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 A B S T R A C T

Protein function prediction is traditionally approached through sequence or structural modeling, often 
neglecting the effective fusion of diverse data sources. Protein domains, as functionally independent building 
blocks, determine a protein’s biological function, yet their potential has not been fully exploited in function 
prediction tasks. To address this, we introduce a modality-fused neural network leveraging function-aware 
domain embeddings as a bridge. We pre-train these embeddings by aligning domain semantics with Gene 
Ontology (GO) terms and textual descriptions. Additionally, we partition proteins into sub-views based on 
continuous domain regions for contrastive learning, supervised by a novel triplet InfoNCE loss. Our method 
outperforms state-of-the-art approaches across various benchmarks, and clearly differentiates proteins carrying 
distinct functions compared to the competitor.
1. Introduction

Proteins play a pivotal role in the biological processes of living 
organisms, contributing to cell structure, functionality, signal trans-
duction, and enzymatic reactions (Benkovic & Hammes-Schiffer, 2003; 
Karplus & Kuriyan, 2005; Pawson & Nash, 2000). With the develop-
ment of deep neural networks, remarkable breakthroughs have been 
achieved in the research of proteins, including in protein–ligand bind-
ing (Corso, Stärk, Jing, Barzilay, & Jaakkola, 2023), variant effect 
prediction (Cheng et al., 2023; Meier et al., 2021), de novo protein 
design (Watson et al., 2023), etc. Despite these advancements, there 
remains a substantial gap in our understanding of proteins, particularly 
in deciphering the intricate relationships between protein sequence, 
structure, and function. Protein function prediction has emerged as a 
focal point in addressing this gap, aiming to identify the specific roles 
and activities of proteins within biological systems (Notin, Rollins, Gal, 
Sander, & Marks, 2024; Yan et al., 2023).

Current computational approaches for protein function prediction 
frequently rely on sequence or structure data (Elnaggar et al., 2021; 
Fan, Wang, Yang, & Kankanhalli, 2022; Jing, Eismann, Suriana, Town-
shend, & Dror, 2021). Protein sequences and structures provide valu-
able information about the composition and spatial distribution of 
amino acids within proteins. Extensive research (Gligorijević, Renfrew, 
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Kosciolek, Leman, Berenberg, Vatanen, Chandler, Taylor, Fisk, Vla-
makis, et al., 2021; Gu, Luo, Chen, Deng, & Lai, 2023; Zhang et al., 
2023) has demonstrated that integrating these two data modalities 
enhances protein representations. However, existing methods typically 
integrate these modalities using either serial or parallel network ar-
chitectures, which fail to achieve fine-grained alignment between the 
different modalities. This limitation poses challenges to the generaliz-
ability and interpretability of current approaches for protein function 
prediction.

Protein domains are distinct structural and functional units within 
a protein that can exist and function independently. These domains 
often dictate specific protein functions, such as molecular binding or 
catalyzing chemical reactions, making them a function-oriented im-
plicit modality. Recent studies have highlighted the critical role of 
protein domains in protein representations, demonstrating their ability 
to enhance predictions of protein functions and behaviors (Ibtehaz, 
Kagaya, & Kihara, 2023; Yao et al., 2021). Existing approaches (Cai, 
Wang, & Deng, 2020; Fan, Guan, & Zhang, 2020; Torres, Yang, Romero, 
& Paccanaro, 2021; Wang, Shuai, Zeng, Fan, & Li, 2025; You et al., 
2019, 2018) incorporate protein domains as complementary sources of 
functional information within ensemble frameworks. However, these 
https://doi.org/10.1016/j.eswa.2025.127246
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data mining, AI training, and similar technologies. 
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Fig. 1. The motivation and methodology of our method. Our approach leverages 
protein domains to facilitate fine-grained alignment between sequence and structural 
data, enabling more effective fusion and enhanced representation.

methods primarily treat domains as auxiliary information sources, with-
out conducting an in-depth exploration of their relationships with 
protein sequences and structures.

To overcome the limitations outlined above, we propose fine-grained
modalities alignment between sequences and structures by leveraging 
domain embeddings that incorporate functional priors, as illustrated 
in Fig.  1. Specifically, we partition the protein into diverse sub-views 
based on adjacent domains. We train the multi-modal features using 
the proposed domain-joint contrastive learning strategy with a novel 
triplet InfoNCE loss, to capture segment-level functional information. 
Finally, we integrate the enhanced multi-modal features and develop a 
comprehensive network for protein function prediction.

Given the sparsity of domain annotations in protein data, we pre-
train domain embeddings to integrate functional information, thereby 
enhancing the generalizability of domain features. Specifically, we 
construct a large-scale domain knowledge dataset sourced from the 
UniProt (The UniProt Consortium, 2022) and InterPro (Paysan-Lafosse, 
Blum, Chuguransky, Grego, Pinto, Salazar, Bileschi, Bork, Bridge, Col-
well, Gough, Haft, Letunić, Marchler-Bauer, Mi, Natale, Orengo, Pan-
durangan, Rivoire, Sigrist, Sillitoe, Thanki, Thomas, Tosatto, Wu, & 
Bateman, 2022) databases. This dataset consists of domain entries, 
corresponding textual descriptions, and associated Gene Ontology (GO) 
terms. By training domain vocabularies with constructed pseudo-labels 
and a semantically consistent loss, we derive function-aware domain 
(FAD) embeddings, which are subsequently employed in the protein 
function prediction network.

2. Related work

In this section, we review previous studies about sequence-based, 
structure-based, and multi-modal protein representation learning re-
spectively. Related studies of the protein domain are also summa-
rized and introduced. We discuss the strengths and limitations of each 
approach and highlight directions for our research below.

Protein representation learning. Protein representation learning 
plays a crucial role in protein research, such as protein function pre-
diction (Gligorijević et al., 2021; Gu et al., 2023), protein–protein 
interaction prediction (Kang, Wang, Xie, Zhang, & Xie, 2023), and drug 
discovery (Pan, Xia, Xu, & Li, 2023; Wu et al., 2024; Zhang, Ouyang, 
Liu, Liao & and Gao, 2023). Several approaches have been developed to 
learn protein representations, leveraging different aspects of protein in-
formation. Inspired by natural language processing techniques, protein 
language models (PLMs) (Elnaggar et al., 2021; Lin et al., 2022; Rives 
et al., 2021) learn to generate meaningful embeddings that encapsulate 
the hierarchical structure and evolutionary relationships of proteins by 
training on large-scale protein sequence datasets. Rao et al. (2021), Su 
et al. (2023) integrate additional information (e.g. ‘‘structure-aware vo-
cabulary’’ or family information) to improve the performance of PLMs. 
The structure of a protein directly determines its function. Therefore, 
more and more approaches focus on training protein representations 
2 
using structural data. Fan et al. (2022), Hermosilla et al. (2021), Jing 
et al. (2021), Wang, Liu, Liu, Kurtin, and Ji (2023) introduces novel 
network operators to perform both geometric and relational reasoning 
on efficient representations of macromolecules. Chen, Zhou, Wang, 
Liu, and Dou (2023), Hermosilla and Ropinski (2022), Zhang et al. 
(2023, 2024) employ self-supervised learning methods to effectively 
capture structural information of proteins and learn meaningful pro-
tein representations. Recent efforts have explored the integration of 
multiple modalities of protein data to create more comprehensive 
representations. Gligorijević et al. (2021), Gu et al. (2023), Wang et al. 
(2022), Zhang, Wang, et al. (2023) introduce a joint protein represen-
tation for predicting protein functions by integrating the PLMs with 
graph-network-based structure encoders. In addition to deep mining 
of sequence and structural information, protein representation learning 
can also benefit from multi-modal approaches that integrate informa-
tion from different sources, such as protein surface information (Lee, 
Yu, Lee, & Kim, 2023), gene ontology annotation (Hu et al., 2023, 
2024), 3D point clouds (Nguyen & Hy, 2023), sequence homology (You 
et al., 2019; Zhou et al., 2022) and protein–protein interaction (Liu, 
Zhang, & Freddolino, 2024; Wang et al., 2023; Zhang, Zheng, Fred-
dolino, & Zhang, 2018). By combining sequence, structure, and other 
data, these multi-modal representations offer a holistic view of protein 
characteristics, enabling more accurate predictions and deeper insights 
into protein functionality.

Protein domains. Protein domains are structural units within pro-
teins that play crucial roles in determining protein function. They 
can act alone or in concert with other domains to carry out the 
biological functions of the protein. Studying protein domains helps 
scientists better understand the function and structure of proteins. 
Cai et al. (2020), Fan et al. (2020), You, Yao, Mamitsuka, and Zhu 
(2021) integrate protein domain information into multi-modal features 
and achieve accurate predictions of GO terms. Li et al. (2024), Tor-
res et al. (2021), Wang et al. (2025), You et al. (2018) employ a 
computational framework to fuse multi-source data features, includ-
ing domains. However, these methods only use the category label of 
the domain without considering its correlation with protein function. 
Ibtehaz et al. (2023), Melidis and Nejdl (2021), Rojano et al. (2022) 
learn associations between protein domains and functions combined 
at the protein level to derive functionally consistent representations 
for domains. Forslund and Sonnhammer (2008), Messih, Chitale, Bajic, 
Kihara, and Gao (2012) develop new methods to infer protein functions 
based on protein domain combinations and domain order. Inspired by 
these methods, we propose to integrate domain information, including 
their functions and combinations, into a multimodal representation.

3. Preliminary

3.1. Problem formulation

Protein function prediction involves determining the biological role 
of a protein based on its sequence, structure, and interactions with 
other molecules. This process is essential for understanding cellular 
processes and elucidating disease mechanisms. In this study, we focus 
on a set of well-established protein function annotation benchmarks, 
all of which are consistently defined by maximizing the likelihood: 
max
𝜃
𝑃
(

𝑦|𝑥𝑠𝑒𝑞 , 𝑥𝑠𝑡𝑟, 𝑥𝑑𝑜𝑚; 𝜃
)

(1)

where 𝑥𝑠𝑒𝑞 , 𝑥𝑠𝑡𝑟, 𝑥𝑑𝑜𝑚 represent the protein’s sequence, structure, and 
domains, respectively, and 𝑦 denotes the labels of the protein func-
tions. The parameter 𝜃 corresponds to the parameters of the function 
prediction network.

It is important to note that the task may involve either single-label 
or multi-label classification, meaning that the label 𝑦 can be either 
one-dimensional (for single-label) or n-dimensional (for multi-label). 
Therefore, the ultimate objective is to minimize the classification loss: 
min = 𝓁

(

 (𝑥 , 𝑥 , 𝑥 ), 𝑦
)

(2)

𝜃 𝑐𝑙𝑎 𝜃 𝑠𝑒𝑞 𝑠𝑡𝑟 𝑑𝑜𝑚
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Fig. 2. Training solely on function prediction tasks may lead the model to prioritize 
the extraction of task-specific information, thereby constraining its representational 
capacity. By learning information representations from diverse domains, our approach 
broadens the range of extracted features, thereby enhancing the model’s generalization 
to previously unseen data types.

where 𝜃 denotes the function prediction network, and 𝓁 represents 
the loss function, with negative log-likelihood (NLL) used for single-
label classification and binary cross-entropy (BCE) for multi-label clas-
sification.

In a protein, amino acids are linked by peptide bonds to form 
a linear chain. The protein sequence can be represented as 𝑥seq =
(𝑠1, 𝑠2,… , 𝑠𝑛), where 𝑠𝑖 denotes the residue at the 𝑖th position, and 𝑛 is 
the total length of the sequence. For protein structures, the spatial co-
ordinates of the backbone 𝐶𝛼 atoms are denoted as 𝑥str = (𝑝1, 𝑝2,… , 𝑝𝑛), 
where 𝑝𝑖 ∈ R3 represents the three-dimensional position of the 𝑖th 𝐶𝛼
atom. These modalities are widely employed in deep learning-based 
protein modeling. However, existing approaches often lack fine-grained 
alignment between these different representations.

Therefore, we introduce a knowledge-driven, implicit modality—
protein domains—to facilitate alignment between sequence and struc-
ture at the segment level. Protein domains serve as the primary de-
terminants of protein function and are composed of specific structural 
regions. For example, a domain 𝑑1 can be defined as 𝑑1 = (𝑠𝑖,… , 𝑠𝑗 ), 
where 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. The set of domains within a protein is denoted as 
𝑥dom = (𝑑1, 𝑑2,… , 𝑑𝑡), where 𝑡 represents the total number of domains 
in the protein.

3.2. Fine-grained alignment

Proteins are typically composed of multiple domains, and their 
biological functions often arise from the coordinated interaction of 
several domains. To capture this functional complexity, we partition 
the protein into multiple sub-views by combining adjacent domains. 
Within each sub-view, we aggregate the representations to enhance the 
alignment of features, while ensuring that representations between dif-
ferent sub-views remain distinct. This approach facilitates fine-grained 
alignment across various modalities, as illustrated in Fig.  1. Building 
on this framework, we define ‘‘joint domains’’ as the combination of 
adjacent domains that collectively contribute to the protein’s overall 
function.

3.3. Functional priors

Previous studies (Fan et al., 2020; Yao et al., 2021; You et al., 2021) 
directly input domain indices (as shown in Fig.  3(a)) into function 
prediction networks. However, protein domain annotations are often 
sparse, which can lead to insufficient training of domain embeddings 
or input layers when using standard-sized function prediction datasets, 
typically comprising tens of thousands of protein samples.

To address this issue, we incorporate functional priors into domain 
embeddings through a pre-training approach. This strategy mitigates 
the risk of overfitting in downstream tasks, particularly when data is 
limited, by enabling the network to utilize richer domain representa-
tions rather than relying solely on raw domain indices. The enhanced 
domain embeddings, which we term ‘FAD embeddings’, offer a more 
robust representation compared to binary domain annotations. The 
details of the training process are outlined in Section 4.1, and the 
effectiveness of the FAD embeddings is demonstrated in Section 5.3.
3 
4. Methods

4.1. Function-aware domain embeddings

To integrate functional priors into domain embeddings, we con-
struct a dataset that includes domain indices, domain descriptions, 
and Gene Ontology (GO) terms. Without loss of generality, we utilize 
InterPro entries (Paysan-Lafosse et al., 2022) to represent a total of 𝑀
protein domains. Building upon this, we create learnable vocabularies 
for both domain indices and GO terms, as illustrated in Fig.  3(c). 
Subsequently, we update both vocabularies jointly by leveraging the 
domain-GO probabilities and the semantic consistency between domain 
descriptions and text, ensuring that both vocabularies are refined in a 
complementary manner.

4.1.1. Domain-GO probability
GO terms are widely utilized in bioinformatics tools and databases 

to help interpret and analyze experimental data, enabling researchers 
to gain insights into the functions of proteins. We associate protein 
domains with corresponding GO terms to extract functional priors. 
Specifically, the domain indices and GO terms can be represented 
as sets 𝐷 = {𝑑𝑜𝑚𝑎𝑖𝑛𝑖|𝑑𝑜𝑚𝑎𝑖𝑛𝑖 ∈ [0, 1]} (𝑖 = 1, 2,… , |𝐷|) and 𝐹 =
{𝐺𝑂𝑗 |𝐺𝑂𝑗 ∈ [0, 1]} (𝑗 = 1, 2,… , |𝐹 |), respectively, where |𝐷|, |𝐹 |
denote the vocabulary sizes of domain indexes and GO terms, respec-
tively. 𝑑𝑜𝑚𝑎𝑖𝑛𝑖 = 1 indicates that a protein contains the domain with 
index 𝑖 and 𝐺𝑂𝑗 = 1 signifies that a protein is associated with the GO 
term indexed by 𝑗.

Each protein independently contains one or more domain indexes 
and GO terms. We define two types of associations: The association 
(𝐷𝑖, 𝐹𝑗 , 𝑃𝑘) indicates that protein 𝑃𝑘 contains both domain 𝑖 and the GO 
term 𝑗, while the association (𝐷𝑖, 𝑃𝑘) signifies that protein 𝑃𝑘 possesses 
domain 𝑖, irrespective of the presence of any associated GO terms.

We calculate the prior probability of the distribution of GO terms 
and utilize it to enhance the functional representation of domain vo-
cabularies. Specifically, the conditional probability of a protein that 
contains domain 𝑖 having the GO term 𝑗 is: 

𝑝
(

GO𝑗 ∣ domain𝑖
)

=
𝑝
(

domain𝑖, 𝐺𝑂𝑗
)

𝑝
(

domain𝑖
) =

∑𝑁
𝑘=1 𝐼

(

𝐷𝑖, 𝐹𝑗 , 𝑃𝑘
)

∑𝑁
𝑘=1 𝐼

(

𝐷𝑖, 𝑃𝑘
)

(3)

where 𝑁 denotes the total number of protein samples and the operator 
𝐼(⋅) indicates the existence of a specific association. The conditional 
probabilities serve as pseudo-labels to train domain embeddings. We 
employ a simple network structure consisting of a Hadamard product 
operator and several feed-forward layers to facilitate the learning of 
functional relevance within the domain vocabulary. Finally, a mean 
squared error (MSE) loss function is utilized to train the entire network. 
The detailed implementation is presented in Appendix  A.1.

4.1.2. Domain-text semantically consistent
We further enrich the domain vocabulary with the functional infor-

mation embedded in the textual descriptions. Specifically, we embed 
the descriptions by pre-trained BiomedBERT (Gu et al., 2021) model 
and train the domain vocabulary through contrastive learning: 

𝑠𝑒𝑚 = − log
exp

(

sim
(

𝑓 (𝝓𝑖), 𝑓 (𝛷(𝐓𝑖))
)

∕𝜏
)

∑𝑁
𝑗=1 exp

(

sim
(

𝑓 (𝝓𝑖), 𝑓 (𝛷(𝐓𝑗 ))
)

∕𝜏
)

(4)

where 𝑓 (⋅) denotes a learnable projector that maps embeddings into a 
shared semantic space, 𝛷 represents the text encoder, 𝜙𝑖 ∈ 𝐑𝑐 is the 
embedding of domain 𝑖, and 𝑇𝑖 is the textual description of domain 𝑖.

The combination of these two loss functions enables the domain and 
GO vocabularies to learn complementary information. Subsequently, 
we utilize the resulting domain vocabularies, referred to as FAD em-
beddings, to enhance the representations derived from sequence and 
structure-based features.
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Fig. 3. Introduction to FAD embeddings. (a) Existing methods often rely on binary representations to encode protein domains, which may fail to capture the full complexity of 
domain relationships. (b) In contrast, we incorporate functional priors into domain embeddings, addressing the issue of domain sparsity and enhancing the representational power 
of protein domains. (c) We train the rich domain embeddings with domain-GO probabilities pseudo-label and the textual semantic consistency.
-

4.2. Function prediction network

4.2.1. Modality-specific encoder
We develop a multi-modal framework for protein function predic-

tion, as illustrated in Fig.  4. The framework utilizes the pre-trained 
protein language model (ESM-2) to extract sequence features (served 
as 𝑧𝑠 ∈ 𝐑𝑐) and a graph network (CDConv) to extract structure features 
(served as 𝑧𝑝 ∈ 𝐑𝑐). In addition to these two primary modalities, we 
employ InterProScan (Jones et al., 2014) to retrieve protein domain 
information and obtain FAD embeddings from the domain vocabulary. 
Furthermore, a protein domain attention module, incorporating box 
positional encodings, is used to adaptively extract the functional rep-
resentation of joint domains (served as 𝑧𝑑 ∈ 𝐑𝑐). Additional details 
regarding this process are provided in the appendix.

4.2.2. Domain-joint contrastive learning
To achieve fine-grained alignment across modalities, we leverage 

the shared information among modalities for the same joint domains. 
First, we introduce semantic-enhanced embeddings to ensure a more 
robust representation. Subsequently, we propose a novel contrastive 
strategy, namely domain-joint contrastive learning, which is coupled 
with a triplet InfoNCE loss to broaden the range of extracted features 
in protein data.
Inherent modality enhancement. The semantics in the original input data 
are often complex, and some information is inevitably lost when en-
coding it into the feature space. When connecting and aligning existing 
representation spaces, this loss and bias of meaning will be inherited 
and amplified, affecting the robustness of alignment. Inspired by Wang 
et al. (2023), we add zero-mean Gaussian noise into the features and 
project them to the unit hyper-sphere with L2 normalization: 
�̃�𝑠 = Normalize

(

𝐳𝑠 + 𝝃1
)

; �̃�𝑝 = Normalize
(

𝐳𝑝 + 𝝃2
)

;
�̃�𝑑 = Normalize

(

𝐳𝑑 + 𝝃3
)

;
(5)

where noise items 𝜉1, 𝜉2, 𝜉3 ∈ 𝐑𝑐 are sampled from zero-mean Gaussian 
distribution with variance 𝜎2, and they are not learnable. Hence, align-
ing two embeddings with noise forces the model to acquire the ability 
to align all the embeddings within the two circles, leading to a more 
comprehensive and robust semantic representation.
Domain-joint alignment. To establish the connection between two modal
ities, we project the semantic-enhanced embeddings (i.e. �̃�𝑠, �̃�𝑝, �̃�𝑑) to a 
new shared space (Poklukar et al., 2022; Wang, Zhao, et al., 2023) via 
a knowledge-shared projector 𝑓 (⋅), respectively. 
�̂�𝑠 = 𝑓 (�̃�𝑠) ; �̂�𝑝 = 𝑓 (�̃�𝑝) ; �̂�𝑑 = 𝑓

(

�̃�𝑑
)

(6)

In the projected space, our objective is to ensure that embeddings 
with similar semantics are close to each other. The various modalities 
(𝑥𝑠𝑒𝑞 , 𝑧𝑠𝑡𝑟, 𝑑𝑑𝑜𝑚) derived from the same protein are naturally semanti-
cally consistent, and thus, they can be considered as positive pairs for 
4 
contrastive learning. In contrast, embeddings from different proteins 
are typically treated as negative samples, as demonstrated in previous 
work (Hermosilla & Ropinski, 2022; Zhang, Xu, et al., 2023). However, 
as shown in Fig.  2, while protein-level alignment enhances the protein-
level functional representations, it does not significantly expand the 
information content of the features.

Building on recent advancements in contrastive learning meth-
ods (Chen, Kornblith, Norouzi, & Hinton, 2020), we perform domain-
joint cropping for proteins to generate negative samples from diverse 
sub-views, thereby facilitating the extraction of fine-grained functional 
information at the segment level. Specifically, we randomly sample 
different joint domains while ensuring that they do not overlap. In our 
experiments, we utilize two sets of joint domains, 𝜁1(𝑥𝑖) and 𝜁2(𝑥𝑖). The 
sequence-domain contrastive loss 𝑠𝑑𝑐 and the structure-domain con-
trastive loss 𝑝𝑑𝑐 are defined as follows (with further details provided 
in the Appendix): 

𝑠𝑑𝑐 =
𝑁
∑

𝑖

⎡

⎢

⎢

⎢

⎢

⎣

− sim
(

�̂�𝑠(𝜁1(𝑥𝑖)), �̂�𝑑 (𝜁1(𝑥𝑖))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿𝑠𝑖𝑚𝑐 : pull positive close

+ sim
(

�̂�𝑠(𝜁1(𝑥𝑖)), �̂�𝑑 (𝜁2(𝑥𝑖))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿𝑠𝑖𝑣𝑑 : push negative away

⎤

⎥

⎥

⎥

⎥

⎦

(7)

𝑝𝑑𝑐 =
𝑁
∑

𝑖

⎡

⎢

⎢

⎢

⎢

⎣

− sim
(

�̂�𝑝(𝜁1(𝑥𝑖)), �̂�𝑑 (𝜁1(𝑥𝑖))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿𝑝𝑖𝑚𝑐 : pull positive close

+ sim
(

�̂�𝑝(𝜁1(𝑥𝑖)), �̂�𝑑 (𝜁2(𝑥𝑖))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿𝑝𝑖𝑣𝑑 : push negative away

⎤

⎥

⎥

⎥

⎥

⎦

(8)

where 𝑥𝑖 represent a complete protein, 𝜁1, 𝜁2 represent various sub-
views divided according to the joint domains and 𝑁 is the number of 
proteins. The first term is the inter-modality consistency loss which en-
hances the semantic consistency between multi-modal representations. 
The second term is the inter-view distinctiveness loss which encourages 
the representation to efficiently distinguish different protein functions. 
However, the analysis in Liang, Zhang, Kwon, Yeung, and Zou (2022) 
suggests that different data modalities are embedded at arm’s length 
in their shared representation in multi-modal models, which is termed 
as modality gap. It is demonstrated that contrastive learning keeps 
the different modalities separated by a certain distance and varying 
the modality gap distance has a significant impact on improving the 
model’s downstream zero-shot classification performance and fairness.

Recent work (Wang, Zhao, et al., 2023) proposes closing the modal-
ity gap and guaranteeing that embeddings from different modalities 
with similar semantics are distributed in the same region of the repre-
sentation space by removing the repulsive structure in the contrastive 
loss. However, simply deleting the repulsive structure easily leads to 
reducing the mutual information (MI) between modalities and can-
not keep task-relevant information intact, which leads to decreasing 
downstream classification accuracy as discussed in Tian et al. (2020).

Inspired by Schroff, Kalenichenko, and Philbin (2015), we construct 
triplets using various modalities of the sub-views and propose a triplet 
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Fig. 4. Multi-modal function prediction architecture. (a) We introduce the comprehensive architecture of our method for protein function prediction. (b) FAD embeddings are 
derived from enriched vocabularies and aggregated using a domain attention mechanism to capture nuanced functional relevance. (c) To achieve fine-grained alignment across 
modalities, we employ domain-joint contrastive learning, enabling precise differentiation of diverse protein functions while harmonizing multi-modal information.
loss to replace the inter-view distinctiveness loss in Eq.  (7) (similarly 
for Eq.  (8)). Specifically, we use the structure of one sub-view as the 
anchor, the joint domains from that sub-view as the positive sample, 
and the joint domains of the other sub-view as the negative sample. The 
resulting inter-view distinctiveness loss can be formulated as follows: 

𝑝𝑖𝑣𝑑 =
𝑁
∑

𝑖

[

− sim
(

�̂�𝑝(𝜁1(𝑥𝑖)), �̂�𝑑 (𝜁1(𝑥𝑖))
)

+ sim
(

�̂�𝑝(𝜁1(𝑥𝑖)), �̂�𝑑 (𝜁2(𝑥𝑖))
)

+ 𝛼
]

+

(9)

where 𝛼 is a hyper-parameter used to control the gap between protein 
representations derived from different sub-views (proofs are provided 
in the Appendix). We combine the inter-modality consistency loss with 
the newly inter-view distinctiveness loss, which is referred to as the 
triplet InfoNCE loss. This combined loss function aims to minimize 
the modality gap while preserving the distinctions between different 
sub-views. 

𝑝𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = 𝑝𝑖𝑚𝑐 + 𝜆
𝑝
𝑖𝑣𝑑 (10)

where 𝜆 is a hyper-parameter that regulates training stability. When 𝜆 is 
small, it is less likely to create modality gaps, although this may lead to 
decreased training efficiency. Ultimately, the domain-joint contrastive 
learning is supervised by the combination of the sequence-domain 
triplet loss 𝐿𝑠  and the structure-domain triplet loss 𝐿𝑝 .
𝑡𝑟𝑖𝑝𝑙𝑒𝑡 𝑡𝑟𝑖𝑝𝑙𝑒𝑡

5 
4.2.3. Prediction head
Domain-joint contrastive learning serves as a feature constraint 

within our architecture, and the outputs of the knowledge-shared pro-
jector are not directly used for function prediction. Instead, we utilize a 
self-attention layer and a two-layer MLP to aggregate the multi-modal 
features 𝑧𝑠, 𝑧𝑝 and 𝑧𝑑 . Finally, we apply the loss function described in 
3.1 to train the prediction network: 
𝑐𝑙𝑎 = 𝓁

(

𝐀𝐠𝐠[𝑧𝑠(𝑥𝑖), 𝑧𝑝(𝑥𝑖), 𝑧𝑑 (𝑥𝑖)], 𝑦𝑖
)

(11)

The overall loss function is the combination of 𝑐𝑙𝑎 and 𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡.

5. Results

5.1. Experimental setups

Domain embeddings pre-training. We collected 570,830 pro-
tein entries from Swiss-Prot (The UniProt Consortium, 2022) (release 
2024_1) including the InterPro IDs and GO term IDs. We discarded 
all proteins which had no InterPro annotations. We also collected the 
mappings of InterPro entries to GO terms and textual descriptions from 
the InterPro Database (Paysan-Lafosse et al., 2022) (release 2023_10). 
In summary, our dataset contained 551,756 proteins with 31,929 
unique domains and 28,944 unique GO terms. We finally retained 
1,454,811 domain-GO term paired samples. For domains with several 
textual descriptions, we random select one description in each batch. 
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Table 1
𝐹𝑚𝑎𝑥 of gene ontology term prediction and enzyme commission number prediction. The highest-performing results are highlighted in bold, while 
the second-best results are underlined for clarity.
 Input Method Additional Gene ontology Enzyme  
 Modality BP MF CC Commission 
 
Sequence

ESM-1b (Rives et al., 2021)b – 0.452 0.657 0.477 0.864  
 ESM-2(Lin et al., 2022)c – 0.460 0.661 0.445 0.880  
 SaProt (Su et al., 2023) – 0.356 0.678 0.414 0.884  
 

Structure

GVP (Jing et al., 2021)a – 0.326 0.426 0.420 0.489  
 IEConv (Hermosilla et al., 2021)a – 0.421 0.624 0.431 0.735b  
 GearNet (Zhang, Xu, et al., 2023)b – 0.356 0.503 0.414 0.730  
 CDconv (Fan et al., 2022)a – 0.453 0.654 0.479 0.820  
 ClusteringPRL (Quan, Wang, Ma, Fan, & Yang, 2024) – 0.474 0.675 0.483 0.866  
 Sequence DeepFRI (Gligorijević et al., 2021)b – 0.399 0.465 0.460 0.631  
 & LM-GVP (Wang et al., 2022)b – 0.417 0.545 0.527 0.664  
 Structure ESM-GearNet (Zhang, Wang, et al., 2023)c – 0.488 0.681 0.464 0.890  
 
Multimodal

ProteinINR (Lee et al., 2023) surface 0.508 0.678 0.506 0.890  
 ProteinSSA (Hu et al., 2024) GO terms 0.464 0.667 0.492 0.857  
 DPfunc (Wang et al., 2025) domain 0.483 0.667 0.537 0.823  
 ProtFAD domain 0.518 0.701 0.551 0.911  
a Results are from Fan et al. (2022).
b Results are from Zhang, Xu, et al. (2023).
c Results are from Zhang, Wang, et al. (2023).
Table 2
Accuracy of protein fold classification and enzyme catalytic reaction classification. The highest-performing results are highlighted in bold, while 
the second-best results are underlined for clarity.
 Input Method Additional Fold classification Enzyme  
 Modality Superfamily Family Reaction 
 Sequence ESM-1b (Rives et al., 2021)b – 0.601 0.978 0.831  
 ESM-2(Lin et al., 2022) – 0.789 0.992 0.894  
 
Structure

GVP (Jing et al., 2021)a – 0.225 0.838 0.655  
 IEConv (Hermosilla et al., 2021)a – 0.702 0.992 0.872  
 GearNet (Zhang, Xu, et al., 2023)b – 0.805 0.999 0.875  
 CDconv (Fan et al., 2022)a – 0.777 0.996 0.885  
 ClusteringPRL (Quan et al., 2024) – 0.812 0.996 0.896  
 Sequence & Structure DeepFRI (Gligorijević et al., 2021)b – 0.206 0.732 0.633  
 Multimodal ProteinSSA (Hu et al., 2024) GO terms 0.794 0.998 0.894  
 ProtFAD domain 0.908 0.998 0.923  
a Results are from Fan et al. (2022).
b Results are from Zhang, Xu, et al. (2023).
We pre-train the FAD embeddings for 500 epochs with a batch size of 
16,384. Note that the training data only includes domain indices with 
no protein sequences involved, so there are no generalization concerns 
of protein sequences. After training, we freeze the parameters of the 
FAD embeddings for downstream tasks.

Benchmark tasks. Following Fan et al. (2022), Hermosilla et al. 
(2021), Zhang, Xu, et al. (2023), we evaluate the proposed method 
on four tasks: protein fold classification (Hermosilla & Ropinski, 2022; 
Hermosilla et al., 2021), enzyme reaction classification (Hermosilla 
et al., 2021), gene ontology (GO) term prediction (Gligorijević et al., 
2021) and enzyme commission (EC) number prediction (Gligorijević 
et al., 2021). Protein fold classification includes two evaluation sce-
narios: superfamily and family (the fold scenario in Fan et al. (2022) is 
not relevant to protein function prediction, so we removed it). GO term 
prediction includes three sub-tasks: biological process (BP), molecular 
function (MF), and cellular component (CC) ontology term prediction. 
All the datasets are split into training, validation, and test sets, with 
each set consisting of independent protein sequences. The model is 
trained on the training set, and the results are reported exclusively on 
the test set, which consists of PDB chains with a sequence identity of 
≤ 95% relative to the chains in the training set, for both EC and GO 
tasks. Protein fold and enzyme reaction classification are single-label 
classification tasks. Mean accuracy is used as the evaluation metric. GO 
term and EC number prediction are multi-label classification tasks. The 
𝐹  accuracy is used as the evaluation metric.
𝑚𝑎𝑥

6 
Note that we use domains instead of GO terms as input, so there is 
no data leakage. For each protein in the datasets, we assigned InterPro 
domains using InterProScan 5 (Jones et al., 2014).

Implementation. In our experiment, we utilize the pre-trained 
ESM-2 model (Lin et al., 2022) with its parameters frozen to minimize 
unnecessary computational overhead. The embedding dimension is set 
to 768. A simple multi-layer perceptron (MLP) is employed to project 
the encodings of three modalities to a unified dimension of 1280. The 
noise variance 𝜎2 in Eq.  (5) is configured to 0.01. The hyper-parameters 
𝛼 and 𝜆 for the triplet InfoNCE loss are set to 1 and 0.1, respectively. 
Further details regarding the implementation and training setup are 
provided in Appendix  C.

5.2. Comparison with state-of-the-art

We conduct a comparative analysis of our proposed method against 
existing approaches, including sequence-only, structure-only, and mul-
timodal methods. The results are presented in Table  1 and Table  2. To 
clearly differentiate between methods with and without the inclusion 
of a third modality, methods utilizing only sequence and structure are 
labeled as ‘‘Sequence & Structure’’ while those incorporating additional 
modalities are categorized as ‘‘Multimodal’’ with the specific third 
modality indicated.

Methods that combine sequence and structure modalities generally 
outperform single-modality approaches, emphasizing the importance of 
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Fig. 5. The dimensionality-reduction visualizations of domain embeddings extracted by ESM-2 and our FAD embeddings. Two common types of functions, including ‘‘cytoplasm’’ 
(a) and ‘‘metal-ion-binding’’ (b), are selected.
Table 3
Evaluation of FAD embeddings on benchmarks. Fmax is used for gene ontology term prediction (GO) and enzyme commission 
number prediction (EC). Accuracy is used for protein fold classification (FC) and enzyme catalytic reaction classification (ER).
 Method FC ER GO EC  
 Superfamily Family BP MF CC  
 ESM-2 0.789 0.992 0.894 0.460 0.661 0.445 0.880 
 domain binary representation 0.778 0.991 0.860 0.486 0.683 0.493 0.863 
 FAD 0.850 0.991 0.867 0.511 0.698 0.533 0.878 
 
 
 
 

 
 
 

 
 
 

 

 
 
 

 

 

 

 

 

 

 

multimodal fusion in protein function prediction. Interestingly, meth-
ods that include knowledge modalities (such as surface features or
GO terms) do not always outperform the sequence–structure-based
models, which suggests that how knowledge is effectively integrated
into the multi-modal model is a crucial design consideration. Despite
this, ProtFAD outperforms nearly all existing methods across all bench-
marks, underscoring the overall effectiveness of the network design we
proposed. In subsequent experiments, we will delve deeper into the
specific innovations presented in this paper and analyze their individual
contributions to the model’s performance.

5.3. Rich domain embeddings

To evaluate the ability of FAD embeddings to capture functional pri-
ors, we utilize t-SNE to visualize the domain representations generated
by FAD and ESM-2. We focus on two common functional categories,
namely ‘‘cytoplasm’’ and ‘‘metal-ion-binding’’. For each function, we
sample an approximately balanced set of positive and negative do-
mains. The domains are embedded using FAD, while the sequences
corresponding to the domains are embedded using ESM-2.

As illustrated in Fig.  5, the representations generated by ESM-
2 exhibit significant overlap between positive and negative samples,
whereas the FAD-generated representations display clear separation.
This result underscores the ability of FAD embeddings to effectively
capture fine-grained functional characteristics of proteins.

Moreover, to further validate the effectiveness of FAD embeddings
in comparison to binary domain representations, we combine the em-
beddings with an MLP prediction head and evaluate their performance
on benchmark datasets. As shown in Table  3, FAD embeddings demon-
strate superior robustness compared to binary domain representations.
Even when only the domain modality is utilized, FAD achieves com-
petitive performance relative to pre-trained protein language models,
while incurring significantly lower computational overhead.

5.4. Fine-grained alignment

We conduct a series of experiments to evaluate the effectiveness
of the proposed domain-joint contrastive learning method. Specifi-
cally, we compare two models with identical architectures, one in-
corporating domain-joint contrastive learning and the other without
the contrastive learning mechanism. For both models, we extract se-
quence and structural features from the protein samples and compute
the average Euclidean distance between the corresponding sequence–
structure feature pairs. The resulting average distances are 16.24 for
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the model with contrastive learning and 20.68 for the model without 
contrastive learning. Additionally, we split each protein sample into 
two fragments, deviating from the joint domain-based splitting used 
during training. The average structural feature distances between the 
two fragments for all proteins are 8.33 for the contrastive learning 
model and 3.42 for the non-contrastive model. The results indicate 
that the domain-joint contrastive learning method is more effective 
at aligning different modalities (i.e., achieving smaller distances be-
tween sequence–structure feature pairs) while also better distinguishing 
finer-grained protein features (i.e., larger distances between different 
fragments).

The experiments are conducted using the validation set of the cel-
lular component ontology term prediction dataset, ensuring no risk of 
data leakage. We further visualize the results of these experiments using 
principal component analysis (PCA), as shown in Fig.  6, to illustrate the 
distribution of features learned by our method.

5.5. Time cost

To evaluate the computational efficiency of our approach, we con-
duct experiments comparing the training time and inference speed of 
our method with existing models. The domain pre-training phase is 
performed on a single Tesla V100-SXM2-32 GB GPU, with a training 
time of 8 h. In comparison, while the training time for the ESM-2 model 
is not explicitly reported, it is significantly longer due to the more 
complex protein sequence data used in ESM-2, whereas our domain 
pre-training relies on simpler data (domain indices, GO terms, and 
textual descriptions) that do not require training new sequence models, 
resulting in a more efficient feature extraction process. Regarding 
inference speed, the ESM-2 model takes approximately 4.1 s to process 
a single protein, while our method, FAD embeddings, only requires a 
simple embedding lookup, incurring negligible time overhead. For the 
functional prediction task, we compare our method with the backbone 
model CDConv and the multi-modal model ESM-GearNet. The training 
times per epoch for these models are as follows: CDConv (2.11 min), 
ESM-GearNet (3.62 min), and ProtFAD (ours, 2.28 min). Feature ex-
traction for ESM-2 is conducted during the data preprocessing stage, 
not included in the training time. Although our method incurs slightly 
higher training costs than CDConv, this is due to the inclusion of the 
domain attention mechanism and feature fusion network, which sig-
nificantly improve model performance. Furthermore, when compared 
to the multi-modal competitor ESM-GearNet, our method achieves 
superior performance with lower computational cost.
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Fig. 6. The dimensionality-reduction visualizations of sequence/structure features extracted by ProtFAD (left) and its variants without domain-joint contrastive learning (right). 
100 protein samples are randomly selected from the GO-CC dataset. The average distance is calculated on complete GO-CC validation set.
Table 4
Ablation study of the proposed modules. Fmax is used for gene ontology term prediction (GO) and enzyme commission number 
prediction (EC). Accuracy is used for protein fold classification (FC) and enzyme catalytic reaction classification (ER).
 Method FC ER GO EC  
 Superfamily Family BP MF CC  
 ProtFAD 0.908 0.998 0.923 0.518 0.701 0.551 0.911 
 w/o domain 0.830 0.995 0.906 0.485 0.672 0.519 0.875 
 w/o domain pre-train 0.881 0.996 0.909 0.495 0.683 0.532 0.868 
 w/o domain attention 0.871 0.997 0.909 0.508 0.697 0.545 0.899 
 w/o contrastive loss 0.902 0.997 0.910 0.514 0.699 0.528 0.904 
 w/ vanilla contrastive loss 0.891 0.997 0.911 0.512 0.698 0.520 0.905 
 

 

 
 
 

 

 
 
 
 
 

 
 

5.6. Ablation study

To assess the impact of various components, we conduct an ablation
study across four tasks, with results presented in Table  4.

Overall Contributions. Initially, we aim to highlight the effec-
tiveness of the key innovations in our approach, including function-
aware domain pre-training and domain-joint contrastive learning. In
this setting, we perform protein function prediction using only se-
quence and structure features, omitting the contrastive loss, and refer to
this as ‘‘w/o domain’’. The substantial decline in performance across all
benchmark tasks underscores the critical contributions of our proposed
method.

Function-Aware Domain Pre-training. Subsequently, we investi-
gate a degenerate version of the FAD embeddings, labeled ‘‘w/o domain
pre-train’’, where binary features are used to represent domains in-
stead of utilizing the pre-trained embeddings. Our findings demonstrate
that domain pre-training significantly enhances the final performance
of feature prediction. This improvement is likely attributed to the
pre-training process, which strengthens the generalization of domain
embeddings and mitigates the challenges posed by the limited data
available for downstream tasks.

Domain Attention Mechanism. Next, we remove the domain at-
tention mechanism and replace it with the mean of domain embed-
dings, resulting in a consistent performance degradation. The domain
attention mechanism is crucial for effectively integrating interaction
and positional information between domains, allowing the overall do-
main representation to better serve downstream functional prediction
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tasks. By using the mean embeddings, the model loses the ability to 
capture the intricate inter-domain relationships, leading to suboptimal 
performance.

Domain-Joint Contrastive Learning. Furthermore, we investigate 
the impact of excluding the protein domain-joint contrastive learning 
from our model architecture. The observed performance decline further 
emphasizes the contributions of the proposed module. Specifically, the 
domain-joint contrastive learning approach outperforms methods that 
either do not use contrastive learning or rely on vanilla sample-level 
contrastive learning. Our method is particularly suited to the pro-
tein multi-modal representation fusion scenario, where domain-specific 
interactions are crucial for accurate prediction.

6. Conclusion

In this work, we propose ProtFAD, a priors-guided multi-modal 
protein representation learning approach, to bridge the gap between 
sequence or structure modality and protein functions. By leveraging 
function-aware domain embeddings and a novel domain-joint con-
trastive learning, we extract rich functional information from protein 
domains and enhance existing protein representation. During the fu-
sion of multi-modal features, we further incorporate domain positional 
information and the synergistic effects between domains with a do-
main attention mechanism. Extensive experiments on diverse protein 
function prediction benchmarks verify the superior performance of 
ProtFAD. However, due to architectural constraints, the current ap-
proach is limited to low-level functional prediction tasks. It may not 
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Fig. A.7. Establish associations between domains and GO terms through proteins. 
Define two distinct meta-paths and utilize them to summarize the connection between 
domains and GO terms, including domain-protein-function (red line) and domain-
protein (yellow line).

perform as well on high-level tasks, such as site-specific prediction. 
Future work will focus on exploring a multi-scale knowledge fusion 
strategy for protein representation, aiming to overcome the limitations 
of knowledge-enhanced methods across tasks of different granularities.
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Appendix A. Additional modules

A.1. Domain-protein-GO term association

Here, we establish the association between domains and GO terms. 
We collect the proteins from Swiss-Prot (The UniProt Consortium, 
2022) including the InterPro IDs and GO term IDs, and establish a 
relationship network among them as shown in Fig.  A.7. When a protein 
k containing domain i has the GO j, we define a meta-path (𝐷𝑖, 𝐹𝑗 , 𝑃𝑘). 
When a protein k contains the domain i, we define another meta-
path (𝐷𝑖, 𝑃𝑘). Two meta-paths may overlap for some proteins. The 
meta-paths are referred to as associations in Section 4.1.

Furthermore, we show the network architecture for training FAD 
embeddings as shown in Fig.  A.8. The projectors in the network are 
composed of two-layer MLP with hidden layer activation function. For 
two matrices 𝐴 and 𝐵 of dimensions 𝑚 × 𝑛, the Hadamard product is 
defined as: 
𝐂 = 𝐀◦𝐁, (𝐀◦𝐁)𝑖𝑗 = 𝐴𝑖𝑗𝐵𝑖𝑗 (A.1)
9 
Table A.5
Comparative study of various positional encodings (PE) on enzyme commission number 
prediction (EC). The methods are evaluated in the ProtFAD framework without domain-
joint contrastive learning.
 positional encoding w/o PE BERT PE Field PE MLP PE Box PE 
 enzyme commission 0.9024 0.8998 0.9015 0.9045 0.9108 

A.2. Domain attention module

Protein function may be determined by several domains, and dif-
ferent domains may contribute to different functions. Therefore, we 
employ a protein domain attention module to adaptively extract the 
functional representation of joint domains. Specifically, we use 𝐞 =
[𝑒1, 𝑒2,… , 𝑒𝑡] to represent the FAD embeddings of joint domains 𝑑[1,𝑡]. 
We adopt a self-attention layer to calculate the importance of each 
domain, as shown below: 
𝑑 = 𝐀𝐠𝐠(𝐞 +𝛺(𝐞)) (A.2)

where 𝛺(⋅) is the self-attention layer and 𝐀𝐠𝐠(⋅) is an aggregation 
operator (which is average pooling in our experiment).

Considering that the position of the domain may affect the function 
of the protein, we incorporate a positional encoding for the domain. 
The sequence length and relative position of each domain within a 
protein are different. For simplicity, we take the position of the amino 
acid in the middle of the domain sequence as the position of the domain 
and normalize it to (0, 1) by dividing it by the length of the domain 
sequence. Common discrete positional encodings cannot be used for 
the continuous position values described above. Therefore, we employ 
box positional encodings. Specifically, we group continuous position 
𝑝 within the interval (0, 1) into bins and learn a unique position 
embedding 𝜓 for each bin. Finally, the calculation of domain attention 
can be represented as: 
𝑒𝑖 = 𝑒𝑖 + 𝜓⌊𝑏×𝑝𝑖⌋, 𝑖 = 1, 2,… , 𝑡 (A.3)

𝑑 = 𝐀𝐠𝐠(�̂� +𝛺(�̂�)) (A.4)

where 𝑏 is the number of bins, and 𝜓𝑗 represents the position embed-
ding of 𝑗𝑡ℎ bin.

This attention module considers the relationships between different 
domains and the positional information of each domain and generates 
a single domain-joint representation 𝑑 ∈ 𝐑𝑐 , enabling the model to 
effectively capture the complex interplay between domains and their 
contributions to protein function.

In addition, we explore the performance of different positional 
encodings (PE):

(1) BERT positional encoding: learn a position embedding for each 
element in joint domains (𝑖.𝑒. 𝑖 = 1, 2,… , 𝑡). This approach considers 
the relative positional relationship between domains without receiving 
their real positions as input.

(2) Field positional encoding: learn a position embedding for all 
domains, and the positional encoding is the product of the embedding 
and the domain position 𝑝. This approach integrates the positional 
information with a linear function.

(3) MLP positional encoding: employ one MLP projecting the do-
main position 𝑝 to a position vector for each domain.

The results are shown in Table  A.5. The box position encoding 
achieves the best performance. Note that BERT PE and Field PE are 
less effective than not using the positional encoding, proving that 
the continuous position 𝑝 cannot be modeled with common discrete 
encodings.
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Fig. A.8. The network architecture for training FAD embeddings.
Appendix B. Proof

B.1. Derivation of Eq.  (8)

We perform domain-joint cropping on proteins and construct var-
ious sub-views, i.e. 𝜁1(𝑥), 𝜁2(𝑥),… , 𝜁𝐾 (𝑥). We consider the multiple 
modalities of the same sub-view as positive samples, and the different 
sub-views as negative samples. We utilize two modalities for contrastive 
learning. For structure and domain, the contrastive loss is: 

𝐿𝑝𝑑𝑐 = − log
exp

(

sim
(

�̂�𝑝(𝜁1(𝑥)), �̂�𝑑 (𝜁1(𝑥))
))

∑𝐾
𝑘≠1 exp

(

sim
(

�̂�𝑝(𝜁1(𝑥)), �̂�𝑑 (𝜁𝑘(𝑥))
))

(B.1)

where K is the number of sub-views, 𝜁𝑘 represents the 𝑘th protein 
sub-view. Let K=2, we get 
𝐿𝑝𝑑𝑐 = − sim

(

�̂�𝑝(𝜁1(𝑥)), �̂�𝑑 (𝜁1(𝑥))
)

+ sim
(

�̂�𝑝(𝜁1(𝑥)), �̂�𝑑 (𝜁2(𝑥))
)

(B.2)

B.2. Mutual information

Here, we present the domain-joint contrastive learning approach 
from an information-theoretic perspective. Let the protein be denoted 
as 𝑋, which is partitioned into two sub-views, 𝑋1 and 𝑋2, such that 𝑋 =
𝑋1 +𝑋2. The function label is denoted as 𝑌 , and the feature represen-
tation derived from our encoder is 𝑍. Our objective is to maximize the 
mutual information 𝐼(𝑍,𝑋) and 𝐼(𝑍, 𝑌 ). The function prediction loss is 
employed to maximize 𝐼(𝑍, 𝑌 ), while domain-joint contrastive learning 
is utilized to maximize 𝐼(𝑍,𝑋), thereby preserving more information 
for robust generalization to unseen data. The optimization problem can 
be expressed as: 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐼(𝑍,𝑋) = 𝐼(𝑍,𝑋1) + 𝐼(𝑍,𝑋2) − 𝐼(𝑍,𝑋1;𝑋2) (B.3)

The model facilitates the representation 𝑍 to capture the sequence–
structure correlation within 𝑋1 by comparing its sequence and struc-
tural features. That is, by minimizing the conditional entropy 𝐻(𝑋1|𝑍), 
the model enhances its ability to represent 𝑋1. The optimization objec-
tive implicitly maximizes 𝐼(𝑍,𝑋1) = 𝐻(𝑋1) −𝐻(𝑋1|𝑍). Consequently, 
the positive pairwise alignment within the contrastive learning frame-
work enhances both 𝐼(𝑍,𝑋1) and 𝐼(𝑍,𝑋2), thereby improving the 
model’s representation of both sub-views.

The negative pair discrimination objective in domain-joint con-
trastive learning minimizes the redundancy in the representation of 
𝑍 by increasing the distance between the substructures 𝑋1 and 𝑋2, 
thereby reducing the overlap of information between them: 
𝐼(𝑍,𝑋1;𝑋2) = 𝐻(𝑍|𝑋1) −𝐻(𝑍|𝑋1, 𝑋2) (B.4)

Therefore, the mutual information 𝐼(𝑍,𝑋) is maximized through the 
domain-joint contrastive learning approach.
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B.3. Triplet InfoNCE loss

The analysis in Liang et al. (2022) suggests that contrastive learning 
keeps the different modalities separated by a certain distance. Here, we 
demonstrate how our proposed triplet InfoNCE loss closes the modality 
gap while keeping the sample distinctiveness. We denote two different 
samples as 𝑧1, 𝑧2, and use superscripts 𝑝, 𝑑 to indicate two different 
modalities (e.g. structure and domain). The contrastive loss of two 
sub-views can be expressed as: 
𝐿 = 𝑑

(

𝑧𝑝1, 𝑧
𝑑
1
)

⏟⏞⏞⏟⏞⏞⏟
attractive structure

− 𝑑
(

𝑧𝑝1, 𝑧
𝑑
2
)

⏟⏞⏞⏟⏞⏞⏟
repulsive structure

(B.5)

where 𝑑(𝐴,𝐵) = 1 − sim (𝐴,𝐵) represent the cosine distance. Euclidean 
distance and cosine distance are monotonically related (𝐴,𝐵 are L2-
normalized), that is 𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 =

√

2𝑑. So we use Euclidean distance to 
demonstrate the following process on a two-dimensional plane.

For example, the repulsive structure in the contrastive loss keeps 
the modality gap when similar samples are aligned as shown in Fig. 
B.9(a). Simply deleting the repulsive structure like Wang, Zhao, et al. 
(2023) easily leads to aggregating embeddings with different semantics 
as shown in Fig.  B.9(b), which reduces the mutual information (MI) 
between modalities.

For the triplet InfoNCE loss, when the loss is not converged, we get:
𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = 𝑑

(

𝑧𝑝1, 𝑧
𝑑
1
)

− 1 + 𝜆
[

𝑑
(

𝑧𝑝1, 𝑧
𝑑
1
)

− 𝑑
(

𝑧𝑝1, 𝑧
𝑑
2
)

+ 𝛼
]

+

= (1 + 𝜆)𝑑
(

𝑧𝑝1, 𝑧
𝑑
1
)

− 𝜆𝑑
(

𝑧𝑝1, 𝑧
𝑑
2
)

− 1 + 𝜆𝛼

= 𝜆
[

(1 + 1
𝜆
)𝑑

(

𝑧𝑝1, 𝑧
𝑑
1
)

− 𝑑
(

𝑧𝑝1, 𝑧
𝑑
2
)

+ 𝛼 − 1
𝜆

]

where 𝜆 is a hyper-parameter that adjusts training stability, and 𝛼
is a hyper-parameter employed to control the gap between different 
samples. When 𝜆 → ∞, 𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 will degenerate into a vanilla contrastive 
loss. And when 𝜆 is small, it is less likely to create modality gaps as the 
repulsive structure accounts for less in the loss function, as shown in 
Fig.  B.9(c).

When the loss is converged, we get: 
𝑑
(

𝑧𝑝1, 𝑧
𝑑
1
)

− 𝑑
(

𝑧𝑝1, 𝑧
𝑑
2
)

+ 𝛼 ≤ 0 (B.6)

When the modalities are aligned, we expect 𝑑 (𝑧𝑝1, 𝑧𝑑1
)

= 0. That is 

0 = 𝑑
(

𝑧𝑝1, 𝑧
𝑑
1
)

≤ 𝑑
(

𝑧𝑝1, 𝑧
𝑑
2
)

− 𝛼 (B.7)

𝑧1, 𝑧2 are interchangeable, so we have 

𝑑
(

𝑧𝑝1, 𝑧
𝑑
2
)

≥ 𝛼; 𝑑
(

𝑧𝑝2, 𝑧
𝑑
1
)

≥ 𝛼 (B.8)

𝑑
(

𝑧𝑑 , 𝑧𝑑
)

≥ 𝛼; 𝑑
(

𝑧𝑝, 𝑧𝑝
)

≥ 𝛼 (B.9)
1 2 2 1
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Fig. B.9. (a) Attractive structure and repulsive structure jointly keep the modality gap. (b) After deleting the repulsive structure, the different samples cannot be distinguished (the 
dashed line represents the aggregated embeddings). (c) The triplet InfoNCE loss eliminates the modality gap by increasing the weight of the attractive structure. (d) The triplet 
InfoNCE loss enlarges the mutual information by maintaining the lower bound of sample distance.
Table C.6
More details of implementation and training setup.
 Hyper-parameter EC GO-BP GO-MF GO-CC Fold Enzyme reaction 
 Batch size 24 32 32 64 8 8  

The 𝛼 is the lower bound of the distance between different samples 
as shown in Fig.  B.9(d), which keeps the mutual information between 
different modalities for better alignment (Tian et al., 2020; Wang & 
Isola, 2020).

Appendix C. More experiment details

We use Tesla V100-SXM2-32 GB GPU for single-card training. More 
details of implementation and training setup are provided in Table  C.6.

Appendix D. Discussion

D.1. Domain embedding dimension

To explore the density of information contained in the domain, 
we compare the impact of different domain embedding dimensions on 
model performance. Specifically, we only employ the domain modal-
ity for enzyme commission number prediction, comparing the results 
of FAD and domain embeddings without pre-training under different 
dimension settings. The results are shown in Fig.  D.10.

As the dimension of FAD embeddings increases, the model per-
formance maintains an improving trend, indicating that FAD does 
integrate effective functional information. In addition, it implies that 
FAD has greater potential for function perception as the dimension 
increases. For domain embeddings that are not pre-trained, the model 
performance reaches saturation when the embedding dimension is 
1024. This may be caused by insufficient data in the function predic-
tion task to train a stronger domain representation, i.e., the model is 
overfitting. This further illustrates the importance of pre-training our 
functional representations.
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Table D.7
Absolute study of ProtFAD without sequence modality on gene ontology term prediction 
and enzyme commission number prediction.
 Method Gene ontology Enzyme commission 
 BP MF CC  
 ProtFAD 0.518 0.701 0.551 0.911  
 w/o sequence 0.500 0.694 0.496 0.909  
 𝛥 −1.8% −0.7% −5.5% −0.2%  
 w/o structure 0.515 0.701 0.548 0.906  
 𝛥 −0.3% 0% −0.3% −0.5%  

D.2. Is sequence or structure necessary?

We further evaluate the performance of ProtFAD without sequence 
modality or without structure modality, and provide the results in 
Table  D.7. The sequence modality contributes to the multi-modal rep-
resentations for most benchmarks, especially the cellular component 
ontology term prediction (an improvement of nearly 10% compared to 
the degenerate model). Surprisingly, adding sequence modality reduces 
the performance of enzyme commission number prediction. This may 
be caused as the information in structure and domain is sufficient for 
the task. However, for structure modality, the performance degradation 
is not obvious, which introduces that the information in domains is 
sufficient for the protein function prediction or the information mining 
in previous structure-based work is inadequate. It proves the correct-
ness of using domains as an implicit modality to connect structure and 
function.

D.3. How to crop the protein

In the experiment, we divide the domains of a protein (𝑖.𝑒. 𝑥𝑑𝑜𝑚 =
(𝑑1, 𝑑2,… , 𝑑𝑡)) into two subsets 𝜁1(𝑥𝑑𝑜𝑚) and 𝜁2(𝑥𝑑𝑜𝑚). Specifically, we 
random select 𝑘 ∈ (1, 𝑡], let 𝜁1(𝑥𝑑𝑜𝑚) = (𝑑1,… , 𝑑𝑘−1), 𝜁2(𝑥𝑑𝑜𝑚) =
(𝑑𝑘,… , 𝑑𝑡). Then we search the corresponding sequence and structure 
of the divided domains for the two modalities.
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Fig. D.10. Comparative study of various domain embedding dimensions on enzyme commission number prediction.
This division cannot separate the sequence and structure of the two 
sub-views, introducing noise into the contrastive learning. Reducing 
such noise can further enhance the effect of contrastive learning. How-
ever, we have not conducted an in-depth exploration of how domains 
are divided, which may be a meaningful future work.

D.4. Limitation

In the context of protein function prediction, there are some lim-
itations when using domain-based approaches. First, since domains 
are structural units composed of multiple atoms or residues,enhancing 
function prediction based on protein domains in more granular tasks 
(such as binding site prediction) requires increasingly complex network 
architectures. This added complexity can introduce challenges in model 
design and optimization. Second, due to the inductive bias inherent 
to protein domains, domain-based function prediction may suffer from 
severe overfitting in cases where data is limited, despite improvements 
from function-prior pretraining. While such pretraining can mitigate 
overfitting to some extent, the fixed nature of domain-specific patterns 
may still cause models to overly rely on these biases, reducing their 
generalizability to unseen data. These challenges highlight the trade-
offs involved in domain-centric approaches, particularly when scaling 
to more granular or data-scarce tasks.

Data availability

Our implementation is available at https://github.com/AI-HPC-
Research-Team/ProtFAD.
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