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Abstract 

Background: A massive amount of protein sequences have been obtained, but their 
functions remain challenging to discern. In recent research on protein function 
prediction, Protein-Protein Interaction (PPI) Networks have played a crucial role. 
Uncovering potential function relationships between distant proteins within PPI 
networks is essential for improving the accuracy of protein function prediction. Most 
current studies attempt to capture these distant relationships by stacking graph 
network layers, but performance gains diminish as the number of layers increases.

Results: To further explore the potential functional relationships between multi-
hop proteins in PPI networks, this paper proposes SEGT-GO, a Graph Transformer 
method based on PPI multi-hop neighborhood Serialization and Explainable artificial 
intelligence for large-scale multispecies protein function prediction. The multi-
hop neighborhood serialization maps multi-hop information in the PPI Network 
into serialized feature embeddings, enabling the Graph Transformer to learn deeper 
functional features within the PPI Network. Based on game theory, the SHAP 
eXplainable Artificial Intelligence (XAI) framework optimizes model input and filters 
out feature noise, enhancing model performance.

Conclusions: Compared to the advanced network method DeepGraphGO, SEGT-GO 
achieves more competitive results in standard large-scale datasets and superior 
results on small ones, validating its ability to extract functional information from deep 
proteins. Furthermore, SEGT-GO achieves superior results in cross-species learning 
and prediction of the functions of unseen proteins, further proving the method’s 
strong generalization.
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Introduction
As fundamental constituents of cellular organisms, proteins play crucial roles [1]. 
The number of known protein sequences has significantly increased1 thanks to the 
development of high-throughput protein sequencing technology [2]. However, due to 
the high cost of traditional biochemical methods [3], only a tiny proportion of protein 
sequences have credible functional annotations (0.002% in UniProtKB). To standardize 
protein function annotation, the Gene Ontology (GO) knowledgebase includes more 
than 42,000 terms (as of January 2024),2 spanning the three biological ontology domains 
of Molecular Function Ontology (MFO), Biological Process Ontology (BPO), and 
Cellular Component Ontology (CCO). The GO knowledgebase aggregates annotation 
data for more than 5000 species, yet merely 0.03% possess more than 1000 annotations. 
Therefore, a reliable and accurate protein function prediction method is a pressing need 
to address the deficiency in protein functional annotation [4, 5].

Thanks to advances in deep learning technology, models for predicting protein func-
tion or structure have significantly aided the elucidation of pathogenic mechanisms and 
the advancement of novel pharmaceuticals [6, 7]. Qiao et al. [6] explored the relation-
ship between sequence mutations and functional impairments by modeling the energy 
landscape of proteins, helping researchers understand the mechanisms of the disease at 
the molecular level. The empirical scoring function DockTScore [7] based on machine 
learning evaluates the binding affinity between proteins and enzymes, facilitating the 
efficient design of targeted drugs. By integrating protein language models and pre-train-
ing techniques, DeepP450 [8] accurately predicts cytochrome P450 enzymes (CYPs), 
significantly improving the success rate of drug development. Thus, developing a protein 
function annotation model will help researchers understand complex biological activi-
ties from a molecular functional perspective and optimize clinical treatment approaches.

Researchers typically predict protein functions using sequence data, such as residue 
sequences, or network data, such as Protein-Protein Interaction (PPI) Networks [9]. 
Sequence-based methods achieve protein function prediction by extracting latent 
information from residue sequences. Richa et  al. [10] proposed a semi-supervised 
learning paradigm based on autoencoders to learn protein functional features from 
residue sequences for function prediction. DeepNF [11] learns high-dimensional 
representations from multiple heterogeneous PPI Networks for protein function term 
prediction, demonstrating the positive impact of PPI Network information on protein 
function prediction tasks. However, since these methods are limited to a single data type, 
models may face limitations in feature clues when inferring protein functions, potentially 
leading to challenges in protein function prediction accuracy. To further improve the 
accuracy of protein function prediction, many researchers [9] have begun incorporating 
sequence features as initial embeddings for network nodes and using network modeling 
to learn hybrid information from various types of data.

Research in graph representation learning [12] has demonstrated that Graph Convo-
lutional Networks (GCNs) [12] are well suited to model graph data in non-Euclidean 
spaces. In protein function prediction tasks, various data, including PPI and protein 

1 https:// www. unipr ot. org/ unipr otkb
2 https:// geneo ntolo gy. org/ stats. html

https://www.uniprot.org/uniprotkb
https://geneontology.org/stats.html
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structure, are represented in graph form. Consequently, many researchers have begun 
to explore GCN-based models to enhance protein function prediction capabilities 
[13]. DeepGraphGO [13] employs InterPro features derived from InterProScan as ini-
tial embeddings for nodes in the PPI Network and models protein interactions using 
a 2-layer GCN. By integrating attention mechanisms into the GCN, DeepHGAT [14] 
achieves improved prediction accuracy; however, the message-passing range within 
the graph remains confined to 3 hops. These GCN-based approaches face inherent 
limitations in capturing multi-hop neighborhood information [15]. As shown in Fig. 1a, 
GCN-based methods propagate neighborhood information layer by layer along a pre-
determined network structure. Thus, when stacking multiple layers of GCN to capture 
distant protein node information, the model tends to produce similar embeddings for 
the PPI nodes, resulting in a sharp decline in protein function prediction accuracy [15]. 
However, recent advances [16–18] in graph representation learning indicate that the 
ability of graph representation models to capture multi-hop neighborhood informa-
tion substantially influences their performance. Similarly, in protein function prediction 
tasks, enhancing the model’s ability to learn multi-hop neighborhood information in PPI 
Networks can improve the accuracy of protein function predictions.

To address the challenges of multi-hop neighborhood learning in graph representa-
tion, researchers have developed Graph Transformers, inspired by Transformer-based 
modeling methods from Natural Language Processing (NLP) [19, 20] and Computer 
Vision (CV) [21, 22]. Experimental results [16–18] show that node embeddings learned 
using the Transformer Encoder exhibit superior performance in downstream tasks such 
as node classification and node clustering. Therefore, leveraging Graph Transformers 
for modeling multi-hop neighborhoods in protein graphs such as PPI Networks can fur-
ther enhance the model’s protein function prediction performance. However, the inher-
ent quadratic computational complexity of Graph Transformers leads to an exponential 
increase in computational resource requirements as the scale of the graph grows [18]. 
This significantly limits the application of Graph Transformers on large-scale networks; 
specifically, PFreshGO [23], which utilizes Transformers to model GO term Directed 
Acyclic Graphs (DAGs), experiences GPU memory overflow in the BPO dataset, which 
comprises 1943 GO terms, due to its prohibitively high computational demands. There-
fore, reducing the computational complexity of the Graph Transformer to enable it to 
collect multi-hop information from large-scale PPI Networks for enhancing protein pre-
diction accuracy is a critical issue that requires attention.

With the above questions, this paper proposes SEGT-GO, a Graph Transformer 
method based on PPI multi-hop neighborhood Serialization and Explanatory artificial 
intelligence for large-scale, multispecies protein function prediction. Figure  1b shows 
that SEGT-GO employs a Graph Transformer Encoder to learn multi-hop neighborhood 
information in PPI networks and capture potential functional relationships between dis-
tant proteins. By integrating PPI multi-hop neighborhood serialization and eXplainable 
Artificial Intelligence (XAI) [4, 24] techniques, SEGT-GO effectively mines multi-hop 
neighborhood information within large-scale PPI networks. The contributions of this 
paper can be summarized as follows:
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• We propose a novel Graph Transformer utilizing PPI multi-hop neighborhood seri-
alization encoding to construct serialization feature embeddings computable by the 
Graph Transformer. This approach enables SEGT-GO to operate efficiently on large-
scale PPI networks, ensuring acceptable computational resource consumption and 
minimal information loss.

• We introduce the SHAP framework, grounded in game theory, to investigate the 
potential of eXplainable Artificial Intelligence (XAI) in protein function prediction 
tasks. Experiments demonstrate that SHAP effectively differentiates the contribu-
tions of various features to function prediction, further enhancing SEGT-GO’s per-
formance.

• Compared to the advanced network method DeepGraphGO, SEGT-GO demon-
strates competitive performance on standard large-scale datasets and outperforms 
small-scale datasets, validating its ability to extract deep functional information from 
PPI networks. Furthermore, its predictive capacity for cross-species and unseen pro-
tein functions has also been confirmed in experiments, indicating a strong generaliz-
ability in different scenarios.

Methods
Data preparation

Protein representation

• PPI network

In the PPI Network, each node represents a protein. The weighted edges in the PPI Net-
work indicate the interaction relationships between two proteins. The PPI Network has 
also been successfully applied in DeepGraphGO [13] and HNetGO [25]. The PPI Net-
work used in this study is downloaded from v11.0 of the STRING database.

• InterPro feature

Fig. 1 Difference between GCN-based protein function prediction model and SEGT-GO. a When learning 
information from distant neighborhoods, GCN-based models are constrained by over-smoothing. b SEGT-GO 
ensures the propagation of neighborhood information decoupled from the PPI Network, enabling learning 
distant neighborhood information. SHAP Filter & Embedding is responsible for filtering and mapping the 
InterPro Feature
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By integrating more than a dozen different protein feature databases such as CATH-
Gene3D [26], CDD [27] and Pfam [28], InterPro has become a leading resource pool 
for protein families, domains, and functional sites. The InterProScan [29] tool can 
generate a d-dimensional vectorized non-redundant protein sequence feature based on 
InterPro, known as InterPro Feature. We extract protein sequence data from UniProtKB 
to generate InterPro Features [30].

Datasets

The protein data and GO terms used in this study come from open-source work [13, 31], 
so no ethical approval is required. You can download the dataset directly from the Web.3 
Table 1 shows the data statistics for the train, valid, test sets, and species-specific subsets. 
We extract annotations from the GO experiment and divide the dataset following CAFA 
standards [5] and DeepGraphGO practices. SEGT-GO and DeepGraphGO use training 
samples in both the PPI Network and residue sequence, while the baselines use all 
training samples. Figure 2 shows that MFO, BPO and CCO have 6640, 21288, and 2729 
GO terms, respectively. The broader coverage of GO terms of SEGT-GO distinguishes it 
from other methods [1, 2, 23, 32].

We analyze the scale of the PPI Network, as shown in Fig. 2, indicating that our study 
falls under large-scale graph representation learning. We also normalize the initial PPI 
Network to avoid degree bias and gradient vanishing during model training [33].

The proposed methodology: SEGT‑GO

Serializing the neighborhood of PPI networks based on matrix multiplication

As shown in Fig. 3a, inspired by the Hop2Token in NAGphormer [33], SEGT-GO uti-
lizes matrix multiplication-based multi-hop neighborhood serialization encoding to 
compute PPI multi-hop neighborhood feature sequences. Specifically, we first obtain 
the adjacency matrix A ∈ R

N×N from a PPI Network with N nodes, where Aij = wij . 
If wij  = 0 , it means an interaction between the protein nodes i and j, with a corre-
sponding interaction weight of wij . The normalized adjacency matrix Â is computed as 

Table 1 Data statistics of proteins of MFO, BPO, and CCO ontologies on the train, valid, and test sets

Dataset Ontology Human Mouse All data Ours

Train MFO 10458 8331 51549 35092

BPO 12095 9927 85104 54276

CCO 18842 8482 76098 48093

Valid MFO 86 103 490 490

BPO 138 299 1570 1570

CCO 137 228 923 923

Test MFO 41 65 426 426

BPO 87 156 925 925

CCO 767 130 1224 1224

3 [Online]. Available: https:// github. com/ yourh/ DeepG raphGO, http:// bliul ab. net/ CFAGO/

https://github.com/yourh/DeepGraphGO
http://bliulab.net/CFAGO/
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Â = D̃−1/2ÃD̃−1/2 , where Ã is the adjacency matrix A with self-loops, and D̃ represents 
the degree matrix. We use InterProScan [29] to generate the initial InterPro Feature 
H ∈ R

N×d , where d = 41, 311 is the dimension of the InterPro Feature. By repeatedly 
left-multiplying H with Â K times, we obtain a sequence S consisting of K + 1 neighbor-
hood feature matrices, ordered from nearest to farthest:

 where H0 = H is defined as the initial feature and Hk ∈ R
N×d represents the k-hop 

neighborhood feature matrix, with K denoting the maximum neighborhood aggregation 
range. Extracting the v-th row from each feature matrix in the sequence S yields the PPI 
multi-hop neighborhood token sequence for node v, denoted as Tv = {H0

v ,H
1
v , . . . ,H

K
v }.

The matrix multiplication-based PPI multi-hop neighborhood serialization encoding, 
an efficient offline nonparametric method, offers the following advantages: 1) SEGT-GO 
can extract information from a broader neighborhood range within the PPI Network, 
enhancing function prediction precision. 2) By generating offline PPI multi-hop neigh-
borhood feature sequences that support a mini-batch strategy, SEGT-GO can scale to 
large-scale PPI Networks.

Encoding, aggregating, and classing of PPI serialization information based on graph 

transformer

• Transformer encoder‑based PPI serialized information encoding

As shown in Fig. 3b Embedding Layer, to retain the information contained in the initial 
InterPro Feature, the sequence Tv must undergo feature space mapping in the Embed-
ding Layer before feature extraction with the Transformer Encoder:

(1)S = {Hk |Hk = ÂHk−1, k = 1, ...,K }

Fig. 2 Statistical information of the PPI Network. The number of protein nodes, edges, and the InterPro 
Feature dimension are given using orange, blue, and green dashed boxes, respectively. Edges of different 
thicknesses indicate different weights. Yellow dashed boxes give the number of GO terms on different 
ontologies
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Let Z(0)
v ∈ R

(K+1)×dh denote the matrix formed by the mapped token sequence, and 
MPro ∈ R

d×dh represent a learnable vector matrix. In other words, each dimension of 
the InterPro Feature corresponds to a learnable vector in MPro , and these vectors are 
weighted and summed along the column direction using the initial InterPro Feature Hk

v  
as weights.

Following the design of the vanilla Transformer Encoder Block [19, 34], we con-
structed the Transformer Encoder, as shown in Fig. 3c, using LayerNorm (LN), Multi-
head Self-Attention (MSA), position-wise Feed-Forward Network (FFN), and Dropout 
layer (Drop):

where Z(l)
v ∈ R

(K+1)×dh represents the multi-hop neighborhood feature encoded by the 
l-th layer of the Transformer Encoder. Z∗(l)

v  denotes an intermediate result, with the 
hyperparameter l ∈ {1, . . . , L} determining the number of Transformer Encoder layers. 
The Multi-head Self-Attention (MSA) mechanism, fundamental to the Transformer 

(2)
Z(0)
v =

[

Pro(H0
v );Pro(H

1
v ); . . . ;Pro(H

K
v )

]

Pro(Hk
v ) = Hk

v MPro

(3)
Z∗(l)
v = Drop

(

MSA
(

LN
(

Z(l−1)
v

)))

+ Z(l−1)
v

Z(l)
v = Drop

(

FFN
(

LN
(

Z∗(l)
v

)))

+ Z∗(l)
v

Fig. 3 The schematic of SEGT-GO. a The PPI multi-hop neighborhood serialization encoding module. The 
normalized multi-hop adjacency matrix from the PPI Network is multiplied by the InterPro Feature H to 
obtain the serialized PPI multi-hop neighborhood feature tokens. b SEGT-GO architecture diagram. The 
serialized PPI multi-hop neighborhood tokens are filtered by the SHAP Filter and fed into the Embedding 
Layer for feature mapping. The Transformer Encoder captures potential functional relationships between PPI 
multi-hop neighborhoods. The Multi-hop Attention Layer aggregates neighborhood information based on 
the importance of different hops relative to Hop 0. The GO Terms Classifier predicts protein functions using 
the aggregated information. The SHAP Explainer analyzes the predictions and provides an evaluation vector 
V(Eval). c Detailed structure of the Transformer Encoder. L determines the number of layers in the Transformer 
Encoder. d SHAP Explainer workflow. The SHAP Explainer uses the value function val(·) to assess the impact 
of various features on protein function prediction. The final feature evaluation values (Eval) are summed to 
produce the feature filter’s importance evaluation vector V(Eval)
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Encoder, is crucial for learning high-quality protein embeddings. As shown in Fig. 3c, 
Multi-head Self-Attention (MSA) is described as multiple single-attention heads oper-
ating in independent feature spaces. For ease of description, we use a single-head self-
attention mechanism as an example to explain it:

where we use three learnable matrices, WQue ∈ R
dh×dKey , WKey ∈ R

dh×dKey , and 
WVal ∈ R

dh×dVal , to project Z(l)
v  into the Que, Key and Val feature spaces, respectively. 

Scaled Dot-Product Attention learns the potential function relationships between differ-
ent neighborhoods and quantifies this information using a row-wise softmax function. 
Z
′(l)
v ∈ R

(K+1)×dh represents the final output of the Multi-head Self-Attention (MSA) in 
the l-th layer of the Transformer Encoder.

• Attention‑based aggregation of encoded PPI multi‑hop neighborhood infor‑
mation

Inspired by NAGphormer [33] and GAT [35], we adopt an attention-based multi-
hop neighborhood feature aggregation method to effectively aggregate the PPI 
multi-hop neighborhood feature sequence output by the Transformer Encoder, 
Zv = Z

(L)
v = [Zv,0;Zv,1; . . . ;Zv,K ] . As shown in Fig. 3b, the Multi-hop Attention Layer 

can learn the importance coefficients α = (α1,α2, . . . ,αK ) of other tokens relative to 
Token 0 (Hop 0). We set α0 = 1 . The importance coefficient αv,k of the k-hop neigh-
borhood Zv,k (Token k) relative to node v ( Zv,0 , Token 0) is calculated as follows:

where E⊤ ∈ R
1×2dh denotes the learnable weight matrix. SEGT-GO employs α as sum-

mation weights to achieve PPI multi-hop neighborhood feature aggregation. This pro-
cess can be expressed as:

where Zv,final ∈ R
1×dh represents the aggregated PPI multi-hop neighborhood feature 

result corresponding to node v.

• Large‑scale protein function classifier based on aggregated PPI multi‑hop 
neighborhood information

As shown in Fig.  3b GO Terms Classifier, to narrow the gap between the hidden 
embedding dimension dm and the number of extensive GO terms C, we have devised 
a classifier based on transitional Multi-Layer Perceptron (trans-MLP) following 
experimentation. Specifically, trans-MLP consists of 4 layers with neurons set to dm , 
C/4, C/2, and C, respectively. We define trans-MLP as follows:

(4)

Que = Z(l)
v WQue, Key = Z(l)

v WKey, Val = Z(l)
v WVal

Z′
(l)
v = softmax

(

Que · Key⊤
√

dKey

)

Val

(5)αv,k =
exp

(

(Zv,0 � Zv,k)E
⊤
)

∑K
i=1 exp(

(

Zv,0 � Zv,i)E⊤
)

(6)Zv,final = Zv,0 +

K
∑

j=1

αv,jZv,j
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where ŷv ∈ R
1×C represents the confidence of node/protein v being annotated with dif-

ferent GO terms.
Finally, we optimize the multi-label binary classification problem modeled by SEGT-

GO using binary cross-entropy loss:

where B represents the number of protein samples, ŷij denotes the probability of the i-th 
protein being predicted as GO term j, and yij ∈ {0, 1} is the ground truth.

The time and space complexity of SEGT-GO is O(N (K + 1)2dh) and 
O(B(K + 1)2 + B(K + 1)2dh + dh

2L) , respectively, where N represents the number of 
nodes, K is the maximum neighborhood aggregation range, dh is the dimension of the 
hidden layer vectors, L is the number of layers in the Graph Transformer, and B denotes 
the number of protein samples in each batch. For detailed theoretical analysis and runt-
ime statistics, see Appendix C.

Enhancing SEGT‑GO with explainable framework SHAP for feature optimization

Given the possibility of negative features in high-dimensional InterPro features (as 
shown in Fig.  2) that may interfere with functional prediction, we incorporate SHap-
ley Additive exPlanations (SHAP) [24], a framework based on game theory eXplainable 
Artificial Intelligence (XAI) [36], to identify features that positively contribute to func-
tion prediction and mask negative ones. First, we present the calculation method for the 
Shapley values:

where SHAPj represents the Shapley value corresponding to a feature point j of the 
InterPro Feature (player, in game theory terminology, the same applies hereafter). When 
SHAPj > 0 , it indicates that the feature point j positively impacts the prediction of the 
model. P denotes the set of all feature points (the coalition of all players), B represents 
a subset of feature points (a coalition), |B| indicates the number of feature points in the 
set (the size of the coalition), ! is the factorial operation, and val(·) is used to evaluate the 
contribution of feature points to the prediction result (value function).

To reduce the computational cost of SHAP, we control the number of training sam-
ples a, testing samples b, and focus categories θ that SHAP covers. The evaluation val-
ues provided by SHAP are denoted as Eval ∈ R

θ×b×K×d . By summing Eval along each 
dimension, we convert it into an importance evaluation vector V (Eval) ∈ R

d (as shown 
in Fig. 3d). We define t ≥ 0 as the filtering threshold: when V (Eval)j > t , the SHAP Fil-
ter retains the feature point j.

(7)ŷv = trans-MLP(Zv,final)

(8)Loss = −
1

BC

B
∑

i=1

C
∑

j=1

[

yij log(ŷij)+ (1− yij) log(1− ŷij)
]

(9)SHAPj =
∑

B⊆P\{j}

|B|!(P − |B| − 1)!

|B|!

(

val(B ∪ {j})− val(B)
)
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Results
Experiment setup

Implementation details

We train SEGT-GO to predict test protein samples in different ontologies, optimizing 
hyperparameters in the valid set for best performance. Specifically, we try the maxi-
mum propagation range for PPI multi-hop neighborhoods K in {1, . . . , 9} , the num-
ber of Transformer Encoder layers L in {1, . . . , 5} , the number of heads in {4, 8, 16} , the 
hidden dimension dh in {128, 256, 512, 1024} , the dropout rate for the Dropout Lay-
ers in {0.1, 0.3, 0.5} , and the SHAP filtering threshold t in {0, 0.1, . . . , 0.6} . The learning 
rate and weight decay for the AdamW optimizer [37] are searched within the ranges 
{1e − 4, 5e − 4, 1e − 3, 5e − 3} and {1e − 5, 5e − 4, 1e − 4} , respectively. The batch size is 
fixed at 256. SEGT-GO is trained for a maximum of 1000 epochs, with early stopping 
if there is no improvement for 30 epochs. We apply SHAP to the best SEGT-GO with-
out SHAP ( SEGT-GOw/o SHAP ) in each ontology. Considering computational efficiency, 
we set a, b, and θ in SHAP to 5000, 100, and 500, respectively. On an NVIDIA Tesla 
P40 24GB, the training durations for SEGT-GO in the MFO, BPO, and CCO ontologies 
are 20 min, 3 h, and 1.5 h, respectively. We organize the hyperparameter settings of the 
baselines according to DeepGraphGO [13] and other official baseline implementations 
[38–40].

Baselines and evaluation criterion

Based on the data types, we classify the 7 baselines into 2 categories: sequence-based 
(BLAST-KNN [39], LR-InterPro [39], DeepGOCNN [40], DeepGOPlus [40], and 
PO2GO [41]) and network-based (Net-KNN [38] and DeepGraphGO [13]). For details 
on the baselines, see Appendix A. Since SEGT-GO and DeepGraphGO use the same 
dataset and baselines, we directly cite the test results of DeepGraphGO [13].

Referring to other protein function prediction works [1, 13], we use AUPR (Area 
Under the Precision-Recall curve) and Fmax (maximum protein-centric F-measure) as 
evaluation metrics. For detailed calculations of these metrics, see Appendix B.

Comparison of SEGT‑GO with GCN‑based method and baselines

To demonstrate the advantages of SEGT-GO over GCN-based models in mining 
protein networks of varying scales, we first compare SEGT-GO with the best GCN-
based method in the baselines, DeepGraphGO, across various dataset scales. Moreover, 
evaluating models with different datasets can validate the model generalization [1]. We 
introduce the Human dataset from CFAGO [31] as Dataset B (refer to Appendix D). The 
dataset in Sect. Datasets is Dataset A.

Table 2 shows that SEGT-GO provides more accurate protein function predictions 
than DeepGraphGO. Across 12 test items on datasets of different scales, SEGT-GO 
leads in 10 items, with the highest relative performance improvement reaching 59.3% 
(on Fmax CCO, Dataset B). This demonstrates that SEGT-GO’s advanced architecture 
effectively learns protein-protein interactions from a broader range within the PPI 
Network. Additionally, results in Fig.  4 highlight SEGT-GO’s strong stability and 
scalability when handling PPI Networks of varying scales and structures, particularly 
in the smaller Dataset B. It is important to note that although SEGT-GO leads by a 
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smaller margin in AUPR and Fmax on the large-scale Dataset A compared to Dataset 
B, the experimental results demonstrate that SEGT-GO successfully captures a 
broader range of neighborhood information with less computational consumption. 
This proves SEGT-GO’s potential for scalable application on large networks and its 
ability to learn distant protein functional information. For further details, please refer 
to Sect. Neighborhood Aggregation Range K and Appendix C.

We compare SEGT-GO with 6 baselines on dataset A. Details can be found in 
Table 3. As shown in Fig. 5, the conclusions can be summarized as follows:

• SEGT-GO has achieved competitive results across the 3 ontologies. Compared to the 
second-best, SEGT-GO exhibits AUPR improvements of 2.2%, 11.9%, and 1.2% in 
MFO, BPO, and CCO, respectively. This demonstrates SEGT-GO’s excellent capabil-
ity in multispecies function prediction. However, higher False Positive Rates (FPRs) 
lead to SEGT-GO being suboptimal in Fmax for MFO and CCO (see Table  3). We 
speculate that this may be related to the completeness of the annotation of the GO 
term [25]. In other words, instances predicted as counterexamples by SEGT-GO in 
this study might be evaluated differently in a more comprehensive annotation set.

• Combining sequence and network features improves precision in prediction. SEGT-
GO and DeepGraphGO outperform other baselines across the 3 ontologies by lev-
eraging both sequence and network information. However, the limitations of GCNs 
result in DeepGraphGO achieving a lower AUPR in all three ontologies than SEGT-
GO. The LR-InterPro model, which uses only InterPro Features, further shows that 
relying solely on sequence data fails to achieve good performance across all ontol-
ogies, especially in BPO, which contains more abstract GO terms. Additionally, 
PO2GO, which uses the improved GO term representation PO2Vec, did not show a 
significant performance advantage.

• SEGT-GO achieves significant improvements in BPO, which has more complex 
annotations. Consistent with previous studies, baselines perform worse in BPO, indi-
cating that improving prediction accuracy in BPO is challenging. However, SEGT-
GO significantly increases AUPR in BPO (MFO: +2.2%; BPO: +11.9%; CCO: +1.2%). 
We believe that SEGT-GO’s superior PPI multi-hop neighborhood learning enables 
it to derive more accurate protein embeddings from a broader range, resulting in bet-
ter performance in more difficult prediction tasks.

Table 2 Comparison of SEGT-GO and DeepGraphGO on datasets of different scales

Bold for “the best”

Dataset Methods AUPR Fmax

MFO BPO CCO MFO BPO CCO

A DeepGraphGO 0.543 0.194 0.695 0.623 0.327 0.692
SEGT-GO(Ours) 0.555 0.217 0.703 0.619 0.328 0.683

B DeepGraphGO 0.098 0.133 0.113 0.142 0.327 0.209

SEGT-GO(Ours) 0.101 0.173 0.167 0.213 0.454 0.333
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Generalization studies of unseen species and cross‑species

To explore the cross-species generalization of SEGT-GO, we retrain SEGT-GO on 
specific species datasets. Specifically, we introduce 2 variants: 1) SEGT-GOSpecies : both 
the training and test datasets contain only the specific species; 2) SEGT-GOw/o Species : 
the training dataset contains all the species except the specific one, while the test 
dataset contains only the specific species. The results are shown in Table 4. SEGT-GO 
achieves 10 best results and 2  s-best results of 12 items. Furthermore, even when the 
specific species is not present in the training phase, SEGT-GOw/o Species achieves 8 s-best 
performances, making it the second-best. This indicates that SEGT-GO can learn 
information from other species between species. Similar conclusions are also found 
in DeepGraphGO [13]. The analogous results between SEGT-GO and DeepGraphGO 
further validate the effectiveness of the cross-species learning strategy: training models 
using a large number of samples from other species endow them with strong cross-
species generalization capabilities.

We also compare the generalization of unseen species [1] of SEGT-GO and Deep-
GraphGO on Human samples. Details about DeepGraphGO are in Appendix E. As 
shown in Fig. 6, although the performance of SEGT-GOw/o Human slightly decreases after 
excluding Human samples, it still surpasses DeepGraphGOw/o Human in BPO and CCO. 
Moreover, we observe that except for MFO, SEGT-GOw/o Human , which never encoun-
tered Human proteins during training, outperforms DeepGraphGO trained on all spe-
cies. The excellent unseen species generalization of SEGT-GO enables it to perform 
function prediction on new species proteins without prior knowledge.

Methodological contribution analysis and GO terms group assessment

Methodological contribution analysis

This section addresses two questions: 1) Does the trans-MLP transition from hidden 
feature to functional annotation space improve prediction precision? 2) Does the SHAP 
successfully mitigate the negative impact of feature noise on the function prediction task? 
We conduct ablation experiments on the full dataset as well as on Human and Mouse test 
samples. Specifically, we construct two variants: 1) SEGT-GOw/oSHAP[NONSPACE]&MLP , 
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Fig. 4 Radar charts of SEGT-GO and DeepGraphGO on datasets of different scales. a and b are datasets A and 
B, respectively
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which disables both SHAP and trans-MLP; 2) SEGT-GOw/o SHAP , which only disables 
SHAP. Details can be found in Appendix F.

As shown in Fig.  7, when SHAP and trans-MLP are disabled, 
SEGT-GOw/oSHAP[NONSPACE]&MLP cannot effectively transition hidden features to 
large-scale protein function annotations. Meanwhile, it cannot filter out InterPro Fea-
ture noise, resulting in significant performance degradation. With the aid of trans-MLP, 
SEGT-GOw/o SHAP significantly improves the accuracy of protein function prediction 
and becomes the second-best model. Furthermore, the SEGT-GO that incorporates 
SHAP achieves the best performance. This demonstrates that SHAP accurately filters 
out InterPro Feature noise, negatively impacting function prediction tasks. Moreover, 
the successful application of SHAP highlights the potential of XAI in protein function 
prediction. In addition, to analyze the contribution of protein features, we replace the 
InterPro features with ProtBert pre-training features. The results indicate that SEGT-
GO, when using InterPro features, outperforms the model with ProtBert features. 
Details are provided in Appendix F.

Assessment on different frequency GO term groups

To analyze SEGT-GO’s sensitivity to different GO terms, we follow the approach in 
DeepGraphGO [13] and group the GO terms based on the number of annotations: 
10–30, 31–100, 101–300 and > 300. Table 5 presents SEGT-GO’s AUPR across different 
frequency groups of GO terms in the MFO.

The experimental results show that: 1) SEGT-GO performs excellently in both rare 
and high-frequency GO terms, demonstrating the effectiveness of its novel model archi-
tecture and training paradigm in handling prediction tasks for both uncommon and 
high-frequency GO terms; 2) SEGT-GO performs moderately in the range of 31–300 
GO term frequencies, indicating a shortcoming in learning the classification features 
of medium-frequency GO terms, which leads to a decline in classification accuracy; 3) 
DeepGraphGO and LR-InterPro integrate and learn InterPro features in different ways, 
achieving good results in medium-frequency GO term prediction tasks, thereby con-
firming the effectiveness of InterPro features.

Table 3 Performance comparison between SEGT-GO and other baselines

Bold for “the best, and underline for “the second best”

Method AUPR Fmax

MFO BPO CCO MFO BPO CCO

BLAST-KNN 0.455 0.113 0.570 0.590 0.274 0.650

LR-InterPro 0.530 0.144 0.672 0.617 0.278 0.661

Net-KNN 0.276 0.157 0.641 0.426 0.305 0.667

DeepGOCNN 0.306 0.101 0.573 0.434 0.248 0.632

DeepGOPlus 0.398 0.108 0.595 0.593 0.290 0.672

PO2GO 0.380 0.179 0.587 0.506 0.290 0.596

DeepGraphGO 0.543 0.194 0.695 0.623 0.327 0.692
SEGT-GO(Ours) 0.555 0.217 0.703 0.619 0.328 0.683
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Visualization of potential relationships between interPro feature and GO terms

As shown in Figs. 8 and 9, to demonstrate the impact of the SHAP Explainer on protein 
function prediction more intuitively, we visualize the importance evaluation provided by 
SHAP on MFO.

Table 4 Performance comparison of cross-species generalization of SEGT-GO and two variants on 
Human (pid: 9606) and Mouse (pid: 10090) proteins

Bold for “the best, and underline for “the second best”

Methods AUPR Fmax

MFO BPO CCO MFO BPO CCO

HUMAN(9606)

SEGT-GOHuman 0.446 0.171 0.696 0.575 0.289 0.711
SEGT-GOw/o Human 0.507 0.181 0.680 0.592 0.279 0.674

SEGT-GO 0.516 0.183 0.706 0.635 0.304 0.709

MOUSE(10090)

SEGT-GOMouse 0.509 0.154 0.569 0.630 0.284 0.613

SEGT-GOw/o Mouse 0.536 0.163 0.638 0.610 0.313 0.632

SEGT-GO 0.621 0.185 0.641 0.629 0.324 0.647

Fig. 7 Ablation experiments of SEGT-GO and its variants on the full dataset. The variant w/o SHAP&MLP 
disables SHAP and trans-MLP, while the variant w/o SHAP disables only SHAP

Table 5 AUPR of SEGT-GO and other baselines on different GO term groups in MFO

Bold for “the best, and underline for “the second best”

Method GO Term Groups

10–30 31–100 101–300 >300

BLAST-KNN 0.590 0.579 0.533 0.500

LR-InterPro 0.544 0.652 0.560 0.545

Net-KNN 0.281 0.371 0.301 0.273

DeepGOCNN 0.014 0.045 0.235 0.252

DeepGOPlus 0.309 0.322 0.414 0.427

PO2GO 0.018 0.028 0.046 0.354

DeepGraphGO 0.597 0.632 0.571 0.575

SEGT-GO(Ours) 0.651 0.573 0.508 0.585
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As shown in Fig.  8a, the same InterPro Feature exhibits varying effects on different 
GO term prediction tasks (row direction). For instance, the 23842nd InterPro Feature 
is detrimental to the prediction of GO:0140096 and GO:0003824 but enhances the pre-
diction of 4 other GO terms. Similarly, GO term prediction tasks are influenced by the 
cumulative effect of different InterPro Features (column direction). For example, the 

Fig. 8 Visualization of SHAP evaluation results in MFO. a Normalized Shapley value heatmap including 
30 randomly selected InterPro Features and 6 GO terms in MFO. Positive values represent these features 
that contribute to the accurate prediction, and negative values indicate adverse effects. b The GO term 
hierarchical relationships of GO:0004672 (the 6 GO terms given in a are highlighted in orange)

Fig. 9 Distribution of importance evaluation values on the MFO. The horizontal coordinates represent the 
parts of the importance evaluation values that satisfy t > 0 , and the vertical coordinates are the normalized 
importance evaluation values. InterPro Features with larger importance evaluation values are more useful for 
SEGT-GO prediction
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4170th, 27872nd and 29215th InterPro Features positively contribute to the prediction 
of GO:0016773, whereas the 15509th and 19135th do not. This shows that SHAP can 
effectively identify the diverse impacts of different InterPro Features on function predic-
tion tasks, which helps SEGT-GO in select InterPro Features.

Furthermore, we employ the Complete Linkage method [42] based on Canberra Dis-
tance [43] to cluster the 6 GO terms in Fig. 8a and construct a dendrogram. As shown in 
Fig. 8b, we discover a high correlation between the hierarchical relationships of the GO 
terms obtained from QuickGO4 and the dendrogram. SHAP’s ability to capture the hier-
archical structure of GO terms in its analysis validates the reliability of its results.

As shown in Fig. 9, we visualize the distribution of InterPro Features with importance 
evaluation values in MFO. The distribution of importance evaluation values exhibits 
significant variation. This shows that SHAP effectively assists SEGT-GO in selectively 
extracting beneficial features from tens of thousands of InterPro features for protein 
function prediction.

Hyperparameter studies

The hyperparameter studies evaluate SEGT-GO’s performance under different combina-
tions to explore its sensitivity to various hyperparameters. They provide theoretical sup-
port for other researchers who deploy SEGT-GO in different domains or datasets. This 
section discusses the impact of 3 critical hyperparameters: neighborhood aggregation 
range K, number of Transformer Encoder layers L, and input feature filtering threshold t. 
The results are shown in Fig. 10. Details can be found in Appendix G.

Neighborhood aggregation range K

We evaluate the impact of different neighborhood aggregation ranges, K ∈ {1, 2, . . . , 9} , 
on SEGT-GO, with the results shown in Fig.  10a. We observe that the best K varies 
between different ontologies, indicating that the information required for function 
prediction tasks differs between ontologies. Additionally, we find that, except for 
MFO, SEGT-GO’s performance on BPO and CCO does not decline with increasing K 
values; instead, there is an upward trend (BPO from K = 8 to K = 9 , CCO from K = 7 
to K = 9 ). This demonstrates the necessity of learning the multi-hop neighborhood 
information of the PPI to improve prediction accuracy, consistent with previous research 
[16–18]. We set the best K for MFO, BPO, and CCO to 4, 9, and 6, respectively.

Transformer encoder layers L

We fix K to its best value and evaluate the impact of the number of Transformer Encoder 
layers, L ∈ {1, 2, . . . , 5} , on SEGT-GO’s performance. The experimental results shown in 
Fig. 10b indicate that, except for CCO, a higher L reduces the precision of the prediction. 
We attribute this phenomenon to an increased likelihood of overfitting. In practice, we 
set the best L for MFO, BPO and CCO at 1, 1, and 5, respectively.

4 https:// www. ebi. ac. uk/ Quick GO/ term/ GO: 00046 72

https://www.ebi.ac.uk/QuickGO/term/GO:0004672
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Input feature filtering threshold t

We fix K and L to their best values and evaluate the impact of different input feature fil-
tering thresholds t within {0, 0.1, . . . , 0.6} . The experimental results are shown in Fig. 10c. 
Compared to K and L, the variation in t has a more minor impact on SEGT-GO’s perfor-
mance. This indicates that SEGT-GO can effectively adapt to different scales of feature 
spaces, helping practitioners mitigate obstacles during deployment. The best t values for 
MFO, BPO, and CCO are set to 0.5, 0, and 0.3, respectively.

Conclusion
This paper introduces SEGT-GO, a Graph Transformer method based on PPI multi-hop 
neighborhood Serialization and Explanatory artificial intelligence for large-scale, multi-
species protein function prediction. The novel PPI multi-hop neighborhood serialization 
Graph Transformer enables SEGT-GO to effectively address the challenges GCN-based 
models face in learning high-quality protein node embeddings within the multi-hop 
neighborhood in PPI Networks. The offline generation of feature sequences supporting 
the mini-batch strategy allows SEGT-GO to scale to larger PPI Networks. SHAP miti-
gates the negative impact of feature noise, demonstrating the potential of XAI in protein 
function prediction. Experiments with datasets of varying scales and settings show that 
SEGT-GO can better exploit PPI multi-hop neighborhood information related to pro-
tein function in PPI Networks, thereby improving the prediction precision.

In comprehensive experiments, SEGT-GO demonstrates limitations in specific set-
tings: it exhibits weaknesses when predicting GO terms within the frequency range of 
31–300, leading to a decrease in classification accuracy (Sect. Assessment on Different 
Frequency GO Term Groups). In future work, we can improve the model’s ability to 
learn medium-frequency GO terms by incorporating external knowledge and optimiz-
ing the model architecture. Furthermore, by comparing existing work with SEGT-GO, 
we identify complementary relationships among some studies. For example, incorporat-
ing features of the spatial structure could enhance SEGT-GO performance. The rise of 
Artificial Intelligence Generated Content (AIGC) may offer researchers a new approach 
to protein function prediction.

Fig. 10 Performance of SEGT-GO when using different combinations of hyperparameters. Each subplot 
represents a the neighborhood aggregation range K, b the number of Transformer Encoder layers L, and c the 
filtering threshold t. Evaluations are performed using the full dataset
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