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Abstract

As the volume of protein sequence and structure data grows rapidly, the functions of the overwhelming majority of proteins cannot be
experimentally determined. Automated annotation of protein function at a large scale is becoming increasingly important. Existing
computational prediction methods are typically based on expanding the relatively small number of experimentally determined
functions to large collections of proteins with various clues, including sequence homology, protein–protein interaction, gene co-
expression, etc. Although there has been some progress in protein function prediction in recent years, the development of accurate and
reliable solutions still has a long way to go. Here we exploit AlphaFold predicted three-dimensional structural information, together with
other non-structural clues, to develop a large-scale approach termed PredGO to annotate Gene Ontology (GO) functions for proteins.
We use a pre-trained language model, geometric vector perceptrons and attention mechanisms to extract heterogeneous features of
proteins and fuse these features for function prediction. The computational results demonstrate that the proposed method outperforms
other state-of-the-art approaches for predicting GO functions of proteins in terms of both coverage and accuracy. The improvement of
coverage is because the number of structures predicted by AlphaFold is greatly increased, and on the other hand, PredGO can extensively
use non-structural information for functional prediction. Moreover, we show that over 205 000 (∼100%) entries in UniProt for human
are annotated by PredGO, over 186 000 (∼90%) of which are based on predicted structure. The webserver and database are available at
http://predgo.denglab.org/.
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INTRODUCTION
Recent advances in genome sequencing and structural genomics
are increasing the abundance of experimental sequences and
three-dimensional structures, which need functional charac-
terization. The gap between the large number of proteins that
have been identified and the completeness of their annotations
is continually widening. For example, as of November 2022,
nearly 484 700 (∼85%) protein sequences deposited into the
UniProtKB/Swiss-Prot database were without manually curated
function; the same is true for many structures in the Protein
Data Bank (PDB), nearly 156 300 (∼74%) structures lacked
manually assigned function, and even after putative automated
annotations nearly 111 900 (∼53%) structures remain listed as
unannotated in the Gene Ontology Annotation (GOA) database [1].
Experimental identification and manual protein function anno-
tation remain labor-intensive and expensive tasks. Consequently,
in this scenario, researchers have focused on developing accurate
computational methods for protein function prediction, which
can therefore aid in reducing the gap.

With the ever-increasing accumulation of sequence and struc-
ture information, coupled with massive high-throughput exper-
imentally data, a number of computational methods have been
proposed to exploit these heterogeneous data, including function

prediction from the amino acid sequence [2–4], structure data
[5], gene expression [6], protein–protein interaction [7, 8], genomic
context [9] and integrated methods [10–16].

The most common approach for protein function prediction
is to use homology or sequence similarity and transfer func-
tional annotations to newly identified proteins. Global and local
sequence alignments, such as FASTA [17], BLAST and PSI-BLAST
[18], are used to query sequence databases for homologs with
a target protein, and the known functions of the top hits are
transferred to the query. A better strategy for homology-based
functional annotation is PFP [3], which uses three rounds of PSI-
BLAST and a so-called ’function association matrix’ to include
the annotations of even remote homologs. The extended simi-
larity group (ESG) method [4], which performs iterative sequence
database searches, promises to be more sensitive and accurate
than conventional PSI-BLAST and its predecessor PFP. In recent
years, a series of deep-learning methods have been proposed.
These methods usually extract sequence features by calculating
sequence similarity, multiple sequence alignments and sequence
motifs and use neural networks to build the prediction model [19–
24]. In addition to this, sequence-based protein language models
have also yielded very promising results in protein bioinformatics
and even in the whole protein science [25–28]. Although the
sequence-based transfer is a genuine way of inferring function
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in the light of evolution, practically, a precise function is con-
served only at levels of sequence identity >40% [29] and most of
the newly identified proteins do not show significant sequence
similarity with experimentally annotated proteins. Additionally,
sequence similarity does not always imply functional equiva-
lence; thus, sequence-based functional transfers can be erro-
neous. For example, proteins from gene duplication may have
high sequence similarity but a divergence of functions. In addi-
tion, misannotations can be spread even when homology-based
approaches are used in manually curated databases.

When sequence-based methods fail, functional clues can be
inferred from the protein’s three-dimensional structure since
the protein’s structure often remains more conserved than its
sequence [30]. Methods for predicting function from structure
rely on detecting some structural similarity, whether global or
local, between the target protein and a structure of the known
function. Global structure-comparison algorithms (e.g. DALI [31],
TM-align [32] and MADOKA [33]) can be used to exploit general
structural similarity. Other methods identify local surface regions
that may be associated with highly specific functions. Examples
include pvSOAR [34], eF-site [35], PDBSiteScan [36] and so on.
However, structural information has not been widely used for
protein function annotation. One of the main reasons is that there
is a significant gap between the number of proteins with known
sequences and those with experimentally determined structures.
Recently, AlphaFold2 [37] has made a major breakthrough in the
protein folding problem by predicting the 3D structure of proteins
with atomic-level precision based on amino acid sequences alone
[38]. And the model trained only on virtual samples predicted
by AlphaFold2 is able to perform comparably to models based
on experimentally solved real structures. These provide favorable
conditions for improving the performance of structure-based pro-
tein function prediction.

In this paper, we propose a computational protein function
prediction approach termed PredGO, which achieves high-
performance protein function prediction by using a protein
language model ESM-1b [39] trained by a large number of protein
sequences to extract sequence features, graph neural network
with geometric vector perceptron (GVP–GNN) [40] to extract
protein structures predicted by AlphaFold2 and the multi-head
attention mechanism to fuse protein-protein interaction (PPI)
features. It can be observed from the comparison experiments
that our model is able to extract the information in the predicted
protein structures and achieve high-performance prediction of
protein functions even if only sequence information is available.
In addition, we experimentally verify the performance of the
model for specific species. And we observe the difference between
our model and competing methods in prediction results through
specific proteins. We finally apply PredGO to human genome-wide
protein function prediction and obtain promising results.

MATERIALS AND METHODS
Datasets
We used two datasets, CAFA3 [41–43] and UniGOA16, to eval-
uate methods. We downloaded the CAFA3 dataset from Deep-
GOPlus (https://deepgo.cbrc.kaust.edu.sa/data/) [23]. This dataset
includes the CAFA3 challenge training sequences and experi-
mental annotations released in September 2016, as well as the
test benchmarks released on November 15, 2017. We removed
proteins with sequence lengths greater than 1000 and proteins
with ’fuzzy’ amino acids, such as consortia or unknowns. After
processing, there are 3039 proteins in the test set. We obtained

the protein structures from AlphaFoldDB (https://alphafold.ebi.
ac.uk/download) [44]. For proteins in the test set whose structures
could not be downloaded from AlphaFoldDB, we used the local
version of AlphaFold2 to make predictions with the preset of
’full_dbs.’ We extracted the PPI information from the STRING
database [45]. We filtered the PPI using medium confidence (≥0.4).
To ensure the fairness of the evaluation, we downloaded the
STRING database version 10.0 (http://version10.string-db.org/),
released on April 16, 2016, before the release time of the CAFA3
training set.

We also built a dataset termed UniGOA16 from the UniProt-
GOA [1] according to the standard CAFA protocol. We used the
same GO version and STRING database as the CAFA3 dataset.
We downloaded protein sequences from UniProt (https://www.
uniprot.org/downloads) [46], predicted protein structures from
AlphaFoldDB and protein functional annotations from GOA
(http://www.ebi.ac.uk/GOA). We extracted all experimental anno-
tations and removed unpredictable proteins and GO terms. We
used the proteins experimentally annotated before June 24, 2016
as the training set, the no-knowledge proteins experimentally
annotated from June 24, 2016 to June 24, 2019 as the validation set,
and the no-knowledge proteins experimentally annotated from
June 24, 2019 to January 1, 2022 as the test set. Finally, we used
MMseqs2 [47] to cluster all sequences in the dataset with 60%
sequence identity, removing sequences in the validation and test
sets that appear in the same cluster as the training set sequences.
Table 1 shows the statistics for both datasets.

PredGO
Overview
As illustrated in Figure 1, PredGO comprises five key steps: data
search and generation, protein sequence feature extraction, PPI
feature fusion, structure feature extraction, feature concatena-
tion and GO term prediction.

The data search and generation step serves two main purposes.
Firstly, it utilizes AlphaFold2 to generate 3D structural data for
proteins. Secondly, it searches the database to retrieve other
proteins that interact with the target protein. This step provides
crucial inputs for the subsequent feature extraction process.

The sequence feature extraction module, PPI feature fusion
module and structure feature extraction module are responsible
for extracting relevant features from the obtained data. These
modules play an essential role in capturing important character-
istics of proteins.

Finally, the feature concatenation and term prediction steps
integrate the extracted features to predict protein functions based
on GO terms.

Protein sequence feature extraction
The protein language model ESM-1b, pre-trained using massive
data, can effectively represent protein sequences as a vector. For
a protein sequence of length n, the output of this model is a
vector p ∈ R

n×1280. We average the first dimension of the vector
p = (a1, a2, ..., an)

T to get a new vector p′ ∈ R
1280 of fixed length,

and use this vector to represent the protein.

p′ =
∑n

i=1 ai

n
(1)

Assuming that there are m proteins that can be searched
from the PPI database that have interactions with the target
protein t, then there will be m + 1 protein sequences to be
input into the model. After the above processing, a vector
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Table 1. Summary of the CAFA3 and UniGOA16 datasets

Dataset Ontology Training Validation Test Terms

CAFA3 MFO 28 679 3228 1035 677
BPO 42 250 4748 2185 3992
CCO 39 893 4510 1117 551

UniGOA16 MFO 38 585 1315 1058 613
BPO 53 056 2068 1305 3531
CCO 49 605 2506 1956 534

Figure 1. An overview of PredGO. The input is a protein sequence. PredGO first searches for interacting proteins from the STRING database and predicts
the protein structure using AlphaFold2. Then the protein sequence features are extracted by ESM-1b, and the proteins with interactions are fused using
a PPI feature fusion module with protein fusion layers. The predicted structures are represented in the structure feature extraction module as graph
structures with scalar features and vector features and extracted by GVP-GNN. Finally, the sequence-based and PPI-based features are concatenated
with structure-based features to obtain the scores of GO terms by a multilayer perceptron and sigmoid function.

HE
t = (p′

0, p′
1, p′

2, ..., p′
m)T ∈ R

(m+1)×1280 will be obtained, where p′
0

represents the vector of the target protein, and the other is the
vector of the interacting proteins.

PPI feature fusion module
Referring to the Encoder module in the Transformer model [48],
we designed the PPI feature fusion module. This module consists
of multiple protein fusion layers that can be stacked and a resid-
ual connection layer.

The protein fusion layer consists of multi-headed attention
mechanisms and feed-forward neural networks. It treats pro-
teins with interactions as different words in a sentence, and
each protein is able to fuse useful information from other pro-
teins using the multi-headed attention mechanism. In the multi-
headed attention mechanism, the vectors of each protein will
be linearly transformed to generate multiple sets of vectors Q,
vectors K and vectors V, where Q and K are used to determine the
weights of protein fusions, and V is the value being fused. After
the multi-attention mechanism layer and feedforward neural net-
work, we use residual connection [49], droupout [50] and layer nor-
malization [51] to avoid the occurrence of gradient disappearance
and overfitting. To avoid interacting proteins losing their original
information when features are fused, we merge the unprocessed
vector with the processed vector using the residual connection
to obtain the final feature. This feature contains the sequence

information and PPI information of the protein. The multiheaded
attention mechanism and feed-forward neural network can be
calculated as follows:

MultiHead(HE
t ) = Concat(head1, ..., headh)Wo (2)

Where headi = Attention(HE
t WQ

i , HE
t WK

i , HE
t WV

i ).

Attention(Q, K, V) = Softmax(
QKT

√
dk

)V (3)

FFN(x) = ReLU(xW1 + b1)W2 + b2 (4)

where WQ
i ∈ R

dmodel×dk , WK
i ∈ R

dmodel×dk , WV
i ∈ R

dmodel×dv , Wo ∈ R
hdv×dmodel ,

W1 ∈ R
dmodel×4dmodel , W2 ∈ R

4dmodel×dmodel are the parameter matrices of
the projection. h is the number of heads, dk = dv = dmodel/h =
1280/h, b1 and b2 are the bias terms.

Taking the vector HE
t input to protein fusion layers as an

example, a new vector HE
t
′ = (p′′

0, p′′
1, p′′

2, ..., p′′
m)T ∈ R

(m+1)×1280

will be obtained after processing by the protein fusion layers.
After further processing by residual concatenation vsp =
LayerNorm(dropout(p′

0 + p′′
0)), a vector vsp ∈ R

1280 containing
sequence information and PPI information will be obtained to
represent the target protein.
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Structure feature extraction module
We use GVP–GNN [40] to extract the information contained in the
3D structure. GVP can be viewed as an extension of linear transfor-
mation that can compute both scalar and vectors. All nodes and
edges in this GNN are represented using tuples containing scalars
and vectors, enabling efficient representation of 3D structures
of large biomolecules, including protein, through geometric and
relational reasoning. GVP takes a pair of scalar features s ∈ R

n and
vector features V ∈ R

3×v as input and outputs new scalar features
s′ ∈ R

m and vector features V′ ∈ R
3×μ. The calculation process is

as follows:

s′ = σ((Concat(s, ‖Vh‖2)Wm + b) (5)

V′ = σ+(
∥∥VhWμ

∥∥
2) � VhWμ (6)

where Vh = VWh. Wh ∈ R
v×h, Wm ∈ R

(n+h)×m and Wμ ∈ R
h×μ are

the parameter matrices of the projection, b is the bias term, and
σ and σ+ are the activation functions.

GVP–GNN uses the message passing mechanism [52] to update
node embeddings with messages from adjacent nodes and edges.
Assume that h(j)

v and h(j→i)
e represent the embedding of node j

and edge ( j → i), the message passed from node j to node i can
be expressed as h(j→i)

m = g(Concat(h(j)
v , h(j→i)

e )), where g represents
a function with GVPs. The steps of graph propagation are as
follows:

h(i)
v = LayerNorm(h(i)

v + 1
k′ Droupout(

∑

j:ej→i∈ε

h(j→i)
m )) (7)

where k′ is the number of incoming messages. Between graph
propagation steps, the network uses GVP to update the node
embeddings including scalar features and vector features at all
nodes. The update process is as follows:

h(i)
v = LayerNorm(h(i)

v + Droupout(g(h(i)
v ))) (8)

In this module, we create a KNN-graph by connecting adjacent
nodes based on the Cα atom coordinates. Then, we construct
scalar and vector features for both nodes and edges.

For instance, consider the ith node, where the Ci atom repre-
sents the ith node’s C atom. The node’s scalar features comprise
the sine and cosine values of dihedral angles. These angles are
computed using Ni, Cαi, Ci, Ci−1 and Ni+1. On the other hand, the
vector feature of the node consists of forward and reverse unit
vectors in the direction of Cαi+1 − Cαi and Cαi−1 − Cαi, respectively.
We also estimate the unit vectors in the direction of Cβi − Cαi by
assuming tetrahedral geometry and normalization [40].

To encode edges, we utilize the Gaussian radial basis functions
and sine encoding with relative position information [48] for
the scalar feature. In contrast, the vector feature of the edge
represents the direction formed by the Cα atoms at its ends.

For a protein containing n residues, after being processed by the
structure feature extraction module, a vector vs ∈ R

n×ds will be
obtained, where the first dimension is the feature representation
of each residue,ds is the dimension of each residue node output
by GVP–GNN.

Feature concatenation and term prediction
We combine the output of the PPI feature fusion module and the
structure feature extraction module for GO term prediction. Since
the vector vs output from the structure feature extraction module

is at the residue level, it first needs to be converted into a protein-
level vector v′

s ∈ R
ds using the global mean pooling layer (GMP).

Then, v′
s is concatenated with the vector vsp from the PPI feature

extraction module to obtain the final representation vector vtarget

of the target protein. Next, the dimensionality of this embedding
is transformed into the dimensionality of the number of GO terms
using a multilayer perceptron (MLP). Finally, the predictions of the
model are transformed into confidence scores sp from 0 to 1 using
a sigmoid function. The calculation process is as follows:

sp = Sigmoid(MLP(Concat(vsp, GMP(vs)))) (9)

Training
We implemented the model in Pytorch and Pytorch Geometric
library [53, 54], and trained our model with binary cross-entropy
as loss function and AdamW optimizer [55] with a learning rate
of 1E-3. We set the dropout rate to 0.2 and use two layers of
GVP–GNN, two protein fusion layers and three-layer multilayer
perceptron, where the dimension of MLP layer 1 is the sum of
the output feature dimension of the structure feature extraction
module and the PPI feature fusion module, the dimension of layer
2 is four times that of layer 1, and the dimension of layer 3 is
the number of predicted GO terms. We trained six models on the
CAFA3 and UniGOA16 datasets for Molecular Function Ontology
(MFO), Biological Process Ontology (BPO) and Cellular Compo-
nent Ontology (CCO), respectively. During the training period, the
model with the highest Fmax value on the validation set is retained
as the final model. The CAFA3 dataset’s epoch and batch sizes
of training MFO, BPO and CCO models are 15, 20, 15 and 24, 24,
36. And on the UniGOA16 dataset, the epoch and batch sizes
of training MFO, BPO and CCO models are 10, 15, 10 and 36,
36, 24.

Competing methods
Naive approach
Due to the hierarchical structure of GO terms, more annotations
are generated in high-level GO terms. Predictions are obtained by
simply calculating the GO term frequencies in the training set
and assigning them across all proteins. This method, called ’naive’
in CAFA, is used as a baseline for comparing methods [43]. The
calculation method is as follows:

SN(pi, Gj) = Nj

Ntotal
(10)

where pi is the target protein, Gj is the GO term to be predicted, Nj

is the number of occurrences of Gj in the training set and Ntotal is
the number of proteins in the training set.

DiamondBLAST and DiamondScore
Proteins with similar sequence tend to have similar functions.
A basic approach to function prediction is to use BLAST to find
proteins with similar sequence in the training set, assigning func-
tions of similar proteins to target proteins [18]. We use Diamond
to find similar sequence in the training set, and get a set of
bitscores about query sequence and similar sequence [56]. We use
the maximum normalized bitscore from similar sequence as the
predicted value of the target protein pi:

SDB(pi, Gj) = maxs∈S(pi) T(Gj, ps) ∗ bitscore(pi, s)

maxs∈S(pi) bitscore(pi, s)
(11)
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where S(pi) represents a set of proteins with similar sequence to
protein pi filtered by e-value of 0. 001, T(Gj, ps) returns 1 if Gj is a
true annotation of protein ps and 0 otherwise. The bitscore is the
similarity score of the protein pi and s calculated by Diamond.

DiamondBLAST considers only the most similar sequences,
while DiamondScore uses all the similar sequences returned by
Diamond to predict the function. The calculation method is as
follows:

SDS(pi, Gj) =
∑

s∈S(pi)
T(Gj, ps) ∗ bitscore(pi, s)

∑
s∈S(pi)

bitscore(pi, s)
(12)

DeepGOCNN and DeepGOPlus
DeepGOCNN and DeepGOPlus are well-known deep learning
methods that predict only from sequence. DeepGOCNN uses a
1D CNN to scan protein sequences and uses a flat classification
layer as a classifier to predict protein functions [23]. It can
predict protein functions efficiently and in a wide range.
DeepGOPlus combines the output of DeepGOCNN with the output
of DiamondScore to further improve the prediction performance.
We downloaded the source code of these methods, and according
to the description in the paper, we selected different sizes of
CNN filters for training on the training set, and selected the
model with the best performance on the validation set as
the final result, and finally selected the filters of sizes {8, 16,
24,..., 128}. For DeepGOPlus, we selected the alpha parameter
that performed best on the validation set for combining
DiamondScore.

LR-ESM
Large-scale protein language models have achieved surprising
performance in protein-related fields. Esm-1b is a state-of-the-
art protein language model that can be used to predict structure,
function and other protein properties directly from individual
sequence [39]. We convert the residue-level embedding of the
model output to protein-level embedding by averaging the fea-
tures at each residue level, and then use logistic regression (LR) to
predict GO terms.

Evaluation metrics
We used three evaluation metrics to measure the performance of
the method: Fmax, Smin and area under the precision–recall curve
(AUPR). Fmax and Smin are used as the main evaluation metrics in
CAFA [41, 43]. AUPR is widely used in the evaluation of multi-label
classification tasks including protein function prediction [57, 58].
Fmax is a protein-centeric evaluation metric, which is defined as
follows:

Fmax = max
t

2 · AvgPr(t) · AvgRc(t)
AvgPr(t) + AvgRc(t)

(13)

AvgPr(t) = 1
k(t)

·
k(t)∑

i=1

pri(t) (14)

AvgRc(t) = 1
n

·
n∑

i=1

rci(t) (15)

pri(t) =
∑

j T(Gj, pi) · 1(S(pi, Gj) ≥ t)
∑

j 1(S(pi, Gj) ≥ t)
(16)

rci(t) =
∑

j T(Gj, pi) · 1(S(pi, Gj) ≥ t)
∑

j T(Gj, pi)
(17)

Table 2. Statistics on the number of sub-datasets used in the
experiment

Sub-dataset MFO BPO CCO

UniGOA16 1058 1305 1956
Proteins with PPI 953 1081 1740
Proteins without PPI 104 224 216
Human proteins 145 119 163
Mouse proteins 64 124 109
Fission yeast proteins 11 25 20

where t is a prediction threshold with a step size of 0.01 between
0 and 1. k(t) is the number of proteins with at least one GO term
score not less than t. n is the total number of proteins. 1(·) is 1 if
the input is true, otherwise 0.

Smin is a term-centric evaluation metric that calculates the
semantic distance between true annotations and predicted anno-
tations. It is calculated as follows:

Smin = min
t

√
ru(t)2 + mi(t)2 (18)

ru(t) = 1
n

n∑

i=1

∑

j

IC(Gj) · T(Gj, pi) · 1(S(pi, Gj) < t) (19)

mi(t) = 1
n

n∑

i=1

∑

j

IC(Gj) · (1 − T(Gj, pi)) · 1(S(pi, Gj) ≥ t) (20)

IC(Gj) = −log2Pr(Gj|Parent(Gj)) (21)

where ru(t) is called remaining uncertainty and mi(t) is called
misinformation. IC(Gj) is the information content of term Gj.
The function Pr represents the conditional probability. Parent(Gj)

denotes the parent node of Gj in the GO hierarchy.

RESULTS
To evaluate the performance of our model, we conducted several
different experiments. Among them, the ’Performance compar-
ison of different feature combinations’ was carried out using
the UniGOA16 dataset. The datasets for the experiments titled
’Performance on proteins with and without PPI information’ and
’Performance comparison on different species’ were obtained by
segmenting the UniGOA16 dataset. The specific statistics are
shown in Table 2.

Performance on the test data set
As shown in Table 3, PredGO performs best in all three ontology
domains for both datasets. On the CAFA3 dataset, PredGO has
Fmax of 0.674, 0.585, 0.699, Smin of 6.194, 18.067, 6.717 and AUPR
of 0.642, 0.512, 0.678, respectively. On the UniGOA16 dataset, the
Fmax of PredGO was 0.687, 0.405, 0.694, the Smin was 3.719, 17.947,
5.442, and the AUPR was 0.603, 0.312, 0.734, respectively. The
differences in performance between the different ontologies on
the two datasets are caused by the structure and complexity of
the ontologies and the available annotations. We can draw the
following conclusions by comparing the results in the Table:

(i) On both datasets, compared with LR-ESM, PredGO improved
Fmax by 4.0%, 5.2% and 2.3%, decreased Smin by 6.1%, 3.9% and
4.0%, and improved AUPR by 3.5%, 9.7% and 2.7% on average
for MFO, BPO and CCO. It can be seen that combining more
information can improve the model performance compared
to just using the protein language model.
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Table 3. Performance comparison on the CAFA3 and UniGOA16 datasets

Method Fmax Smin AUPR

MFO BPO CCO MFO BPO CCO MFO BPO CCO

CAFA3
Naive 0.444 0.406 0.613 8.989 21.859 7.872 0.328 0.285 0.572
DiamondBLAST 0.549 0.483 0.600 9.186 29.500 9.108 0.302 0.217 0.354
DiamondScore 0.610 0.529 0.436 6.723 19.464 7.354 0.634 0.322 0.473
DeepGOCNN 0.499 0.401 0.645 8.380 21.212 7.540 0.436 0.321 0.570
DeepGOPlus 0.599 0.520 0.664 7.605 20.117 7.345 0.507 0.368 0.587
LR-ESM 0.649 0.556 0.682 6.483 19.081 6.951 0.631 0.455 0.670
PredGO 0.674 0.585 0.699 6.194 18.067 6.717 0.642 0.512 0.678

UniGOA16
Naive 0.452 0.304 0.638 5.335 19.946 6.674 0.288 0.184 0.595
DiamondBLAST 0.507 0.318 0.475 5.903 26.360 7.506 0.273 0.090 0.269
DiamondScore 0.556 0.360 0.510 4.054 18.620 6.629 0.400 0.146 0.349
DeepGOCNN 0.528 0.329 0.646 5.185 19.735 6.553 0.362 0.193 0.603
DeepGOPlus 0.576 0.378 0.637 4.597 19.352 6.485 0.443 0.192 0.589
LR-ESM 0.660 0.385 0.680 4.031 18.400 5.706 0.572 0.292 0.705
PredGO 0.687 0.405 0.694 3.719 17.947 5.442 0.603 0.312 0.734

Note: Best performance in bold.

Figure 2. Comparison of PredGO with CAFA3 top 10 methods.

(ii) DeepGOCNN uses only sequence information from the train-
ing set. PredGO and LR-ESM use protein language models
pre-trained with a large amount of protein sequence data.
From the average results of both datasets, PredGO improved
Fmax by about 32.6%, 34.5% and 7.90%, decreased Smin by
27.2%, 11.9% and 13.9%, and improved AUPR by 56.9%, 60.6%
and 20.3% on MFO, BPO and CCO. From the experimental
results, it is clear that pre-trained language models with a
large number of sequences can effectively improve model
performance.

(iii) The traditional methods based on sequence similarity,
DiamondBLAST, and DiamondScore, outperformed the naive
method in MFO and BPO but performed poorly in CCO.
DeepGOPlus combining DeepGOCNN and DiamondScore
improved the Fmax of MFO and BPO by more than 9.1%
on both datasets but decreased the Fmax of CCO by 1.3%
on the UniGOA16 dataset. This may be related to the
fact that sequence homology carries more information
related to molecular functions and biological processes and
less information related to cellular components. PredGO
improves by at least about 3.6%, and at most, can improve
about 61.7% in each metric compared to the above methods.
It shows that deep learning models are able to learn
deeper information than sequence homology from a large

number of sequences or other features for functional
prediction.

Comparison with CAFA3 methods
We utilized the official CAFA evaluation tool to assess the per-
formance of our model, trained on the CAFA3 dataset [41, 43]. It
is important to note that the number of proteins in our training
set is smaller than the number of proteins in the provided CAFA3
training dataset (∼88%). We achieved this reduction by exclud-
ing proteins with lengths exceeding 1000 and those containing
’fuzzy’ amino acids, for which structure and sequence informa-
tion extraction was challenging. To ensure comprehensive predic-
tions on the benchmark data, we discarded the parts that required
structural information in cases where structure prediction was
not feasible.

The evaluation results are displayed in Figure 2. Notably, our
model, PredGO, attained Fmax scores of 0.56, 0.38 and 0.65 in the
BPO, MFO and CCO evaluations, respectively. It ranked first in
the CCO evaluation, second in the MFO evaluation and third
in the BPO evaluation. These rankings exhibit slight differences
compared to our internal evaluation results. These variations
can be attributed to the fact that our model is primarily trained
on proteins with lengths below 1000. Consequently, when the
length exceeds this threshold, the predicted structure may be
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Table 4. Performance on proteins with and without PPI information

Method Fmax Smin AUPR

MFO BPO CCO MFO BPO CCO MFO BPO CCO

Proteins with PPI information
Naive 0.457 0.308 0.653 5.227 19.792 6.664 0.295 0.182 0.610
DiamondBLAST 0.509 0.321 0.482 5.924 26.609 7.570 0.270 0.092 0.277
DiamondScore 0.556 0.366 0.521 4.033 18.374 6.654 0.401 0.153 0.363
DeepGOCNN 0.530 0.329 0.659 5.115 19.555 6.524 0.364 0.193 0.626
DeepGOPlus 0.577 0.383 0.644 4.542 19.225 6.486 0.440 0.195 0.609
LR-ESM 0.658 0.382 0.691 3.980 18.285 5.692 0.573 0.285 0.717
PredGO 0.686 0.407 0.705 3.664 17.772 5.412 0.603 0.306 0.746

Proteins without PPI information
Naive 0.471 0.307 0.552 6.024 20.686 6.757 0.228 0.199 0.482
DiamondBLAST 0.526 0.305 0.417 5.717 25.311 6.983 0.295 0.082 0.204
DiamondScore 0.586 0.329 0.421 4.219 19.754 6.383 0.387 0.116 0.243
DeepGOCNN 0.532 0.331 0.542 5.732 20.594 6.760 0.353 0.192 0.456
DeepGOPlus 0.586 0.367 0.577 4.945 19.970 6.483 0.468 0.197 0.450
LR-ESM 0.689 0.401 0.590 4.392 18.960 5.789 0.574 0.331 0.604
PredGO 0.704 0.399 0.602 4.207 18.791 5.689 0.607 0.341 0.627

Note: Best performance in bold.

significantly affected by sequence truncation, leading to the loss
of critical information and negatively impacting the model’s per-
formance.

Moreover, it is noteworthy that the top-ranked method in the
MFO and BPO evaluations is Zhu lab’s method, which integrates
multiple classifier components using an ensemble learning
approach, while the second-ranked method in the BPO evaluation
is INGA-Tosatto, which employs a more diverse set of features
[21, 59]. In contrast, PredGO is a model that can be integrated
as a component in Zhu lab’s method and does not utilize
’dark’ proteomic information. This distinction may contribute
to PredGO not being the best-performing model in the MFO and
BPO evaluations.

Performance on proteins with and without PPI
information
PredGO searches the database for PPI information, but not all
proteins yield results, especially some newly discovered proteins
for which there is rather little relevant information. To measure
the performance of the model when only sequence information
is available, we divided the test set of UniGOA16 according to
whether PPI information can be searched from the database.
Performance of PredGO versus competing methods is shown in
Table 4.

As can be seen from the table, PredGO comprehensively outper-
forms competing methods including naive and sequence-based
methods in the prediction of MFO and CCO. In each metric, PredGO
improved by a minimum of 1.7% and a maximum of 7.9% over the
second place.

When we compare the BPO performance of the models, it can
be seen that the performance of PredGO is better than that of
competing methods for proteins with PPI information. And for
proteins without PPI information, PredGO leads the second place
LR-ESM in Smin and AUPR metrics by a minimum of 1.7% and
a maximum of 5.7%. Only the protein-centric metric Fmax trails
the second place by 0.002(∼0.5%). Combining the three met-
rics, PredGO’s model performance is better than the competing
methods except LR-ESM and not weaker than LR-ESM. Overall,
the additional structure information that PredGO provides when
making predictions can bring an improvement to the MFO and

CCO performance of the model. Even without the PPI information,
it does not affect the performance of the BPO too much. This
is because many biological processes in proteins are performed
by multiple proteins together, and the predicted 3D structural
information is of limited help in predicting biological processes.

Performance comparison on different species
We divided the test set in UniGOA16 according to several different
species. Table 5 shows the performance of PredGO versus compet-
ing methods on human, mouse and fission yeast. There is some
disparity in performance across species in the results, probably
because mouse has a smaller number of annotations compared
to human and yeast is a bit simpler in function. PredGO has the
best performance in 25 out of the 27 results. The BPO performance
of PredGO is generally better than that of other methods, which
may be attributed to the use of a fusion module to integrate PPI
information.

Among the many metrics, PredGO outperformed all competing
methods in predicting human datasets, with a minimum improve-
ment of 1.1% and a maximum improvement of 8.8% relative to
the second place. Only the Smin metric for predicting mouse MFO
and the Fmax metric for predicting fission yeast CCO decreased by
about 2% compared to LR-ESM but were much better than the
other competing methods.

Case study
We use protein Q47319 as an example to illustrate the difference
in performance between PredGO and other competing methods.
Q47319 is a tRNA-uridine aminocarboxypropyltransferase that
catalyzes the formation of 3-(3-amino-3-carboxypropyl)uridine
(acp3U) at position 47 of tRNAs, and acp3U47 confers thermal
stability on tRNA [60–62]. Figure 3 shows the DAG plot of the BPO
terms of this protein and the method to correctly predict the
corresponding GO terms, the Table 6 shows the specific prediction
results of each method as well as the F1 scores.

As can be seen, the Q47319 protein has a total of 24 experimen-
tally annotated BPO terms. 20 terms were predicted by PredGO, of
which 19 terms were correct and only five terms were not pre-
dicted. Compared to other competing methods, PredGO predicted
a much higher percentage of terms correctly and significantly
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Table 5. Performance on different species

Method Fmax Smin AUPR

MFO BPO CCO MFO BPO CCO MFO BPO CCO

HUMAN (9606)
Naive 0.475 0.309 0.623 5.244 27.744 6.934 0.330 0.235 0.612
DiamondBLAST 0.493 0.303 0.473 6.158 30.145 8.118 0.239 0.083 0.239
DiamondScore 0.547 0.349 0.500 4.492 26.173 7.118 0.364 0.130 0.309
DeepGOCNN 0.589 0.367 0.645 5.137 26.728 6.795 0.438 0.265 0.608
DeepGOPlus 0.593 0.400 0.631 4.684 26.809 6.896 0.479 0.231 0.577
LR-ESM 0.720 0.407 0.680 3.790 24.892 6.158 0.660 0.320 0.697
PredGO 0.733 0.435 0.686 3.722 24.620 5.990 0.672 0.341 0.715

MOUSE (10 090)
Naive 0.541 0.307 0.611 6.042 33.266 9.87 0.254 0.238 0.557
DiamondBLAST 0.421 0.311 0.518 5.502 33.686 10.409 0.208 0.100 0.267
DiamondScore 0.440 0.325 0.544 4.842 30.651 9.321 0.304 0.160 0.336
DeepGOCNN 0.595 0.340 0.626 5.950 32.473 9.777 0.303 0.240 0.553
DeepGOPlus 0.647 0.387 0.631 5.599 31.693 9.393 0.389 0.237 0.559
LR-ESM 0.673 0.384 0.634 4.584 30.157 9.424 0.516 0.339 0.612
PredGO 0.697 0.403 0.646 4.679 29.653 9.194 0.516 0.341 0.633

FISSION YEAST (284 812)
Naive 0.525 0.324 0.728 7.536 22.706 9.493 0.272 0.240 0.657
DiamondBLAST 0.593 0.464 0.617 6.587 24.762 11.955 0.345 0.257 0.324
DiamondScore 0.626 0.459 0.657 4.012 18.392 9.569 0.489 0.290 0.402
DeepGOCNN 0.502 0.341 0.726 7.647 23.189 9.556 0.283 0.196 0.597
DeepGOPlus 0.625 0.499 0.717 6.905 20.017 8.460 0.499 0.345 0.629
LR-ESM 0.772 0.503 0.800 5.231 18.339 8.922 0.599 0.408 0.731
PredGO 0.789 0.521 0.782 4.731 18.183 8.771 0.642 0.436 0.766

Note: Best performance in bold.

Figure 3. DAG diagram of correct predicted BPO terms of Q47319 using different methods.

reduced the number of incorrectly predicted terms. In addition to
this, PredGO predicted more specific functions and successfully
predicted that the protein has a tRNA processing function. The

correct prediction results for DeepGOCNN and DeepGOPlus were
essentially the same as the frequency-based naive method. The
same protein language model-based method LR-ESM predicted
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Table 6. Predicted GO terms (GO terms in UniGOA16 dataset) of Q47319 in BPO by PredGO and competing methods

Method Results F1 scores

Naive GO:0044260, GO:0008152, GO:0043170, GO:0044763, GO:0071704, GO:0044237, GO:0050794, GO:0050789,
GO:0065007, GO:0044699, GO:0050896, GO:0009987, GO:0044238

0.378

DiamondBLAST – 0.000
DiamondScore – 0.000
DeepGOCNN GO:0050794∗, GO:0044699, GO:0044763, GO:0050789,GO:0043170, GO:0050896, GO:0065007, GO:0044267,

GO:0071704, GO:0044238, GO:0019222∗, GO:0008152, GO:0009987, GO:0019538∗, GO:0044237,
GO:0044260

0.350

DeepGOPlus GO:0044699, GO:0050789, GO:0065007, GO:0071704,GO:0008152, GO:0009987, GO:0044237 0.258
LR-ESM GO:0008152, GO:0044763, GO:0044699, GO:0044710∗,GO:0044237, GO:0009987, GO:0034641∗,

GO:0006807∗, GO:0043170, GO:0044238, GO:0044260, GO:0071704
0.5

PredGO GO:0043412∗, GO:0046483∗, GO:0044699, GO:0009451∗,GO:0044238, 0.864
GO:0008152, GO:0044260, GO:0006396∗,GO:0034470∗, GO:0034641∗,
GO:0071704, GO:0006139∗, GO:0006725∗, GO:0090304∗, GO:1901360∗,
GO:0043170,GO:0044237, GO:0006807∗,GO:0009987, GO:0008033∗

Experimental
annotation

GO:0043412∗, GO:0046483∗, GO:0009451∗, GO:0044238, GO:0008152, GO:0044260,

GO:0006396∗, GO:0034470∗, GO:0034641∗, GO:0071704, GO:0006139∗, GO:0006725∗,
GO:0090304∗, GO:0006399∗, GO:1901360∗, GO:0010467∗, GO:0043170, GO:0044237,
GO:0016070∗, GO:0006807∗, GO:0009987, GO:0006400∗, GO:0008033∗, GO:0034660∗

Note: The correctly predicted GO terms are in bold. Terms that do not appear in naive are added with ∗.

Table 7. Performance comparison of different feature combinations

Features Fmax Smin AUPR

MFO BPO CCO MFO BPO CCO MFO BPO CCO

pre-trained embedding 0.651 0.379 0.679 4.123 18.708 5.609 0.559 0.276 0.706
pre-trained embedding &&
predicted structure

0.672 0.381 0.686 3.879 18.515 5.573 0.596 0.278 0.722

pre-trained embedding &&
PPI

0.667 0.400 0.683 4.018 18.217 5.665 0.576 0.307 0.710

pre-trained embedding &&
predicted structure && PPI

0.687 0.405 0.694 3.719 17.947 5.442 0.603 0.312 0.734

Note: Best performance in bold.

less specific GO terms. DiamondBLAST and DiamondScore based
on sequence similarity could not predict the function of Q47319
protein because no homologous protein of Q47319 protein could
be found in the training set.

Ablation study
To investigate the effect of the predicted structure and PPI infor-
mation on the prediction performance of PredGO, we designed
an ablation study. We compared four models: using only pre-
trained embedding, using pre-trained embedding and predicted
structure, using pre-trained embedding and PPI information, and
the model PredGO using all information. These models all use
MLP to transform protein embedding into GO terms embedding.
The difference lies in that they either omit the structure feature
extraction module, or the PPI feature fusion module, or both. The
performance of these models is shown in Table 7.

As can be seen from the table, the model using pre-trained
embedding and predicted structure has more significant improve-
ments in MFO and CCO compared to the model using only pre-
trained embedding, with a maximum improvement of about 6.6%
in metrics, and insignificant improvements in performance in
BPO. Compared to the model using only pre-trained embeddings,
the model using pre-trained embeddings and PPI information
showed more significant improvements in BPO, with gains of over
11% in AUPR, but much smaller improvements in CCO. The model
combining the pre-trained embedding, predicted structure, and

PPI information has a more comprehensive prediction perfor-
mance, outperforming the other three models in terms of MFO,
PPO and CCO. This is because molecular function and cellular
component are more related to protein structure, while biological
processes are mostly generated by multiple protein interactions,
which are more associated with PPI. The protein interaction infor-
mation contained in the predicted structure is very limited, which
leads to almost no improvement in BP performance by adding pre-
dicted structure. Therefore, we have incorporated PPI information
to compensate for this.

Large-scale function prediction
We applied PredGO to predict GO functions of all 205 788 human
sequences in UniprotKB. We used only sequence and PPI infor-
mation for those proteins whose structures could not be pre-
dicted by AlphaFold. We extracted these proteins’ experimental
and non-experimental annotations from the GOA database by
referring to the CAFA rules and compared them with the pre-
diction results of PredGO. As shown in Figure 4A, only 12.21%
of protein sequences have experimental annotations in the GOA
database, and 62.40% of the sequences have non-experimental
annotations. As for PredGO, ∼100% entries are annotated with
a confidence score greater than 0.5 (PredGO_All), and ∼90% of
which are based on predicted structure (PredGO_Structure). This
shows that PredGO can achieve extremely high coverage.

In addition, we visualized the number of annotations for each
protein. Figure 4B compares the number of non-experimental
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Figure 4. Protein function prediction results for human. (A) The percentage of human proteins in UniprotKB with annotated functions. (B) The number
of functions per protein predicted by PredGO (y-axis) compared to the number of electronic annotations per protein in GOA (x-axis).

Figure 5. PredGO web server. (A) Enter query protein sequences; (B) prediction results; (C) database search, statistics and download; (D) visualization of
GO annotations.

annotations in the GOA database with the number predicted by
PredGO. As seen from the figure, PredGO can predict more GO
terms for most proteins, which means that PredGO can explore
more functions.

WEB SERVER
We built a flexible and interactive web server that provides predic-
tion and browsing services. Users can submit protein sequences
or structures to the PredGO web server for function prediction
(Figure 5A). The prediction results are presented in a table by
default and can be downloaded as a text file (Figure 5B). It is
also possible to browse the functions of all human proteins in
UniprotKB predicted by PredGO (Figure 5C) and batch download
all the annotations. In addition, users can interactively view the
3D structure of proteins and GO annotations in a tree (Figure 5D).

CONCLUSION
We designed a method called PredGO for protein function
prediction, a meaningful but complex multi-label classification
problem. PredGO makes full use of the massive amount of
sequence information through a pre-trained protein language

model, incorporates information contained in protein structure
predicted with atomic precision by AlphaFold2, and fuses
interacting proteins based on attention mechanisms. It is clear
from the experimental results that our method enables high-
performance protein function prediction. Even in the case of only
sequences, high-performance prediction of MFO and CCO can be
achieved without degrading the performance of BPO.

Our method faces certain challenges in predicting the funci-
ton of long protein sequences. In the future, alternative struc-
ture prediction methods can be considered to address this issue.
Furthermore, integrating more diverse and heterogeneous data
sources, along with pre-training protein structure models using
experimentally determined and predicted protein structures, has
the potential to improve the predictive performance of the model.

Key Points

• We propose a protein function prediction method using
heterogeneous features, including sequence, predicted
protein structure and protein–protein interaction rela-
tionships, that outperforms other state-of-the-art meth-
ods in terms of coverage and accuracy.
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• A graph neural network combined with a geometric
vector perceptron is applied to extract protein structure
information.

• Proteins with interactions are viewed as different words
in a sentence, and sequence information and interaction
information are fused by a PPI feature fusion module.
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