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Abstract The number of available protein sequences in public databases is increasing exponentially. However, a sig-
nificant percentage of these sequences lack functional annotation, which is essential for the understanding of how bio-
logical systems operate. Here, we propose a novel method, Quantitative Annotation of Unknown STructure (QAUST), to
infer protein functions, specifically Gene Ontology (GO) terms and Enzyme Commission (EC) numbers. QAUST uses
three sources of information: structure information encoded by global and local structure similarity search, biological
network information inferred by protein—protein interaction data, and sequence information extracted from functionally
discriminative sequence motifs. These three pieces of information are combined by consensus averaging to make the final
prediction. Our approach has been tested on 500 protein targets from the Critical Assessment of Functional Annotation
(CAFA) benchmark set. The results show that our method provides accurate functional annotation and outperforms other
prediction methods based on sequence similarity search or threading. We further demonstrate that a previously unknown
function of human tripartite motif-containing 22 (TRIM22) protein predicted by QAUST can be experimentally validated.

KEYWORDS Protein function prediction; GO term; EC number; Protein structure similarity; Functionally discriminative
motif

Introduction this increase in the number of known protein sequences
does not reflect a parallel increase in our biological
As of today, over 150 million protein sequences are avail- knowledge, as less than 1% of these sequences have a

able in the UniProtKB/TrEMBL database [1]. However, manually annotated function [2]. On the other hand, the
functional annotation of these sequences is not only an es-
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highly challenging tasks in biology, which is why there is an
increasing need to provide reliable, automated protein
function annotation.

Significant efforts have been made to identify evolutio-
narily related proteins and automatically transfer functional
annotations between homologous protein pairs [3—6]. To
make such sequence similarity-based functional transfer
possible, powerful sequence-alignment methodologies have
been developed. In particular, algorithms like BLAST/
PSI-BLAST [3] and hidden Markov model (HMM)-based
techniques [4—6] have been frequently used to transfer
functional annotations between homologous proteins. The
underlying assumption of these sequence-based methods is
that evolutionarily related proteins may inherit the function
of a shared common ancestor. However, there are numerous
cases in which proteins with high sequence similarity have
distinct functions [7,8]. To partially address the problem,
several methods have been developed to predict function
using annotated conserved sequence motifs that are re-
sponsible for the functional aspect of the protein. These
methods typically construct the sequence motifs from
multiple sequence alignment of proteins belonging to the
same protein family with known function [9-11]. They,
however, have two major limitations. First, high-quality
sequence alignment is typically required for motif con-
struction, which is not trivial to obtain especially when the
sequence homology is low. Second, the accuracy is limited
by the quality of functional annotation of motifs. To over-
come these limitations, we propose in this work to use a
protein-specific “functionally discriminative motif” con-
structed from sequence fragments excised from the template
sequence.

From another perspective, the 3D structure of a protein
sequence is believed to be more involved in its biological
function [12,13], since structures are more conserved than
the sequences. The 3D structure of a protein can therefore
provide additional information for function transfer, espe-
cially when the sequence similarity between related proteins
is too low for sequence homolog detection [14,15]. How-
ever, the relationship between the protein function and its
structure is not straightforward, as in some cases, similar
structures perform the same function while in many cases
similar folds perform different functions [16,17]. Therefore,
many prediction methods have been relying on local
structure similarity search methods rather than global si-
milarity search to identify functionally homologous pro-
teins [18-20]. Most of these approaches scan the query
protein against a library of known conserved spatial motifs
or known active sites (e.g., binding sites) with known
function [21]. Local similarity search methods have been
proven to be quite accurate in detecting functional similarity
between proteins of different folds, but they also have a high
probability of producing false positive matches [22]. One

possible solution is to combine global and local structure
alignments to overcome the promiscuity of global structure
comparison and low specificity of local structure matching
[23,24], which we implement in this project.

A number of function prediction methods are based on
the information extracted from protein—protein interaction
(PPI) networks [25,26]. The assumption in this case is that
proteins that physically interact with each other frequently
appear at the same sub-cellular location and are part of the
same biological process [27]. However, it is not always the
case that proteins which interact with each other share the
same molecular function [e.g., Programmed cell death
protein 1 (PD1) and Programmed death-ligand 1 (PD-L1)],
which is why PPI information is not always sufficient to
predict very specific functions [28].

Finally, recently there is an emergence of methods which
combine multiple sources of information (PPI, domains,
sequence alignments, efc.) using advanced machine learn-
ing algorithms to perform function prediction. These
methods have shown improved prediction performance over
methods that use only one type of information [29-37].

In this work, we propose a new protein function pre-
diction method, Quantitative Annotation of Unknown
STructure (QAUST), which combines the global and local
structure similarity search with PPI networks and functional
sequence motif detection. Our approach follows a sequence-
to-structure-to-function workflow. Starting from the protein
amino acid sequence, we first generate structure prediction
by the Iterative Threading ASSembly Refinement (I-
TASSER) method [38]. The predicted structure is then used
to identify the proteins with similar functions based on a
combination of global and local structure similarity search
method that follows the same pipeline used in COFACTOR
[24,39]. PPI information is meanwhile extracted from the
STRING database [40]. And finally, we extract functionally
discriminative sequence motifs as our third main prediction
feature. The confidence scores obtained from these three
features are combined in a consensus function to obtain our
final confidence score.

Since the terminology of a “protein function” might be
ambiguous, we would like to clarify that the definitions of
function followed in this work are Enzyme Commission
(EC) numbers [41] and Gene Ontology (GO) terms [42]. EC
numbers are used to categorize enzymes into hierarchical
families using a numerical classification. Specifically, the
EC number (which is composed of four numbers separated
by periods, i.e., A.B.C.D) refers to the reaction catalyzed by
a specific enzyme. On the other hand, the GO terms are a set
of controlled vocabulary to formally describe proteins and
RNAs based upon their functions. Three aspects of ontol-
ogies, biological process (BP), cellular component (CC),
and molecular function (MF), are defined in this database.
Each one of these three GO aspects is represented by a
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structured directed acyclic graph (DAG), where nodes re-
present GO terms that describe gene product functions,
while the edges represent the relationships (“is_a” or
“part_of”) between the GO terms. In GO functional hier-
archy, the more general functions are on the top of the
graph, while more specific terms are usually present further
down the graph.

Our prediction results are compared to the following
programs: 1) COFACTOR [39], a global and local structure
similarity-based method; 2) LOMETS [43], a meta-
threading algorithm; 3) HHsearch [5], an HMM-based
method that is widely used to detect protein homologs; 4)
BLAST [3], which transfers annotations based on sequence
similarity; 5) naive baseline, which predicts GO terms based
on their annotation frequency; and 6) two highly-ranked
methods from the Critical Assessment of Functional An-
notation (CAFA) assessment [44], GoFDR [32] and
INGA [45].

Method

Dataset

To evaluate QAUST for EC prediction, we use the bench-
mark dataset of COFACTOR [24,39] as our testing dataset.
This dataset consists of 318 enzymes with unique EC
numbers (first three digits) covering all 6 enzyme classes.
Similarly, all sequences in our template libraries having a
sequence identity > 30% with the query enzymes are
excluded from the template libraries.

We evaluate QAUST for GO prediction on a dataset of
500 randomly chosen non-redundant proteins from the
CAFA 2 Targets (https://biofunctionprediction.org/cafa/)
annotated with at least one GO term. To eliminate any
structure or function homologs to the query, templates
having a sequence identity > 30% with the query proteins
are excluded from the template libraries both in the
I-TASSER threading library and our function prediction
template libraries.

EC number prediction

Global and local similarity search

The first step of our protein function prediction is the
generation of the predicted 3D model of the query protein
using I-TASSER [38], as outlined in “Section 1” in File S1.
The predicted model of the query protein obtained from
I-TASSER is then scanned against a non-redundant (pair-
wise sequence identity no more than 90%) structure tem-
plate library of 2385 enzymes with at least the first three
digits of EC number annotated by the Catalytic Site Atlas
(CSA) database [46]. This library scanning detects homo-
logous structure templates to the query proteins using

two types of structure similarity search programs:
global similarity search and local similarity search.

Global similarity search

Templates with a similar global structure to the predicted
structure of the query protein are detected from the template
library using TM-align [47]. Another important considera-
tion when searching for templates with similar global folds
to the query protein is the quality of the structural models.
Appraising the accuracy of the structure modeling in the
scoring scheme helps to reduce the number of false positive
predictions. In this particular case, the quality of the pre-
dicted I-TASSER model generated in the previous step is
evaluated using Cscore [38].

Local similarity search

The local structural search approach consists of three steps
(Figure 1). The first step is the structural match of the
specific catalytic/active residue pairs. For a given pair of
query and template proteins, we first scan the known
catalytic/active residues of the template through the query
sequence. The query’s residues whose amino acid types are
the same as the amino acid types of the template’s catalytic/
active residues are marked as potential active sites in the
query. The structures of all combined sets of marked re-
sidues in the query are extracted from the predicted model
and used as candidate active sites. The structures of the
candidate sites are superimposed on the known catalytic/
active residues in the template. To make the structure su-
perimposition more reliable, for each residue i, the co-
ordinates of C, atoms and side-chain centers of mass of the
two neighboring residues, i.e., the (i—1)-th and (i+1)-th
residues, are also included in the superimposition.

The second step is to identify the key local environment
residues around the active sites in the query and the tem-
plate. For this purpose, we superimpose the complete
structure of the query and template proteins based on the
rotation matrix obtained from the superimposition of the
candidate catalytic/active residue structures obtained in the
previous step. A sphere of radius 7 is then defined around the
geometric center of the template’s local 3D fragments,
where r is the maximum distance of the template residues in
the local 3D fragment from the geometric center. The sphere
represents a local environment or a probable active site re-
gion, under which the chemical and structural similarity of
the query and template are compared. Because a sphere
comprising of a very small number of catalytic/active re-
sidues can easily generate false positive hits, when the
template’s active site region is small, we set the number of
residues inside the sphere to be a minimum of 20 residues.
This value is obtained using minimum grid search parameter
optimization by evaluating different sphere sizes in the
range of [10, 50] residues to select the most accurate value.

In the third step, the best alignment of the local active site
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Figure 1 A schematic diagram of the local similarity search procedure for functional site identification
The residues of the query protein (yellow) in the active site region are shown in cyan, while those of the template protein (grey) are shown in magenta.

residues in the spheres between the query and the template
is identified using a scoring function similar to TM-align.
Starting from the initial superposition of the query and
template protein structures, we perform a Needleman-
Wunsch dynamic programming to generate the best align-
ment for the residues in the selected sphere of the template
and the query, where the alignment score matrix S; for
aligning the i-th residue in the query and the j-th residue in
the template is defined as:

1
Sy=|——+ 1, ()

+27

1 4]
where d; is the C, distance between residues i and j, d, is the
distance cutoff given by d,= 1.243/L —15 — 1.8 obtained

from TM-align, M;; is the substitution score between the i-th
and j-th residues taken from the BLOSUMG62 mutation
matrix with the value normalized by the diagonal element in
the mutation matrix. The gap penalty is set as —1. For a
given scoring matrix Sy, a new alignment is generated by
dynamic programming. A new superposition and scoring
matrix are then constructed based on the new alignment to
obtain a newer alignment from dynamic programming. This
procedure is iteratively repeated until the final alignment is
converged. For each alignment, the active site match (AcM)
is evaluated using an alignment score defined as:

Nai Nai
1 Z 1 1 z
ACM_E:':I 1+ dn2+ﬁti:1 M @
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where N, represents the number of residues in the active site
sphere of the template, N, is the number of aligned residue
pairs. The maximum AcM score obtained during the heur-
istic iterations is recorded for each candidate active site.
Finally, the set of residues in the candidate active site which
has the highest AcM score is selected to evaluate the si-
milarity between the active sites of the query and the tem-
plate. The weights that form the AcM score have been
derived based on the predicted structures of 100 randomly
chosen training proteins from the template library, which
are non-homologous (sequence similarity < 30%) to the test
proteins in order to maximize the sensitivity and specificity
of the predictions.

Scoring function for global and local similarity search

The final score for predicting EC numbers, used to sort the
hits from the enzyme library, is a combination of the global
similarity search score and the AcM score (obtained from
the local similarity search) and is defined as:

_ Cov
QAUSTEC = Cnarm . TM+WSD01[ +2- IDali. Cov (3)
AcM
3

where Cov represents the coverage of the structural align-
ment, RMSD,,; is the root-mean-square deviation (RMSD)
between the model and the template structure in the struc-
turally aligned region, and /D,; is the sequence identity
between query and template based on the alignment gen-
erated by TM-align. The hyperbolic-tangent-like normal-
ization is further used to normalize the raw EC score to be
between 0 and 1:

_ 2 _
QAUSTEC som = T+ exp(—OATSTEC) | @)

GO term prediction

For GO term prediction, we combine three different pre-
dictors. Each one of these predictors generates a confidence
score. The three confidence scores obtained are then com-
bined in a consensus function to generate the final prediction
score. The first predictor is the global structure similarity,
which uses I-TASSER to predict the 3D structure of the
query, and then scans a library of templates to identify those
which have a similar global structure to the predicted model.
The second predictor is based on PPI information, and the
third one is based on extracted functional sequence motifs.

Global protein structure similarity

Similar to EC prediction, I-TASSER is also used here to
construct the corresponding 3D model to the query sequence.
The model obtained is then scanned against a library of
templates to identify those which share a similar global

structure to the query model (https://zhanglab.ccmb.med.
umich.edu/BioLiP/library.html). For the time being, the
functionally important residues for most of the proteins in the
GO template library are unknown. Therefore, only the global
similarity search is taken into consideration when sorting the
hits from the GO library. Global similarity search for GO
prediction is done in a similar way to global similarity search
for EC prediction described in the previous section. The only
difference is that to select the best hits for GO prediction, we

core defined as:

_ 1
score Cnorm TMscore + WSD{M

rank a template using the Fh

Fh - Cov (5

+3-ID,;- Cov
Since each single protein can be annotated with multiple
GO terms and the global search may result in many close
template structures, a query protein can have multiple GO

term predictions with high Fh Therefore, the con-

score®

fidence score of each GO term is calculated as follows:

N,
Pstmcture(/l) = ]L\[ ZFh (l) (6)
i=1

where A represents a given GO term, N, is the number of
templates annotated with the GO term A, and N is the total
number of templates selected for generating the consensus.
When multiple close templates are available, we only
consider the templates with Fh ., > 1. For those query
> 1,the top 10
templates are selected for generating the consensus pre-

diction regardless of the Fh Also, given the hierarchical

score

proteins with less than 10 templates of F

score

score®

nature of the GO DAG, we consider that when a protein is
annotated with a given GO term, all its ancestor GO terms
(through “is_a” relation) are automatically implied. There-
fore, once a GO term A is scored, we score all its ancestor
terms as well. The score of any ancestor GO term u of term 4
is calculated as:

Pstmcture (lu) = Pstmcture (;L) (7)

1+N"
No

where N, and N, are the numbers of leaf nodes under node u
and the root node, respectively. Since COFACTOR [24,39]
uses a similar structure scoring function, we have high-
lighted the main differences between QAUST and
COFACTOR in “Section 2” in File S1, and compared our
method with COFACTOR in the experiments.

PPI network

We exploit the information provided by the STRING [40]
database, which is a library of PPI networks, to extend our
prediction set. The query protein sequence is mapped to its
corresponding STRING entry by BLAST, with minimum
sequence identity cutoff of 90%. Extracting the PPI partners
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of the query, we calculate the confidence score of STRING
for a GO term A [Pgp vg(4)] as the frequency of the GO
term A among the experimentally annotated interaction
partners of the query protein:

n,
Psrring(A) = 37 (®)

where n; is the number of interaction partners annotated
with the GO term 4, and N is the number of partners asso-
ciated with term 4, according to the corresponding UniProt
-GOA (http://www.ebi.ac.uk/GOA) entry of this PPI part-
ner. This score could take any value from 0 to 1.

Functionally discriminative sequence motifs

In addition to the structure similarity search and PPI fea-
tures discussed above, we also include sequentially ex-
tracted features to predict GO terms since a sequence is a
highly valuable source of information that can especially be
useful when dealing with proteins for which we cannot
construct a good quality 3D structure model or which with
no known PPI information.

Our functionally discriminative motif detection algo-
rithm follows three steps: detection of sequence templates,
identification of functionally discriminative motifs given a
GO term, and scoring the query protein.

Detection of sequence templates for a query protein

The sequence homologs of a query sequence are detected by
PSI-BLAST [3] from the Uniref90 database [49]. We filter
all obtained homologs having a sequence identity > 30%
with the query.

Identification of functionally discriminative motifs given a
GO term

We map all the selected sequence homologs of the query to
their corresponding GO annotations in the UniProt-GOA
database (http://www.ebi.ac.uk/GOA). GO terms assigned
with “Inferred from Electronic Annotation (IEA)” or “No
biological Data available (ND)” evidence codes are not
considered. We also filter out annotations with the evidence
code “Inferred from Physical Interactions (IPI)”, since we
use PPI information in our features. After filtering these
annotations, we are left with the annotations based on evi-
dence codes: Inferred from Experiment (EXP), Inferred
from Direct Assay (IDA), Inferred from Mutant Phenotype
(IMP), Inferred from Genetic Interaction (IGI), Inferred
from Expression Pattern (IEP), Traceable Author Statement
(TAS), and Inferred by Curator (IC). For each GO term 4,
we build two sets of sequences from the set of homolog
sequences detected in the previous step. These two sets are:
the “annotated set”, which is the set of sequence homologs
annotated with this specific GO term, and the “not-
annotated set”, which is the set of sequence homologs not
annotated with this given GO term. For each of these two

sets, we extract the ten most frequent motifs by extracting
all unique amino acid motifs of length [4, 7] from the
sequence set using sliding windows. These motifs are
ranked in descending order by their occurrences. The top 10
most frequent motifs are the initial “frequent list”, while the
remaining motifs are in the “waiting list”. If, within the
“frequent list”, a short motif is a substring of another longer
motif, the shorter motif is discarded, and the most frequent
motif from the “waiting list” is transferred to “frequent list”
to ensure that the latter always has 10 motifs. This process is
iterated until, in the “frequent list”, any motif is not a sub-
string of another motif. The motifs in the “frequent list” are
used for matching the query in the next step.

Scoring the query protein

For each of the two sets (annotated and not-annotated sets),
we check the number of frequent motifs extracted in the
previous step that are also present in the query sequence.
Then, we calculate the confidence score of the GO term
given the query sequence as follows:

_ng(W, ng(49)
PMOTIF(’D - N B N(4°)

1 O]

where /1 is the given GO term. N(4) and N (1) are the
numbers of frequent patterns from the “annotated set” and
“not-annotated set”, respectively, both of which equal to 10.
n(4) and n(A°) are the corresponding numbers of matched
patterns at the query sequence. This score can take any
value from 0 to 1. An ideal value of this score would be
equal to 1, which happens when all the sequences in the
annotated set contain these frequent motifs and none of the
sequences in the not-annotated set contains these same
motifs. This scoring function has been designed to penalize
the prediction in case the query sequence matches a high
number of frequent motifs from the not-annotated set. This
way, the scoring function accounts for two essential pieces
of information: which set has the maximum number of
frequent motifs matched in the query, and how significant is
the difference between the number of matched motifs from
the annotated set and that from the not-annotated set.
Figure 2 shows a flowchart detailing the three steps of
extracting functional sequence motifs.

Consensus

To predict GO terms, the three main scores obtained from
the three different predictors (the structure search, the PPI
network, and the functional motifs) are combined by
consensus averaging to calculate the final confidence score
(4) for a GO term 4:

PCU”SE}’ISMS

() =1- (1-P,)  (10)
mée {structure, STRING,MOTIF }

PCOI’!SQ}’!SMS

This equation used to calculate the consensus has been
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Figure 2 Workflow for sequence motif-based function prediction in
QAUST

The query sequence is searched against the UniRef90 database [48] by
PSI-BLAST to identify sequence homologs with GO term annotation. For
a GO term of interest, 4, the identified homologs are divided into two sets:
the “annotated set” (purple) which contains homologs annotated with A,
and the “not-annotated set” (green) which consists of homologs not as-
sociated with 4. From each of the two sets, frequent motifs, i.e., con-
tinuous sequence fragments, are extracted. For illustration purposes, only
three five-residue-long motifs from each set are drawn. The GO term 4 is

predicted with confidence score n,(Z)IN@)-(1- nq(f) /N(.%)|. Here,

N (%) and N (1) are the total numbers of extracted frequent motifs for
“annotated set” and “not-annotated set”, correspondingly; while n,2) and
nq()f') are the numbers of frequent motifs from “annotated set” and “not-

annotated set” that match the query sequence, respectively. In this ex-
ample, only the motif “CLPFD” from “annotated set” matches the query,
making the confidence score equals to1/3 - [1-0/3] = 1/3. GO, Gene
Ontology.

previously used by other methods for protein function
prediction [45]. If one or more predictors are not available
for a given term (e.g., no interaction partners are known for
the given query), only the available predictors are used to
obtain the confidence score. Also, since GO uses the true-
path rule (i.e., if a protein is associated by a term, it is also
implicitly annotated by its ancestors), for every predicted
GO term, all its ancestors are considered to be predicted as
well since they are more general terms.

Cell culture, plasmid construction, and transfection

The Hek293T cells were obtained from the American Type
Culture Collection (ATCC), and were cultured in DMEM
(Catalog No. C11965500BT, Gibco) supplemented with
10% fetal bovine serum (FBS; Catalog No. 10270106,

Gibco) and 1% penicillin/streptomycin (P/S; Catalog No.
15070063, Gibco) with 5% CO, at 37 °C.

To establish the constructs expressing human tripartite
motif-containing 22 (TRIM22) protein, we cloned the
coding sequence of human TRIM22 with FLAG or GFP at
its N-terminus into pcDNA3.1(+) vector, using one-step
clone kit (Vazyme).

For transfection, PEI reagent was applied with the gen-
eral ratio of 30 reagents as 10 ug plasmids (5 ug FLAG-
TRIM?22 and 5 pg GFP-TRIM?22) into each 10 cm plate at
70% cell confluence. After 48 h transfection, cells were
harvested for the following assays.

Co-immunoprecipitation

Cells were harvested with lysis buffer (20 mM Tris-HCl
pH7.5, 150 mM NaCl, 1 mM EDTA, 1% NP-40) with
proteinase inhibitor. For each sample, 25 pl protein A/G
beads (MCE) were incubated with 1 pg anti-FLAG (Sig-
ma) or anti-GFP (Proteintech) antibody at 4 °C for 2 h.
Mouse IgG (Cell Signaling Technology) was used as a
negative control. Beads were washed three times with lysis
buffer and then incubated with 500 pg cell lysate at 4 °C
for another 2 h. After washed with lysis buffer three times,
20 pl 2x sample buffer were added into beads and heated at
95 °C for 10 min. Protein levels of beads or cell lysate
were then detected by Western blot using individual
antibodies.

Results

Prediction of enzyme functions (EC numbers)

We compared the EC prediction performance of our method
to five other methods: HHsearch [5], LOMETS [43],
BLAST [3], COFACTOR [24,39], and DEEPre webserver
[49]. We compared the performance of these methods based
on precision (positive predictive value) and recall (sensi-
tivity) rates. Figure 3 shows the precision-recall graph
corresponding to four baseline methods as well as QAUST.
Since the DEEPre webserver does not report the confidence
score with the annotation, we could not draw the precision-
recall curve but compared QAUST to DEEPre based on
accuracy. An EC number prediction is considered to be
“true” if the first three digits of the EC number from the hit
are identical to those of the query protein; otherwise the hit
is considered to be “false”. As shown in Figure 3, the rate of
true positive predictions using the EC-score is much higher
than that of HHsearch, LOMETS, BLAST, and CO-
FACTOR at most recall rates. QAUST has also an area
under precision-recall curve (AUPRC) of 0.712 which is
higher than that of COFACTOR (0.643), LOMETS (0.510),
and HHsearch (0.489). Table 1 reports the accuracy of
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Figure 3 Precision-recall curves for EC prediction by QAUST,
COFACTOR, LOMETS, HHsearch, and BLAST
EC, Enzyme Commission.

Table 1 Accuracy values of EC prediction for QAUST and five
other methods

Method Accuracy
QAUST 0.709
COFACTOR 0.698
LOMETS 0.661
HHsearch 0.607
BLAST 0.571
DEEPre 0.714

Note: The highest accuracy value of EC prediction is shown in bold. EC, Enzyme
Commission.

QAUST compared to five other methods. The results show
that DEEPre has a slightly higher performance than
QAUST in terms of accuracy, which is probably due to the
fact that DEEPre is a machine learning method trained on a
large number of enzymes with known functions that overlap
or contain close homologs to our test data.

Prediction of GO terms

To assess the contribution of individual predictors to the GO
prediction performance by QAUST, we visualized the precision-
recall curve of the structure similarity search alone (Py,,cure;
corresponding to the COFACTOR mothed [39]), the precision-
recall curve of structure similarity search combined with
PPI information (Pg,,.nme and Pgrrive), and that of the final
QAUST prediction (Pyyycures Psrrives and Pyorr). Ad-
ditionally, we compared the prediction performances of our
method based on different sets of features on our dataset
(see the subsection Dataset in Method) to those of naive
baseline (a method predicting GO terms based on their
annotation frequency), BLAST [3], LOMETS [43],
HHsearch [5], INGA webserver [45] (a method combining
BLAST, PPI information, and Pfam in one predictor), and
GoFDR [32] (one of the top function prediction methods at

the CAFA assessment [44] which uses a machine learning
model as classifier and discriminative residues as the main
feature).

The performance was primarily evaluated using
precision-recall curves computed at each prediction score
threshold. We also used the F,,, measure as a quantitative
measure to evaluate the overall performance of the
precision-recall curves. Precision, recall, and F, are
defined in the same way as the CAFA evaluation [50]. The
F..x measure is computed as the maximum value of the
F which is computed at each threshold as

2 X precision X recall
precision+trecall

measure

IP(n) N Cy)|

Precision at threshold ¢ is defined as =2 _—x7
|P(2)]

, while

PN Cy)l
|IC
P.(¢) is the set of predicted terms for x at threshold ¢, and C,
is the set of correct terms that x is experimentally annotated

with.

Similar to the CAFA evaluation [34], we also reported the
minimum semantic distance (S,,;,) as an additional evalua-
tion metric for GO prediction. S.;, is defined as

min, {«/ ru(t)* + mi(t)? } ru(?) is the remaining uncertainty

ne
1 ‘
at threshold ¢ defined as - ;1 Ef ic(f) | fEPO)NfEC;,

recall is defined as , Where x is a query protein,

and mi(f) is the misinformation at threshold ¢ defined as

I‘IG
1 . .
7 ;JZ ic(f) | f€ P(t) Nf &€ C; , where n, is the number

of proteins in our dataset, P(¢) is the set of predicted GO
terms for protein 7 at threshold ¢, C; is the set of terms that
protein i is actually annotated with, and ic(f) is the in-
formation content of the GO term f. The very general and
unspecific GO terms such as “MF”, “BP”, “CC”, “Binding”,
and “Protein Binding” are excluded from the evaluation.
As shown in Figure 4, our method combining structure,
PPI, and functional motif information achieves higher pre-
cision than most other methods at most recall points, in
particular for BP and CC. For our dataset, structure and
motif information has been used for all proteins. However,
the PPI information from STRING is missing for 74 pro-
teins. In this case, only the structure and motif information
are used. The F,,,, measure values are shown in Table 2, and
the S, values are shown in Table 3. Surprisingly, in CC
prediction, naive baseline, which predicts GO terms based
on their annotation frequency, achieves higher performance
than all other methods including QAUST. In fact, in the
CAFA assessment [44], naive baseline also outperforms
most of the other methods in predicting CC terms. One
possible explanation for why naive baseline has higher F, .
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Figure 4 Precision-recall curves for GO prediction
GO prediction performances of our method based on different sets of features, and six other methods for each of the three GO branches are compared. A.
Molecular function. B. Biological process. C. Cellular component.

Table 2 Foax Values of each branch of GO for QAUST and other prediction methods

Method MF CC BP

Structure + PPI + Motifs (QAUST) 0.568 0.467 0.448
Structure + PPI 0.507 0.453 0.436
Structure (COFACTOR) 0.467 0.402 0.367
Naive Baseline 0.315 0.492 0.387
LOMETS 0.396 0.374 0.303
HHsearch 0.381 0.356 0.347
INGA 0.501 0.436 0.421
BLAST 0.347 0.373 0.321
GoFDR 0.579 0.449 0.431

Note: The highest F,,, value of each branch of GO is shown in bold. GO, Gene Ontology; MF, molecular function; CC, cellular component; BP, biological process.

Table 3 Smin Values of each branch of GO for QAUST and other prediction methods

Method MF CC BP

Structure + PPI + Motifs (QAUST) 7.66 5.41 10.80
Structure (COFACTOR) 7.51 5.81 11.72
Naive Baseline 8.26 5.12 12.09
LOMETS 8.11 7.23 14.56
HHsearch 8.33 7.68 14.20
INGA 7.95 6.74 12.27
BLAST 8.42 6.34 14.01
GoFDR 7.32 5.60 11.65

Note: The highest S ;, value of each branch of GO is shown in bold. S;,, minimum semantic distance.
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for CC term prediction is because the most frequently used
CC terms in protein annotation are usually part of a small
set of very general terms such as “cytoplasm” or “in-
tracellular part”. Since the naive baseline is solely based on
frequency, it increases the chance of predicting a true po-
sitive [44]. We also reported the P values obtained from the
Mann-Whitney U test to assess the significance of the dif-
ference in performance of QAUST compared to all other
methods in “Section 3” in File S1 and Table S1.

As a further analysis, to investigate if the performance of
our method is solely due to the power of the I-TASSER
structure prediction we used, we replaced the I-TASSER
structure prediction component of our method by HHsearch
and LOMETS structure prediction, respectively. Our results
show that no matter which structure prediction method is
used, our scoring function, Pg,,...., can significantly im-
prove the performance on predicting the GO terms. Mean-
while, among the three structure prediction methods,
I-TASSER with P,,.... consistently performs the best over
all three GO hierarchy branches of MF, BP, and CC, whereas
LOMETS with P,,,.,.... has the second best performance on
CC, and HHsearch with P, 1s the second best on pre-
dicting MF and BP terms (File S1, Section 4; Figure S1).
Additionally, we evaluated the performance of our method
when only PPI and motif information are used without
including any structure-based information. The results
show that the function prediction performance drops
when structure features are not used (File S1, Section 5;
Figure S2).

How do PPI information and functional sequence motifs
improve the prediction ?

PPI information extracted from STRING is an important
feature used in our prediction. In Figure 4, we show how
PPI information alone improves the performance achieved
by the structure similarity search (orange dash lines versus
magenta dash lines). The precision-recall curves in Figure 4
show that the contribution of PPI information from
STRING is very significant for CC and BP terms, especially
for large recall rates. Moreover, the precision-recall curves
confirm our initial hypothesis on the utility of PPI in-
formation for function annotation. As shown in Figure 4,
while there is some improvement in predicting MF terms,
this improvement is not substantial. The reason why PPI is
not particularly helpful in MF term prediction is most
probably because proteins that interact with each other do
not necessarily share the same specific molecular function,
even when they are part of the same biological process.

In addition to the structure similarity search and the PPI
features, the results show that the functional motifs ex-
tracted improve the performance of the prediction sig-
nificantly. As a further analysis, we evaluated the
performance of our functional motif detection method when

both predicted and experimentally annotated GO terms are
taken into consideration instead of considering experi-
mental annotations only. The results of this experiment are
reported in “Section 6” in File S1 and Table S2. In addition
to comparing the performance of our method to BLAST,
LOMETS, HHsearch, and COFACTOR, we also compared it
to INGA and GoFDR, two top methods from CAFA [44] in
particular for MF and BP term prediction, and to naive base-
line which is one of the performance references used in CAFA.

Case studies

Prediction of the bacteriophage T4 gene 59 helicase as-
sembly protein

To better illustrate the performance of QAUST and the
contribution of each component to the prediction, we used
an example bacteriophage T4 gene 59 helicase assembly
protein (PDB ID P13342; the cyan structure in Figure SA),
which is a DNA binding protein required mainly for DNA
replication in the late stage of T4 infection [51]. Figure 5B
shows the set of BP terms associated with this protein. In
this particular example, both BLAST and INGA did not
predict any correct term for this protein (the naive root term
is not counted here). When solely using global structure
similarity (Pg,ycnre), We could only predict one single
correct BP term. This makes sense because all the queries in
our test set are difficult targets, which do not have close
homologs in the template database. For instance, the closest
template for this query P13342 is the methionine-tRNA
ligase (PDB ID 2CT8A; the magenta structure in Figure
5A). The sequence identity between P13342 and 2CT8A is
only 6.84% and the TM-score between the two structures is
only 0.24. Therefore, structure similarity or homology-
based methods are not expected to predict the function of
the query well. Structure information (Pg,cu.) combined
with PPI predicted three correct terms out of the six ex-
perimentally annotated terms. On the other hand, QAUST
predicted four correct terms out of six. In addition, the
prediction of QAUST is at least one level deeper in the GO
hierarchy than the other methods. Meanwhile, the predicted
MF and CC terms for this protein by QAUST are at least as
accurate as other methods. Two other case studies illus-
trating examples for predicting MF and CC terms are also
shown (File S1, Section 7 and Section §; Figures S3 and S4).

Experimental validation of TRIM22 dimerization

To provide an experimental assessment of the performance
of QAUST, we chosed the human TRIM22 protein as an
example. TRIM22 is known as an interferon-inducible
protein which shows antiviral activity, such as HIV, HBV,
and HCV [52-54]. Recent studies have also shown that
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Figure 5 A study case for protein function prediction using QAUST
A. The superimposition between the query (PDB ID P13342, in cyan) and
the closest template in the database (PDB ID 2CT8A, in magenta) based
on the structural alignment generated by TM-align. B. Predicted BP terms
for protein with PDB ID P13342. The six BP terms (the root term, Bio-
logical Process, is a naive term, which is not counted) shown are the
experimentally annotated terms. The colored contours represent the BP
terms that are predicted by the corresponding methods.

TRIM22 mediates autophagy in human macrophages [55].
However, the function of TRIM22 is still not comprehen-
sively understood as the protein only exists in primates.

We applied QAUST to predict the function for TRIM22.
Among the predicted GO terms with high consensus scores
(File S1, Section 9; Table S3), some of the CC and BP terms
agree well with the previously known functions of TRIM22,
such as the CC term “nucleus” and the BP term “response to
virus”. However, the only two predicted MF terms have
quite high consensus scores, “protein binding” and “protein
homodimerization activity”, suggesting that TRIM22 binds
to itself to form a dimer.

We thus set out to test the binding ability of human
TRIM22 using co-immunoprecipitation (Co-IP) (Figure 6A).

First, FLAG-tagged and GFP-tagged human TRIM22
proteins were co-expressed in HEK293T cells (Figure 6B).
To prove their interaction, we then pulled down FLAG-
tagged TRIM22 from the cell lysate. Western blot showed
that when FLAG-tagged TRIM22 was pulled down,
GFP-tagged TRIM22 can be detected by anti-GFP antibody
(Figure 6C), suggesting that GFP-tagged and FLAG-tagged
TRIM22 proteins exist in the same complex in HEK293T
cells. To further confirm this binding, we did Co-IP in the
opposite way. As expected, FLAG-tagged TRIM22 was
also detected in IP of GFP-tagged TRIM22 (Figure 6D).
Taken together, our results detected multiple TRIM22
proteins in the same complex, which provides the possibi-
lity of its binding with each other.

Discussion

In this work, we develop QAUST, a method to predict
biological functions of protein molecules using three main
features: global and local protein structure similarity, PPI
information, and functional sequence motifs. In our method,
we construct the 3D structure from the amino acid sequence
using I-TASSER. Functional analogs are then identified by
performing global and local structural similarity search
through the functional libraries, with the scoring function
involving the confidence score of structural predictions,
sequence and structural similarity of the I-TASSER model
with the functional templates, and the local active site
matches. We have also tried to improve the performance of
GO prediction by incorporating PPI information, especially
in order to improve the prediction of GO terms under BP
and CC aspects. We further developed a novel predictor that
extracts functional motifs that are related to a specific GO
term and used it as our third predictor.

On a set of 500 non-redundant proteins, QAUST is
shown to have higher function prediction accuracy than the
other competing methods on most prediction tasks. This
performance advantage is mainly a result of combining
three different predictors which cover major aspects of
proteins. Additionally, our three prediction components
complement each other in the sense that they contribute
differently to the prediction of the three aspects of GO.
While PPI information improves significantly the predic-
tion of BP and CC terms, functional motif detection is
mainly useful in improving MF term prediction. However,
QAUST has a number of limitations that give room for
possible improvement in the future. One main limitation is
that QAUST is much more expensive in terms of running
time compared to the other methods as reported in “Section
10” in File S1 and Table S4. The second limitation is that
our method cannot be directly used to infer functions that
are not included in EC or GO systems, since it solely infers
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Figure 6 Experimental validation of homodimerization function of human TRIM22

A. Illustration of the Co-IP method to validate the homodimerization of TRIM22. The FLAG-tagged and GFP-tagged human TRIM22 proteins were co-
expressed in HEK293T cells by co-transfecting two plasmids into the cells. If TRIM22 forms a homodimer, when FLAG-tagged TRIM22 or GFP-tagged
TRIM22 is pulled down, both FLAG-tagged and GFP-tagged TRIM22 should be detected by the corresponding antibodies (4 combinations in total). B.
Western bolt showing the co-expression of FLAG-tagged and GFP-tagged TRIM22 proteins in HEK293T cells. Cells co-transfected with FLAG-tagged
and GFP-tagged empty vectors were used as a negative control. C. Western bolt for FLAG-IP assay. Both FLAG-tagged and GFP-tagged TRIM22 proteins
were detected by the corresponding antibodies, whereas mouse IgG was used as a negative control. D. Western bolt for GFP-IP assay. Both FLAG-tagged
and GFP-tagged TRIM22 proteins detected by the corresponding antibodies, whereas mouse IgG was used as a negative control. TRIM22, tripartite motif-

containing 22; Co-IP, co-immunoprecipitation.

protein functions from existing protein annotations. Finally,
given that the three components we used work differently in
predicting different aspects of GO, it may be helpful to
weight their scores differently depending on the nature of
the GO term evaluated instead of combining the scores in a
simple consensus. In particular, advanced machine learning
methods, such as deep learning [56—60], could help weight
and combine the scores in a more efficient way to obtain
better prediction results which could be a possible future
improvement of this work.
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