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Abstract
Automated protein function prediction is a crucial and widely studied problem in bioinformatics. Computationally, protein function is a multilabel 
classification problem where only positive samples are defined and there is a large number of unlabeled annotations. Most existing methods 
rely on the assumption that the unlabeled set of protein function annotations are negatives, inducing the false negative issue, where potential 
positive samples are trained as negatives. We introduce a novel approach named PU-GO, wherein we address function prediction as a positive- 
unlabeled ranking problem. We apply empirical risk minimization, i.e. we minimize the classification risk of a classifier where class priors are 
obtained from the Gene Ontology hierarchical structure. We show that our approach is more robust than other state-of-the-art methods on 
similarity-based and time-based benchmark datasets.
Availability and implementation: Data and code are available at https://github.com/bio-ontology-research-group/PU-GO.

1 Introduction
Deciphering the functions of proteins is essential for unraveling 
the complexities of cellular pathways (Eisenberg et al. 2000), 
identifying potential drug targets (Schenone et al. 2013), and 
understanding diseases (Liu et al. 2015). In bioinformatics, pro-
tein function prediction emerges as a formidable challenge. 
With the rapid growth of biological data, including genomic 
and proteomic information, there is a pressing need for effective 
computational methods to predict protein functions accurately. 
Currently, the Uniprot Knowledge Base (UniprotKB) 
(Consortium 2022) contains more than 250 million protein 
sequences and only few of them have experimental functional 
annotations. The Gene Ontology (GO) (Ashburner et al. 2000) 
provides structured information about protein functions and 
describes more than 50 000 functions in three subontologies: 
Molecular Function Ontology (MFO), Cellular Component 
Ontology (CCO), and Biological Process Ontology (BPO).

Despite substantial progress in bioinformatics, the func-
tional annotations of proteins remain incomplete. A signifi-
cant portion of the proteome lacks detailed functional 
characterization, hindering our comprehensive understanding 
of cellular processes. This incompleteness stems from the lim-
itations of experimental techniques and the resource- 
intensive nature of functional assays. As a result, computa-
tional methods play a pivotal role in filling these knowledge 
gaps and providing predictions for unannotated or poorly 
characterized proteins.

In the pursuit of accurate protein function prediction, 
many existing methods adopt a binary classification learning 
framework, optimizing classifiers using unlabeled protein- 
function annotations as negative samples. This traditional ap-
proach, while effective in certain contexts, overlooks the 
nuances inherent in the protein function prediction land-
scape. Unlabeled samples might hide positive protein func-
tion annotations yet to be discovered.

UniprotKB regularly introduces new annotations for pro-
teins; for example, from UniprotKB version 2023_03 to 
UniprotKB version 2024_01, there were 2236 proteins that 
gained 4236 functional annotations. Protein functional anno-
tations can be propagated using the true-path rule 
(Ashburner et al. 2000), which results in 31 149 propagated 
annotations that are added to UniprotKB from version 
2023_03 to version 2024_01. The oversimplified binary ap-
proach may ignore the uncertainty of unlabeled annotations 
and erroneously guide the classifiers to predict false 
negatives.

Positive unlabeled (PU) learning represents a paradigm 
shift in addressing these challenges. PU learning acknowl-
edges the inherent uncertainty in the functional status of 
unlabeled protein function annotations and recognizes them 
as potential positives. In the PU learning realm, there are vari-
ous strategies handle unlabeled data (Bekker and Davis 2020) 
such as negative extraction from the unlabeled set (Fung et al. 
2006), empirical risk minimization (du Plessis et al. 2014) or 
multiclassifier aggregation (Mordelet and Vert 2014).
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PU learning has been applied to different bioinformatics tasks 
(Li et al. 2021) such as disease gene predictions (Yang et al. 
2012, Vasighizaker and Jalili 2018, Stolfi et al. 2023), drug–tar-
get interaction prediction (Lan et al. 2016, Peng et al. 2017) as 
well as protein function prediction (Youngs et al. 2013, Song 
et al. 2021). There are two main strategies in which PU learning 
has been applied: negative extraction from the unlabeled data 
and probabilistic adaptation of a classifier (Li et al. 2021). 
Negative-extraction methods are a two-step process where a 
subset of reliable negatives are extracted from the unlabeled set 
and then a classifier is optimized with a conventional learning 
algorithm. Although this approach can show effectiveness 
across different bioinformatics tasks, the strategy of pre- 
selecting negatives can exclude important samples, producing 
inaccurate or biased classifiers.

Methods that adapt a classifier do not need to estimate a 
negative sample set a priori. Instead, the classifier is opti-
mized with the whole dataset (positive and unlabeled) and es-
timation of positives/negatives from the unlabeled set are 
performed afterwards. These methods rely on the probabilis-
tic formulation defined by (Elkan and Noto 2008) for 
PU learning.

In the context of function prediction, most methods follow 
the negative samples extraction strategy (Zhao et al. 2008, 
Chen et al. 2010, Youngs et al. 2013), meaning that training is 
done with a fraction of the given data. Conversely, methods 
that learn a classifier with PU data directly (Song et al. 2021) 
rely on optimization frameworks such as Majorization 
Minimization (Lange et al. 2000) or Support Vector Machines 
(Cortes and Vapnik 1995). However, in recent years, protein 
function prediction has been extensively addressed with 
emerging deep learning techniques(Kulmanov et al. 2017, Cao 
and Shen 2021, Wang et al. 2023, Yuan et al. 2023).

We present PU-GO a method for predicting protein func-
tions by optimizing a classifier under PU learning framework. 
Instead of pre-selecting negatives samples, PU-GO uses the 
classifier adaptation approach and minimizes classifications 
risks of positive and unlabeled samples (du Plessis et al. 
2014). Our framework uses the ESM2 15B protein language 
model (Lin et al. 2023) to obtain high-dimensional feature 
vectors for protein sequences, which are used to optimize a 
multilayer perceptron (MLP) classifier. Instead of enforcing 
the classifier to strictly discriminate between positive and 
negative samples, we use a ranking-based loss (Tang et al. 
2022) to guide the classifier to rank positive samples higher 
than unlabeled ones. Furthermore, since protein function is a 
multilabel classification problem, we rely on the GO hierar-
chical structure to construct class priors for each GO function 
(Fig. 1).

In this way, PU-GO aims to optimize a classifier in a more 
nuanced and accurate way for protein function prediction. 
This approach holds promise in enhancing the sensitivity and 
specificity of predictions, thereby contributing to a more com-
prehensive and reliable understanding of protein functions in 
complex biological systems. We show that PU-GO can outper-
form state-of-the-art protein function prediction methods in a 
similarity-based and time-based benchmark datasets.

2 Materials and methods
2.1 Positive–negative classification
Let x 2 Rd and y 2 f−1;þ1g be random variables with prob-
ability density function pðx; yÞ (du Plessis et al. 2014). Let g :

Rd ! R be an arbitrary decision function and l : R! Rþ a 
loss function. The binary classifier g minimizes the risk: 

RðgÞ ¼ Eðx;yÞ�pðx;yÞ½lðy � gðxÞÞ�

where E is the expected value over pðx; yÞ
In standard binary classification, positive P and negative N 

datasets are given with distributions pPðxÞ ¼ pðxjy ¼ þ1Þ
and pNðxÞ ¼ pðxjy ¼ −1Þ (du Plessis et al. 2014). Given π ¼
pðy ¼ 1Þ as the prior for P, the risk R(g) can be expressed as: 

RðgÞ ¼ πRþP ðgÞþð1−πÞR−
NðgÞ

¼ πEx�pPðxÞ½lðgðxÞÞ�þð1−πÞEx�pNðxÞ½lð−gðxÞÞ�

Assuming data from P and N are sampled independently, 
R(g) can be approximated by: 

R̂ðgÞ ¼ πR̂
þ

P ðgÞþð1−πÞR̂
−
NðgÞ (1) 

where R̂
þ

P ¼
−1
jPj

P
x2P lðgðxÞÞ and R̂

−
N ¼

−1
jNj

P
x2N lð−gðxÞÞ

2.2 PU classification
In PU classification, we assume the set N is empty and we are 
given an unlabeled dataset U with marginal probability den-
sity function pðxÞ. In this case, the risk R̂N cannot be com-
puted. However, we can express R̂N using the following 
equality (Plessis et al. 2015): 

ð1−πÞR−
NðgÞ ¼ R−

UðgÞ−πR−
PðgÞ

¼ Ex�pðxÞ½lð−gðxÞÞ�−πEx�pPðxÞ½lð−gðxÞÞ�

and Equation (1) becomes: 

R̂ðgÞ ¼ πR̂
þ

P ðgÞ−πR̂
−
PðgÞþR̂

−
UðgÞ (2) 

where R̂
−
P ¼

−1
jPj

P
x2P lð−gðxÞÞ and R̂

−
U ¼

−1
jUj

P
x2U lð−gðxÞÞ. 

To avoid cases where R(g) can become negative, a non- 
negative estimator (Kiryo et al. 2017) is formulated 
as follows: 

R̂ðgÞ ¼ πR̂
þ

P ðgÞþmaxf0; R̂
−
UðgÞ−πR̂

−
PðgÞþβg (3) 

where 0≤ β≤ π. Since β≤ π, we construct it using a margin 
factor hyperparameter γ, such that β ¼ γπ, with 0≤ γ≤1.

2.3 PU learning for function prediction
In the context of function prediction, the feature space for x 
and functions l and g must be defined. We use the ESM2 15B 
(Lin et al. 2023) model to generate vectors for protein 
sequences that are consequently used as feature space x. The 
ESM2 15B model generates vectors of size 5120 that we refer 
to as ESM2 vectors.

We implement the classifier g as a multilayer perceptron 
(MLP) that takes ESM2 vectors as inputs and returns values 
in Rk, where k is the number of classes. This classifier has 
shown to be effective in previous works (Kulmanov and 
Hoehndorf 2022). The MLP network contains two layers of 
MLP blocks where the output of the second MLP block has 
residual connection to the first block. This representation is 
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passed to the final classification. One MLP block performs 
the following operations: 

MLPBlockðxÞ ¼ DropOutðBatchNormðReLUðWxþbÞÞÞ
(4) 

The input vector x of length 5120 represents ESM2 embed-
ding and is reduced to 2048 by the first MLPBLock: 

h ¼MLPBlockðxÞ (5) 

This representation is passed to the second MLPBlock with 
the input and output size of 2048 and added to itself using re-
sidual connection: 

h ¼ hþMLPBlockðhÞ (6) 

Finally, we pass this vector to a classification layer The 
output size of this layer is the same as the number of classes 
in each subontology: 

y ¼Whþ b (7) 

For PU learning, the loss function l(x) is: 

lðyÞ ¼ lnðσðyÞÞ (8) 

where σðxÞ ¼ 1=ð1þ e−xÞ is the sigmoid function.

2.4 Multilabel PU classification
Equation (3) computes a binary classification risk. Function 
prediction of proteins is a multilabel classification problem 
(i.e. each protein instance can be assigned multiple functions). 
Thus, given k GO functions, the classification risk must be 
minimized for all the GO functions. Therefore, the classifier g 
must minimize the following risk: 

R̂GOðgÞ ¼
Xn

i¼1

πiR̂
þ

Pi
ðgÞþmaxf0; R̂

−
Ui
ðgÞ− πiR̂

−
Pi
ðgÞþ βg (9) 

where n is the number of GO classes, Pi (Ui) is the set of posi-
tive (unlabeled) samples for the ith GO function.

Additionally, the factor πi ¼ pðyi ¼ 1Þ describe the prior 
probability of a protein being annotated with the ith GO 
function. Current approaches on estimating class priors have 
focused on leveraging instance similarity to identify potential 
positives in the unlabeled set (Zeiberg et al. 2020) or by sub-
sampling positives and unlabeled instances to estimate the 
underlying distributions (Ramaswamy et al. 2016). In the 
context of function prediction, GO functions are structured 
hierarchically, which implies that all the proteins annotated 
to a function must also be annotated to the ontological ances-
tors of such function. We leverage this information to con-
struct priors πi in the following way: we propagate 
annotations from each GO function to their ancestors and 
compute the frequency Si ¼ Ni=Ntotal, where Ni is the num-
ber of training proteins annotated with the ith GO function 
and Ntotal is the total number of training proteins. Let Smax be 
the largest frequency, then: 

πi ¼ πo �
Si

Smax
(10) 

where πo is a tunable hyperparameter. The rationale of com-
puting priors based on frequency is that GO functions closer 
to the root of the hierarchy are more likely to be annotated 
due to the true-path rule that states that, if a protein p is an-
notated with class C and C is a descendant of D in the ontol-
ogy, then p is also annotated with D (Ashburner et al. 2000).

2.5 Ranking positive and unlabeled samples
In Equation (9), R̂

−
Ui
ðgÞ ¼ − 1

jUi j

P
x2Ui

lnðσð−gðxÞÞÞ. The term 
σð−gðxÞÞ pushed the scores to be 0, which may be unnecessar-
ily difficult to achieve (Tang et al. 2022). An easier way to 
optimize the classifier g is to just push positive samples to be 
ranked higher than unlabeled samples. For this reason, 
we set: 

R̂
−
Ui
ðgÞ ¼ −

1
jPij � jUij

X

x2Pi

X

y2Ui

lnðσðgðxÞ− gðyÞÞÞ (11) 

Finally, the loss function in PU-GO is: 

LPU� GO ¼ R̂GOðgÞ (12) 

2.6 UniProtKB/Swiss-Prot dataset and 
gene ontology
We use the dataset that was generated from manually curated 
and reviewed dataset of proteins from the UniProtKB/Swiss- 
Prot Knowledgebase (Consortium 2022) version 2023_03 
released on 28 June 2023. We filtered all proteins with 
experimental functional annotations with evidence codes EXP, 
IDA, IPI, IMP, IGI, IEP, TAS, IC, HTP, HDA, HMP, HGI, 
HEP. The dataset contains 79, 973 reviewed and manually 
annotated proteins.

We split this dataset into training, validation and testing 
sets based on sequence similarity so that no similar sequences 
are shared between training, validation and testing sets. Our 
objective is to avoid over-fitting of our models to protein sim-
ilarity. Therefore, we decided to split our dataset based on 
any similarity hit with maximum e-value score of 0.001. We 
computed pairwise similarity using Diamond (v2.0.9) 
(Buchfink et al. 2014), assigned sequences that have a similar-
ity higher than our threshold to the same group, and split 
these groups into training (90%) and testing (10%). We 
extracted 10% of the training set to form a validation set. 
This resulted into a 81/9/10 split of the groups for training/ 
validation/testing. We detail the split percentages in terms of 
proteins in Table 1. We call this dataset similarity-based data-
set. We use Gene Ontology (GO) released on 01 January 

Table 1. Summary of the UniProtKB/Swiss-Prot dataset.

Ontology GO terms Train (%) Valid (%) Test (%) Time

MFO 7114 39 432 (89) 2359 (5) 2595 (6) 684
BPO 21 105 53 022 (89) 3180 (5) 3538 (6) 801
CCO 2888 51 991 (88) 3241 (6) 3565 (6) 573

The table shows the number of GO terms, number of proteins in similarity 
based training, validation and testing splits with percentages in parenthesis 
and the number of proteins in time-based evaluation benchmark dataset.

Predicting protein functions with positive-unlabeled learning                                                                                                                                    i403 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/Supplem
ent_1/i401/7700893 by guest on 17 April 2025



2023. We train and evaluate models for each of the subontol-
ogies of GO separately.

To compare our model with other methods we generated a 
test set by following the CAFA (Radivojac et al. 2013) chal-
lenge time-based approach. We downloaded UniProtKB/ 
Swiss-Prot version 2024_01 released on 17 January 2024 and 
extracted newly annotated proteins in this version. Table 1 
summarizes the datasets for each subontology.

2.7 Training procedure
To train our models, we optimized hyperparameters: batch 
size [30, 200], margin factor [0.1, 0.01], maximum learning 
rate [10−2;5 � 10−6], minimum learning rate factor 
[10−1;10−4], initial prior (πo) [10−3; 10−4]. Hyperparameters 
were optimized via Gaussian-Process Bayesian optimization 
method (Rasmussen and Williams 2005, Shahriari et al. 
2016). We used Adam (Kingma and Ba 2015) optimizer and 
adapted the learning rate using a cyclic scheduler (Smith 
2017). Selected hyperparameters can be found in the 
Supplementary Material.

2.8 Baseline and comparison methods
We trained PU-GO on the similarity-based dataset in order to 
avoid over-fitting to similar sequences. As baselines, we 
trained two baseline methods DeepGO-CNN (Kulmanov and 
Hoehndorf 2019) and DeepGOZero (Kulmanov and 
Hoehndorf 2022) and generate predictions without using any 
sequence similarity component such as BLAST (Altschul et al. 
1997) or Diamond (Buchfink et al. 2014). For the time-based 
dataset evaluation we selected three state-of-the-art methods 
with openly available models as baseline: TALE (Cao and 
Shen 2021), SPROF (Yuan et al. 2023) and NetGO3 (Wang 
et al. 2023). Since baseline predictions also include sequence 
similarity components, we also combined PU-GO with 
Diamond by computing the arithmetic mean of the prediction 
scores of both methods: 

Scombinedðp; f Þ ¼
SPU� GOðp; f Þþ SDiamondðp; f Þ

2
(13) 

2.8.1 Naive approach
Due to the imbalance in GO class annotations and propaga-
tion based on the true-path-rule, some classes have more 
annotations than others. Therefore, it is possible to obtain 
prediction results just by assigning the same GO classes to all 
proteins based on annotation frequencies. To test the perfor-
mance obtained based on annotation frequencies, CAFA in-
troduced a baseline approach called “naive” classifier 
(Radivojac et al. 2013). Here, each query protein p is anno-
tated with the GO classes with a prediction scores com-
puted as: 

Sðp; f Þ ¼
Nf

Ntotal
(14) 

where f is a GO class, Nf is a number of training proteins an-
notated by GO class f and Ntotal is a total number of training 
proteins. We implement the same method.

2.8.2 DiamondScore
The DiamondScore method is based on the sequence similar-
ity score obtained by Diamond (Buchfink et al. 2014). The 

method aims to find similar sequences from the training set 
and transfer their annotations. We use the normalized bit-
score to compute the prediction score for a query sequence p: 

Sðp; f Þ ¼
P

s2E bitscoreðp; sÞ � Iðf 2 TsÞ
P

s2E bitscoreðp; sÞ
(15) 

where E is a set of similar sequences filtered by e-value of 
0.001, Ts is a set of true annotations of a protein with se-
quence s, and I is an indicator function that returns 1 if the 
condition is true and 0 otherwise.

2.8.3 MLP (ESM2)
The MLP baseline method predicts protein functions using a 
multilayer perceptron (MLP) from a protein’s ESM2 embed-
ding (Lin et al. 2023). We generate an embedding vector of 
size 5192 using ESM2 15B model and pass it to the MLP de-
scribed in Equation (4). Additionally, we pass this representa-
tion to a sigmoid activation function. 

y ¼ σðyÞ (16) 

We train a different model for each subontology in GO.

2.8.4 DeepGO-plus and DeepGOCNN
DeepGO-PLUS (Kulmanov and Hoehndorf 2019) predicts 
function annotations of proteins by combining 
DeepGOCNN, which predicts functions from the amino acid 
sequence of a protein using a 1-dimensional convolutional 
neural network (CNN), with the DiamondScore method. 
DeepGOCNN captures sequence motifs that are related to 
GO functions. Here, we only use CNN based predictions.

2.8.5 DeepGOZero
DeepGOZero (Kulmanov and Hoehndorf 2022) combines 
protein function prediction with a model-theoretic approach 
for embedding ontologies into a distributed geometric space. 
ELEmbeddings (Kulmanov et al. 2019) represent classes as n- 
balls and relations as vectors to embed ontology semantics 
into a geometric model. It uses InterPro domain annotations 
represented as binary vector as input and applies two layers 
of MLPBlock as in our MLP baseline method to generate an 
embedding of size 1024 for a protein. It learns the embedding 
space for GO classes using ELEmbeddings loss functions and 
optimizes together with protein function prediction loss. For 
a given protein p DeepGOZero predicts annotations for a 
class c using the following formula: 

y
0

c ¼ σðfηðpÞ � ðfηðhFÞþ fηðcÞÞ
T
þ rηðcÞÞ (17) 

where fη is an embedding function, hF is the hasFunction 
relation, rηðcÞ is the radius of an n-ball for a class c and σ is a 
sigmoid activation function. It optimizes binary crossentropy 
loss between predictions and the labels together with ontol-
ogy axioms losses from ELEmbeddings.

2.8.6 TALE
TALE (Cao and Shen 2021) predicts functions using a 
transformer-based deep neural network model which incor-
porates hierarchical relations from the GO into the model’s 
loss function. The deep neural network predictions are com-
bined with predictions based on sequence similarity. We used 
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the trained models provided by the authors to evaluate them 
on the time-based dataset.

2.8.7 SPROF-GO
SPROF-GO (Yuan et al. 2023) method uses the ProtT5-XL- 
U50 (Elnaggar et al. 2022) protein language model to extract 
proteins sequence embeddings and learns an attention-based 
neural network model. The model incorporates the hierarchi-
cal structure of GO into the neural network and predicts 
functions that are consistent with hierarchical relations of 
GO classes. Furthermore, SPROF-GO combines sequence 
similarity-based predictions using a homology-based label 
diffusion algorithm. We used the trained models provided by 
the authors to evaluate them on the time-based dataset.

2.8.8 NetGO3
NetGO3 integrates seven component methods that differ on 
the type of information they rely on: (1) Naive: GO fre-
quency, (2) BLAST-KNN: sequence homology, (3) LR-3mer: 
amino acid trigram, (4) LR-InterPro: domain/family/motif, 
(5) NetKNN: protein network, (6) LR-Text: literature, and 
(7) LR-ESM: protein language model. Methods with the pre-
fix “LR” and “KNN”contain a logistic regression classifier 
and k-nearest neighbor algorithm, respectively. We used the 
web service provided by the authors to obtain predictions for 
our time-based benchmark dataset.

2.8.9 ATGO
ATGO (Zhu et al. 2022) uses the ESM-1b protein language 
model. For a protein sequence, the model extracts embeddings 
from the three last layers of ESM-1b. The embeddings are 
inputs for an MLP-based neural network. ATGO computes a 
triplet loss, which means that for an anchor protein anc, pro-
teins pos and neg are sampled with the same or different func-
tions as anc, respectively. The final model, ATGOþ, combines 
the prediction scores of ATGO with a sequence homology 
based method. We used the trained models provided by the 
authors to evaluate ATGOþ on the time-based dataset.

2.9 Evaluation
We use four different measures to evaluate the performance 
of our models. Three protein-centric measures Fmax; Smin, and 
AUPR and one class-centric AUC.

Fmax is a maximum protein-centric F-measure computed 
over all prediction thresholds. First, we compute average pre-
cision and recall using the following formulas: 

priðtÞ ¼

P
f Iðf 2 PiðtÞÙf 2 TiÞ
P

f Iðf 2 PiðtÞÞ
(18) 

rciðtÞ ¼

P
f Iðf 2 PiðtÞÙf 2 TiÞ
P

f Iðf 2 TiÞ
(19) 

AvgPrðtÞ ¼
1

mðtÞ
�
XmðtÞ

i¼1

priðtÞ (20) 

AvgRcðtÞ ¼
1
n
�
Xn

i¼1

rciðtÞ (21) 

where f is a GO class, Ti is a set of true annotations, PiðtÞ is a 
set of predicted annotations for a protein i and threshold t, m(t) 
is a number of proteins for which we predict at least one class, n 
is a total number of proteins and I is an indicator function 
which returns 1 if the condition is true and 0 otherwise. Then, 
we compute the Fmax for prediction thresholds t 2 ½0; 1� with a 
step size of 0.01. We count a class as a prediction if its predic-
tion score is greater or equal than t: 

Fmax ¼ maxt
2 � AvgPrðtÞ � AvgRcðtÞ
AvgPrðtÞ þAvgRcðtÞ

� �

(22) 

Smin computes the semantic distance between real and pre-
dicted annotations based on information content of the clas-
ses. The information content IC(c) is computed based on the 
annotation probability of the class c: 

ICðcÞ ¼ −logðPrðcjPðcÞÞ (23) 

where P(c) is a set of parent classes of the class c. The Smin is 
computed using the following formulas: 

Smin ¼ mint

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ruðtÞ2þmiðtÞ2
q

(24) 

where ru(t) is the average remaining uncertainty and mi(t) is 
average misinformation: 

ruðtÞ ¼
1
n

Xn

i¼ 1

X

c2Ti − PiðtÞ

ICðcÞ (25) 

miðtÞ ¼
1
n

Xn

i¼1

X

c2PiðtÞ− Ti

ICðcÞ (26) 

AUPR is the area under the average precision (AvgPr) 
and recall (AvgRc) curve. AUC is a class-centric measure 
where compute AUC ROC per each class and take 
the average.

3 Results
3.1 Prediction model: PU-GO
We developed PU-GO, a method based on positive unlabeled 
learning to predict GO functions. PU-GO acts on the MLP 
classifier shown in Equations (5–8). The training phase uses 
the output of the classifier to compute the classification risk 
of positive and unlabeled samples following Equation (9). In 
the prediction phase, the output of the classifier is passed to 
the sigmoid function directly.

We trained three separate models for each subontology. 
The only parametric difference between the three models is 
the output size of the classifier, which depends of the number 
of GO functions. For Molecular Function Ontology there are 
7114 functions, for Cellular Component ontology 2888 and 
for Biological Process Ontology 21 105.

We used the similarity-based dataset to train our models in 
order to avoid bias induced by sequence-similar proteins 
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existing in training and testing datasets. For each model, we 
trained 10 models varying the random seed used to initialized 
model parameters and batch selection and aggregated the 
metrics using the arithmetic mean operation.

3.2 Evaluation on similarity-based split
To evaluate PU-GO, we chose baseline methods that do not 
contain components relying on sequence similarity for 
computing prediction scores. Results are shown in Table 2. 
PU-GO outperforms other methods in almost all evaluations 
except in AUPR in BPO, where MLP(ESM2) obtains the best 
performance. However, it is possible that using ESM2 15B in 
PU-GO is the reason to outperform DeepGO-CNN and 
DeepGOZero. The advantage of PU learning is directly dem-
onstrated when comparing PU-GO to MLP(ESM2) which 
uses the same classifier function as PU-GO but considers 
unlabeled samples as negatives.

3.3 Evaluation on time-based benchmark
To test the generalization capability of PU-GO, we use our 
trained models optimized using data from UniProtKB/ 
SwissProt Knowledgebase version 2023_03, to predict GO 
functions from UniProtKB/SwissProt Knowledgebase version 
2024_01. We compared with several state-of-the-art methods 
and show the results in Table 3. We integrate Diamond pre-
dictions with PU-GO as shown in Equation (13). PU- 
GOþDiamond outperforms all methods in the class-centric 
AUC evaluation across all subontologies and obtains the 
highest Fmax in BPO and CCO. However, ATGOþ resulted 
in best Fmax and Smin in MFO.

We further analyze the performance of MLP(ESM2), PU- 
GO, and ATGOþ based on the specificity of the GO class. 
Less specific GO classes are closer to the root and contain a 
higher number of protein annotations than classes with high 
specificity. We compute the AUC for each GO class and 
group them by their number of annotations. We find that 
positive unlabeled learning in PU-GO improves the perfor-
mance across all levels of specificity when compared with 
MLP(ESM2). Regarding ATGOþ, we find that its average 
AUC is lower than PU-GOþDiamond for GO classes with 
higher level of specificity, whereas it can outperform PU- 
GOþDiamond for GO classes with lower level of specificity 
(i.e. larger number of annotations) (Fig. 2).

3.4 Ablation study
PU-GO contains two variations from the standard PU learn-
ing formulation such as (1) the use of a ranking loss between 
positive and unlabeled samples following (Tang et al. 2022) 
and (2) the use of a different prior for each GO class using 
GO hierarchical structure. We analyze the impact of each 
component in Table 4. PU-basic uses Equation (9) with πi ¼

πo for every ith GO function. From PU-basic, we construct 
PU-ranking replacing the risk estimation for unlabeled sam-
ples R̂

−
Ui 

from Equation (9) with a risk computing the ranking 
between positive and unlabeled samples in Equation (11). 
PU-ranking is more flexible than PU-basic, and only requires 
unlabeled samples to be scored lower than positive ones and 
not strictly close to 0, which results in better performance in 
general. Finally, from PU-ranking we construct PU-GO by in-
corporating custom priors πi for each GO class [Equation 
(10)]. This change shallowly incorporates hierarchy informa-
tion as class priors (i.e, a GO class closer to the root is more 
likely to be annotated with a protein than a GO class closer 

to the leaves). Our analysis shows that using custom prior 
values enhance PU learning. For every method, we trained 10 
models with different random seeds and report the arithmetic 
mean and standard deviation values.

4 Discussion
Positive-unlabeled learning is an appropriate formulation to 
the automated function prediction problem, where most of 

Table 2. Evaluation results for similarity-based split using protein-centric 
Fmax; Smin, and AUPR, and the class-centric average AUC.

Method Fmax Smin AUPR AUC

MFO
Naive 0.2805 15.1460 0.1395 0.5000
DeepGO-CNN 0.3705 14.1480 0.3242 0.7087
DeepGOZero 0.4545 12.8750 0.4095 0.7536
MLP(ESM2) 0.5079 12.1020 0.4851 0.8401
PU-GO 0.5317 11.6490 0.5026 0.8413

BPO
Naive 0.2997 41.6290 0.1978 0.5000
DeepGO-CNN 0.3446 40.4210 0.2810 0.6879
DeepGOZero 0.3624 39.5340 0.3112 0.6900
MLP(ESM2) 0.4279 37.1990 0.3973 0.8484
PU-GO 0.4365 36.7640 0.3928 0.8674

CCO
Naive 0.5501 12.3280 0.4077 0.5000
DeepGO-CNN 0.6336 11.2260 0.6343 0.7699
DeepGOZero 0.5862 11.8080 0.5711 0.6836
MLP(ESM2) 0.7091 9.4250 0.6897 0.9047
PU-GO 0.7210 9.1010 0.7696 0.9240

Bold values indicate best performance.

Table 3. Evaluation results for time-based split using protein-centric 
Fmax; Smin, and the class-centric average AUC.

Method Fmax Smin AUC

MFO
Diamond 0.555 8.915 0.848
SPROF-GO 0.539 9.482 0.724
TALE 0.301 13.515 0.741
NetGO3 0.539 8.986 0.891
ATGOþ 0.612 8.061 0.844
MLP(ESM2) 0.507 9.682 0.942
PU-GO 0.531 9.010 0.947
MLP(ESM2)þDiamond 0.562 8.948 0.953
PU-GOþDiamond 0.569 8.776 0.955

BPO
Diamond 0.548 23.693 0.735
SPROF-GO 0.496 24.368 0.722
TALE 0.476 25.612 0.644
NetGO3 0.542 23.061 0.697
ATGOþ 0.549 22.156 0.736
MLP(ESM2) 0.448 26.481 0.884
PU-GO 0.471 25.175 0.888
MLP(ESM2)þDiamond 0.550 23.532 0.902
PU-GOþDiamond 0.556 22.993 0.904

CCO
Diamond 0.685 7.786 0.792
SPROF-GO 0.711 7.729 0.777
TALE 0.664 8.685 0.785
NetGO3 0.680 7.964 0.897
ATGOþ 0.712 7.535 0.822
MLP(ESM2) 0.681 8.413 0.931
PU-GO 0.701 7.866 0.945
MLP(ESM2)þDiamond 0.725 7.340 0.937
PU-GOþDiamond 0.734 7.062 0.949

Bold values indicate best performance.
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the data is still not labeled. Previous attempts to handle unla-
beled data aim to transform some unlabeled samples into 
negatives (Youngs et al. 2013) or have not been applied to 
current deep learning classifiers (Song et al. 2021). We devel-
oped PU-GO, adapting risk-minimization based PU learning 
(Elkan and Noto 2008, du Plessis et al. 2014, Plessis et al. 
2015, Kiryo et al. 2017, Bekker and Davis 2020) to the con-
text of function prediction. PU-GO does not require extract-
ing a subset of unlabeled samples as negatives. Instead, the 
whole unlabeled dataset can be used to adapt a classifier.

PU learning with risk-minimization framework is a func-
tion of a classifier. In our case, we used an MLP classifier. 
The input for the MLP were vectors from ESM2 15B, a pre-
trained language model for protein sequences. This configu-
ration (i.e. ESM2 15B þ MLP) is similar to other methods 
such as SPROF-GO (Yuan et al. 2023), NetGO3 (Wang et al. 
2023), which as part of their frameworks there are pretrained 
language models together with a classifier. PU-GO does not 
contain any additional component other than the ESM2 

15BþMLP classifier. We showed that PU-GO was able to 
outperform baseline methods as well as the binary classifica-
tion training version of ESM2 15B þ MLP, which supports 
the hypothesis that PU learning is an appropriate approach to 
improve protein function prediction. However, more sophis-
ticated classifiers can be proposed in future work, where in-
corporation of additional domain-specific biological data can 
be used to constrain the optimization process.

Class prior estimation is a crucial aspect in PU learning (du 
Plessis et al. 2016). For protein function prediction, we lever-
aged domain-specific information such as the GO hierarchi-
cal structure to design custom class priors per each GO class 
based on their annotation frequency. Our approach requires 
tuning an initial prior weight πo, which we selected empiri-
cally by searching in a particular range. Despite the simplicity 
of this approach, it showed to be effective to construct a 
more robust models. However, future work can explore other 
ways to construct more accurate priors by leveraging other 
aspects of GO such as semantic similarity between GO classes 
instead of only using class annotation frequency as in PU- 
GO. Similarly, other class prior estimation strategies should 
be explored, such as instance-similarity-based (Zeiberg et al. 
2020) or positive-unlabeled subsampling (Ramaswamy et al. 
2016). Furthermore, biological information can also be lever-
aged to construct better class priors such as protein sequence 
homology (Yuan et al. 2023).

PU-GO framework handles unlabeled samples differently 
than previous approaches where the aim was to strictly dis-
criminate between positive and negative samples. In PU-GO, 
instead of minimizing the risk of classifying an unlabeled 
sample as negative, it addresses the protein function predic-
tion as a ranking problem and minimizes the risk of ranking 
an unlabeled sample higher than a positive one. Furthermore, 
since the risk-minimization framework we resort to is exten-
sible to incorporate true negative samples (Hsieh et al. 2019), 
future work can be directed to study the incorporation of 
negative annotations that are already available or that can be 
extracted by some strategy.

MP

Figure 1. PU-GO workflow. The MLP classifier is trained to minimize classification risk of positive and unlabeled samples. Prior factors for each GO class 
is computed based on hierarchical GO structure.

Figure 2. Average prediction performance of GO classes grouped by 
number of annotations on UniprotKB-Swissprot dataset.
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5 Conclusion
Protein function prediction is a widely studied multilabel 
classification problem that typically has been addressed un-
der binary classification settings. However, protein function 
annotations are mostly unlabeled. To deal with unlabeled 
annotations, we addressed protein function prediction as a 
PU classification problem. We adapted the PU learning 
framework for protein function prediction by incorporating 
hierarchical information in GO in the class priors. Our analy-
sis indicates improved performance compared to existing 
methods on similarity-based and time-based benchmark data-
sets. Future potential work could focus on incorporating neg-
ative samples to the PU setting and minimize negative 
classification risk. Although negative data is small, finding a 
way to use it can improve the classifier generalization capa-
bility. Another direction could be using more sophisticated 
classifiers that can include other types of biological informa-
tion, which has been an approach followed in the binary- 
classification setting.
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