the quality of the network information. The ratio can be even worse
for de novo designed protein sequences. Therefore, a reliable se-
quence-only function annotation method is necessary especially
when network information is not available.

We thus did performance analysis over the portion of our test set
without network information, i.e. the test sequences whose network
information cannot be found in STRINGdb (see statistics in
Table 1). In this case alone we used the version of DeepGO codes
without network features. As shown in Table 4, TALEþ significant-
ly outperformed all competing methods in all three ontologies.
Compared to NetGO, TALEþ improved Fmax from 0.643 to 0.661
(by 3%) in MFO, from 0.396 to 0.473 (by 19%) in BPO and from
0.643 to 0.693 (by nearly 8%) in CCO.

3.4 Generalizability from the training set to the test set
Despite the improved performances of our models, questions remain
on their practical utility. Are they useful in cases where function an-
notation is needed the most? Sequence-based protein property pre-
diction (e.g. fold, structure and function) is needed the most in the
‘twilight’ or even ‘midnight’ zone where similarity to known anno-
tated sequences is too low to sustain the assumption that similar
inputs (sequences) imply similar outputs (aforementioned proper-
ties). Similarly, it is also needed the most in the ‘twilight’ or ‘mid-
night’ zone in another sense, where examples for some specific
function labels are never or rarely seen in known annotated sequen-
ces (thus referred to as tail labels).

Besides the practical questions on model applicability in the twi-
light or midnight zone, fundamental biological questions also re-
main. Have these machine learning models learned anything
fundamental in sequence–function relationships? Or are they merely
mimicking patterns in training data using a complicated function
(such as a neural network) that could overfit?

To answer these questions, we examine our models and compet-
ing ones in their generalizability from the training set to the test set.
Models considered include sequence-based Naive, DIAMOND,
DeepGOCNN, DeepGOPlus, TALE and TALEþ. As the generaliz-
ability analysis requires similarity measures between the training
and test sets, we couldn’t include the NetGO webserver for this ana-
lysis because its training set is neither accessible nor guaranteed to
be identical to ours. Specifically, we examine the generalizability of
these models from three perspectives: sequence, species and label
(function) as follows.

3.4.1 Sequence generalizability

To analyze the generalizability to novel sequences, we split our test
set into bins of various sequence-identity levels compared to the
training set and examine various models’ accuracy (Fmax) over
these bins. Specifically, sequence identity between a test sequence
and the training set is measured by maximum sequence identity
(MSI) [Sequence identity is measured as the number of identical resi-
dues divided by the length of the alignment. Sequence alignment is
performed with the Needleman–Wunsch algorithm (Needleman and
Wunsch, 1970), using the substitution matrix of BLOSUM62 and
the gap penalty as the EBI webserver “EMBOSS Needle”.]. The dis-
tributions of test sequences in MSI are shown in Supplementary
Figure S4. We partition the test sequences into four bins based on
MSI: [0,0.2] (midnight zone), (0.2,0.3] (twilight zone), (0.3,0.4] and
(0.4,1.0] (safe zone), and show the sequence counts (gray dots) and
the Fmax scores (colored bars) in these bins (Fig. 2).

As shown in Figure 2, sequence similarity-based method
DIAMOND performed poorly compared to deep learning-based
models and even the background frequency-based naive approach,
when sequence identity is below 20% (midnight zone) or between
20% and 30% (twilight zone). Meanwhile, without a surprise,
DIAMOND was the close-to-best performer in MFO, BPO and
CCO, when sequence identity is above 40% (safe zone). Between
DeepGOCNN and TALE that do not use sequence-similarity scores
from other sources, TALE outperformed DeepGOCNN in all bins.
In fact TALE was even the best performer among all on MFO and
CCO when sequence identity is below 20%. For all other combina-
tions of the ontology and the bin, TALEþ had the best performance.
As a convex combination of DIAMONDScore and TALE, TALEþ
maintained the impressive performances of TALE in the midnight
and twilight zones and significantly improved from TALE in the safe
zone using the similarity-based information. The numerical values
of the performances are reported in Supplementary Table S7.

3.4.2 Species generalizability

To analyze the generalizability to new species, we count for every
test sequence the Number of training Samples of the Same Species
(NSSS) and identify those in new species never seen in the training
set (NSSS¼0). The statistics are in Supplementary Table S10 and
the distributions of the test sequences in NSSS are in Supplementary
Figure S5. We further remove ‘safe zone’ test sequences whose max-
imum sequence identities (MSI) to the training set are above 40%.
The remaining test sequences are thus in new species and low simi-
larity compared to the training set (see statistics in Supplementary
Table S11).

Figure 3 shows the counts (gray dots) and the Fmax scores of
various models (colored bars) over prokaryotes (including bacteria
and archaea) and eukaryotes. Again, TALEþ outperformed all com-
peting methods for all six combinations of clades and ontologies;
and TALE remained the second best for all combinations except for
prokaryotic CCO where DeepGOPlus, blending DeepGOCNN and
similarity-based DIAMONDScore, edged TALE. Similarity-based
DIAMOND performed very poorly while the naive approach was

(a) (b) (c)

Fig. 2. The Fmax performances of six models in three ontologies, over 4 bins of increasing sequence-identity ranges. Low sequence identity indicates low similarity between a

test sequence and the training set. Sequence statistics over the bins (gray dots connected in dashed lines) are also provided
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mediocre. The numerical values of the performances are reported in
Supplementary Table S8.

Interestingly, all methods performed better for new eukaryotic

species than for new prokaryotic species in MFO and CCO. To
understand this pattern, we compared the MSI between the sequen-
ces in new eukaryotic species and those in new prokaryotic species
on each ontology (MSI below 40%). We found that, the MSIs for
sequences from new eukaryotes are in distribution higher than those
for sequences from new prokaryotes (P-values ranging from 3E-4 to
5E-8 according to one-sided Kolmogorov–Smirnov test), potentially

posing an easier prediction task. Detailed analyses can be found in
Supplementary Section S4.

3.4.3 Function generalizability

To analyze the generalizability to new or rarely annotated functions
(GO labels), we first calculate the frequency of the ith label in the
training set:

f ðiÞ ¼ 1

jDtrainj
XjDtrain j

j¼1

yi;j; (9)

where jDtrainj is the number of training samples and the binary yi;j is
for the ith label of the jth training sample. Then for the kth test sam-
ple, we calculate its average label frequency (ALF) in the training set
as:

ALFðkÞ ¼ 1

jykj1

Xc

j¼1

f ðjÞ � yk;j (10)

where c is the number of labels, the binary yk;j is for the jth label of
the kth sample in the test set, and yk is the stacked vector over all
labels. The distributions of test sequences in ALFð�Þ are shown in

Supplementary Figure S6. We split the test set into 4 bins based on
ALF: ½0; 0:2�; ð0:2; 0:3�; ð0:3;0:4� and ð0:4;1:0�, and provide the his-
tograms of the sequences over these bins in Figure 4 (gray dots). We
note that ALF is a protein centric measure that is a protein-specific
average of individual GO term-centric frequencies. Instead, a direct
GO term-centric analysis is included in Section 3.6.

As shown in Figure 4, the performances of both the naive ap-
proach and DeepGOCNN deteriorated noticeably as the average
label frequency of a test sequence decreases, indicating that current
deep learning models for function annotation do not necessarily
lead to better performances in such scenarios. Similarity-based
method DIAMOND also had mediocre performance especially in
low ALF ( 6 0.3). In all six combinations of 3 ontologies and 2 low
ALF bins ([0,0.2] and (0.2,0.3]), TALE (twice in CCO) or TALEþ
(four times in MFO or BPO) had the best performance. In the other
six combinations involving medium or high ALF, TALEþ led all
other methods by being the best performer thrice, followed by
DeepGOPlus (twice) and the naive approach (once). These results
attest to the advantage of our models that target tail labels using
joint sequence–label embedding. Interestingly, adding similarity-
based DIAMONDScore to TALE did not always lead to a further
improved TALEþ, as seen in the two lowest-ALF bins in CCO.
The numerical values of the results are shown in Supplementary
Table S9.

In total, TALE and TALEþ outperformed all competing meth-
ods in all generalizability tests (low sequence similarity, new species
and rarely annotated functions), echoing our rationale that joint
embedding of sequences and hierarchical function labels to address
their similarities would significantly improve the performance for
novel sequences and tail labels. In addition, combining TALE and
similarity-based DIAMOND into TALEþ also enhanced the per-
formances in some cases. In contrast, similarity-based DIAMOND
did not generalize well to novel sequences in low similarity, new spe-
cies and rarely annotated functions compared to the training ones,
whereas the frequency-based naive approach had mediocre perform-
ance. Deep learning-based DeepGOCNN performed poorly for rare-
ly annotated functions (tail labels), whereas DeepGOPlus combining
DeepGOCNN and similarity-based DIAMONDScore improved the
performance relative to DeepGOCNN.

3.5 Ablation study
To rigorously delineate the contributions of algorithmic innovations
that we have made in TALE and TALEþ to their improved perform-
ances and superior generalizability, we perform the following abla-
tion study. Starting with DeepGOCNN, we incrementally add
algorithmic components and introduce variants to eventually lead to
TALE and TALEþ:

• B1: replacing the convolutional layers in DeepGOCNN with the

transformer encoder plus the input embeddings. Unlike Eq. (3)

where a is the output from joint label embedding, the output of

the encoder here P 2 R
n�h would be simply row-averaged to ob-

tain e;

Fig. 3. The Fmax performances of six models in three ontologies, over eukaryotes

and prokaryotes with NSSS¼0 (new species) and MSI 6 40% (low similarity)

(a) (b) (c)

Fig. 4. The Fmax performances of six models in three ontologies, over 4 bins of increasing function/label frequencies (for each test sequence, average label frequencies in the

training set, measured by ALF(�)). Low ALF bins indicate proteins with functions rarely annotated in the training set
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• B2: replacing the DeepGOCNN post-training correction of hier-

archical violations in B1 with the additional loss term of hier-

archical regularization (Eq. 5);
• B3: adding label embedding and joint similarity modules to B2

for joint sequence–label embedding.

TALE is using the average of the top-3 B3 models (based on the
validation set) and TALEþ is a convex combination of TALE and
DIAMONDScore.

The overall performances of the above models over the test set
are summarized in Figure 5(a). Exact Fmax and AuPRC values and
detailed analyses are in Supplementary Section S7. From
DeepGOCNN to TALEþ, both Fmax and AuPRC were gradually
increasing over model variants. In MFO and BPO, the convex com-
bination with DIAMONDScore had the largest single contribution
to the overall Fmax or AuPRC increase, whereas the TALE innova-
tions, including the transformers, hierarchical regularization, label
embedding (jointly with sequence embedding) and model ensem-
bling, together contributed about the same. In CCO,
DIAMONDScore still contributed but the TALE innovations con-
tributed much more in improving both measures.

Various generalizability of the above models is also assessed over
test sequences with low similarity (MSI 6 30%), in new species (and
with MSI 6 40%), or rarely annotated functions (ALF 6 20%), as
summarized in Figure 5(b)–(d), respectively. Exact Fmax and
AuPRC values as well as detailed analyses are in Supplementary
Section S8. Interestingly, similarity-based DIAMONDScore was no
longer found the largest single contributor to Fmax improvements
except in BPO, and sometimes found to hurt the performance.
Instead, joint embedding, hierarchical regularization and sometimes
transformers, were often found the largest contributors to many
Fmax improvements among combinations of generalizability types
and ontologies considered, which attests to the rationales of our al-
gorithm designs.

3.6 GO term-centric analysis
Besides previous protein-centric analysis, we perform a GO term-
centric analysis to show the best performing GO annotations by
TALEþ. Specifically, for each of the three ontologies, we report
such top-10 annotations for GO terms in three categories: all GO
terms considered (Table 1), a subset of low label frequency [lowest
10% in f(i)] or even zero label frequency (f(i) ¼ 0), and a subset of
high information content [IC; IC(i) P 5 or IC(i) P 10] (Clark and
Radivojac, 2013). Due to the space limit, we detail the results in
Supplementary Section S9 (Supplementary Tables S16–S30) and
summarize the major observations as follows.

Among all GO terms considered, top-10 annotations by TALEþ
were with extremely high precision and recall (Fmax being 1). The
corresponding GO terms were often shallow (depth being mostly 2
for MFO and CCO and 3 for BPO) but their information content
may vary widely (Supplementary Tables S16, S21 and S26).

For those GO terms rarely annotated in the training set, with the
lowest 10% f(i) (often below 3E-5), the top-10, 5 and 2 best per-
forming annotations by TALEþ still impressively achieved Fmax

being 1 in MFO, BPO, and CCO, respectively (Supplementary
Tables S17, S22 and S27). For GO terms i never annotated in the
training set (but in the test set), with f(i) ¼ 0, only top-3, top-4, and
top-3 annotations by TALEþ could achieve Fmax over 0.1 for
MFO, BPO and CCO, respectively (Supplementary Tables S18, S23
and S28). Their hierarchical relationships to other GO terms, many
of which are annotated in the training set, are well exploited in our
label embedding (jointly across GO terms and jointly between labels
and sequences). The best-performing such annotation was for
GO:0019164 (pyruvate synthase activity) with an Fmax of 0.34.
These annotations were, naturally, with much larger depth (up to
6); and their distances to the closest ancestor annotated in the train-
ing set were often just 1. With few ground-truth sequences, these
GO terms suffered from low precision but showed high recall.
Similar observations were made for TALEþ annotations for those
GO terms i with high information content (Supplementary Tables
S19, S20, S24, S25, S29 and S30).

4 Conclusion

In this article, we have developed a novel transformer-based deep
learning model named TALE, with joint embedding of sequence
inputs and hierarchical function labels. The transformer architecture
could learn sequence embedding while considering the long-term de-
pendency within the sequence, which could generalize better to
sequences with low similarity to the training set. To further general-
ize to tail labels (functions never or rarely annotated in the training
set), we learn the label embedding, jointly with the sequence embed-
ding, and use their joint similarity to measure the contribution of
each amino acid to each label. The similarity matrix is further used
to reweigh the contributions of each amino acid toward final predic-
tions. In addition, we use TALEþ, a convex combination of TALE
and a similarity-based method, DIAMOND, to further improve
model performances and generalizability.

Our results on the time-split test sets (standard CAFA3 and our
curated) demonstrate that TALEþ outperformed all sequence-based
methods in all three ontologies and outperformed the state-of-the-art
hybrid method (using network information) in BPO and CCO. When
network information is not available, TALEþ outperformed all com-
peting methods in all ontologies. Importantly, both TALE and
TALEþ showed superior generalizability to sequences of low similar-
ity (and in never-annotated new species) as well as rarely (and some-
times never) annotated functions, echoing the rationales of our
algorithm development. Ablation studies indicate that our newly
introduced algorithmic components, especially transformer encoders
and joint embedding of features (1D sequences) and labels (GO as
directed acyclic graphs), contributed the most to such sequence, spe-
cies and function generalizability, whereas sequence similarity-based
DIAMONDScore helped especially the high-similarity cases.

Both TALE and TALEþ are fast models that can annotate 1000
sequences within a couple of minutes on a mid-range GPU (Nvidia
K80). These high-throughput annotators with both accuracy and
generalizability would help close the increasing gap between high-
throughput sequence data and limited biological insights. In future,
integrating additional data beyond protein sequences, particularly

(a) (b) (c) (d)

Fig. 5. The Fmax performances of various models in the ablation study for (a) the overall test set as well as test sequences (b) with MSI 6 30%, (c) in new eukaryotic or pro-

karyotic species and with MSI 6 40%, or (d) average label frequency 6 20%
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protein interaction networks, would further help close the gap espe-
cially for the ontologies of biological processes and cellular
components.
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