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ABSTRACT

Motivation: Most approaches in predicting protein function from

protein–protein interaction data utilize the observation that a protein

often share functions with proteins that interacts with it (its level-1

neighbours). However, proteins that interact with the same proteins

(i.e. level-2 neighbours) may also have a greater likelihood of sharing

similar physical or biochemical characteristics.We speculate that func-

tional similarity between a protein and its neighbours from the two

different levels arise from two distinct forms of functional association,

and a protein is likely to share functions with its level-1 and/or level-2

neighbours.Weare interested in findingout howsignificant is functional

association between level-2 neighbours and how they can be exploited

for protein function prediction.

Results: We made a statistical study on recent interaction data and

observed that functional association between level-2 neighbours is

clearly observable. A substantial number of proteins are observed to

share functionswith level-2 neighbours but not with level-1 neighbours.

We develop an algorithm that predicts the functions of a protein in two

steps: (1) assignaweight to eachof its level-1and level-2neighboursby

estimating its functional similarity with the protein using the local topol-

ogy of the interaction network as well as the reliability of experimental

sources and (2) scoring each function based on its weighted frequency

in these neighbours. Using leave-one-out cross validation, we compare

the performance of our method against that of several other existing

approaches and show that our method performs relatively well.

Contact: g0306417@nus.edu.sg

1 INTRODUCTION

Conventional methods in predicting protein function from protein

interaction data make use of the observation that the direct inter-

action partners of a protein are likely to share similar functions with

it (Schwikowski et al., 2000; Hishigaki et al., 2001). This is rea-

sonable as it is observed that 70–80% of proteins share at least one

function with its interacting partner (Titz et al., 2004). Schwikowski

et al. (2000) adopt a Neighbour Counting approach that labels a

protein with the functions that occur most frequently in its inter-

action partners. Hishigaki et al. (2001) use chi-square statistics to

identify protein functions that are over-represented in the interac-

tion partners of a protein. However, using only interaction partners

limits predictions to proteins that have at least one interaction

partner with known annotation. Moreover, the possible annotations

for an unknown protein are limited by the annotations of its inter-

acting partners.

Many works have considered using other proteins in the inter-

action network for protein function prediction. Hishigaki et al.
(2001) proposed extending the x2 statistics approach to include

proteins in the interaction neighbourhood of a protein within an

arbitrary radius. However, the performance declines when proteins

beyond the interaction partners of a protein are considered. Brun

et al. (2003) and Samanta and Liang (2003) applied clustering

techniques to partition the proteome into functional classes (FCs)

based on functional distance derived from protein–protein interac-

tions. Others adapted global optimization techniques such as

Markov random fields (Letovsky and Kasif, 2003; Deng et al.,
2003) and simulated annealing (Vazquez et al., 2003) to predict

protein function and have shown promising results. Lanckriet et al.
(2004) introduced an integrated support vector machines classifier

for function prediction, in which protein–protein interaction data

were used to derive one of the kernels using pairwise interaction

similarity between proteins based on interaction data. Nabieva et al.
(2005) introduced a network-based algorithm that simulates func-

tional flow between proteins. While these approaches demonstrated

that the use of a variety of machine learning and statistical tech-

niques can improve prediction performance, they bank on the same

fundamental concept that the interaction partners of a protein are

likely to share similar functions with it.

Conventional approaches associate protein interaction with the

sharing of functions: if proteins A and B belong to the same func-

tional pathway, A is likely to interact with B; therefore when A and

B are observed to interact, they are likely to share functions. We

refer to this as direct functional association. We observed that, in

many cases, while a protein shares no function with its level-1

neighbours, it displays substantial function similarity with some

of its level-2 neighbours. We refer to this as indirect functional

association. The two forms of association are independent and either

or both may be observed in the interaction neighbourhood of a

protein. Although similar concepts have been utilized in deriving

functional distances for some clustering techniques (Brun et al.,
2003; Samanta and Liang, 2003), the concepts are used in the

implicit forms of graphical distances and probabilistic functions.

In this paper we study the significance of indirect functional

association in existing protein–protein interaction data from the

Saccharomyces cerevisiae genome, and propose a new method

of protein function prediction that takes into account indirect�To whom correspondence should be addressed.
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functional association. We compare our method with several exist-

ing approaches and show that it outperforms them.

2 MATERIALS AND METHODS

In this study, functional annotation scheme of proteins are taken from the

most recent FunCat 2.0 functional classification scheme (Ruepp et al., 2004).

FunCat annotations for S.cerevisiae are downloaded from the Comprehen-

sive Yeast Genome Database of the Munich Information Center for Protein

Sequences (MIPS) at the time of this work (May 2005). This version of the

FunCat scheme consists of 473 FCs arranged in hierarchical order. A protein

annotated with an FC is also annotated with all superclasses of that FC. To

avoid arriving at misleading conclusions caused by biases in the annotations,

we apply the concept of informative FCs from (Zhou et al., 2002) on the

annotations. We define an informative FC as the one having (1) at least

30 proteins annotated with it and (2) no subclass meeting the requirement (1).

A total of 117 informative FCs are derived in this way using the MIPS

functional annotations for Yeast. Protein–protein interaction data are down-

loaded from the GRID database (Breitkreutz et al., 2003). The April 18, 2005

release of the YEAST GRID is used in this work. This release reports 19 452

pairs of interactions between yeast proteins, of which 17 811 are unique. The

dataset comprises a total of 6701 proteins, of which 4162 are annotated.

2.1 Indirect functional association

A protein interaction network can be represented as an undirected graph

G¼ (V, E) that consist of a set of vertices V and a set of edges E. Each vertex

u 2 V represents a unique protein, while each edge (u, v) 2 E represents an

observed interaction between proteins u and v. We define a pair of protein

u and v as level-k neighbours if there exists a path f ¼ (u, . . . , v) of length

k in G. To make subsequent discussion clearer, we define the set of all pairs

of level-k neighbours as Sk. Note that any pair of proteins can be both level-k

and level-k’ neighbours, where k 6¼ k0. Hence any two sets Sk and Sk0, k 6¼ k0,
may intersect.

Level-1 neighbours interact with each other and are likely to participate in

some common pathways. Hence they have an increased likelihood of sharing

some functions. This is the underlying biological relevance of direct func-

tional association. The concept of indirect functional association is different,

but no less intuitive. Level-2 neighbours interact with some common pro-

teins. Hence they may share some physical or biochemistry characteristics

that allow them to bind to these proteins. The more common proteins they

interact with, the higher is the chance that they would share some functions.

Figure 1 shows two examples of indirect functional association that we

found in existing biological data. In both examples, the level-1 neighbours of

the target protein (underlined) did not share any function with it. However,

they share functions with a number of their level-2 neighbours. Although we

are able to find some specific examples of indirect functional association,

these may be purely coincidental. In order to establish support for this form

of hypothetical functional association, we try to search for evidence in

existing biological data. Using the GRID protein interaction data and

MIPS FunCat annotations described earlier, we perform some statistical

analysis.

2.2 Significance

We are interested in finding out how often we would observe that a protein

shares function with its level-2 neighbours instead of its level-1 neighbours.

From our datasets, we find that out of the 4162 annotated proteins, only

1999 or 48.0% share some function with its level-1 neighbours. Of the

remaining proteins, 943 share some similarity with at least one of its

level-2 neighbours, making up �22.7% of the ORFs. Less than 2% of

the annotated proteins share functions exclusively with level-1 neighbours.

The statistics are summarized in Table 1. Assuming that there is no

unobserved interaction or annotation, indirect functional association

would be a reasonable explanation for this observation.

To study the degree of functional similarity exhibited by various set of

neighbour pairs, we consider five sets of protein pairs:

(1) Level-1 neighbours that are not Level-2 neighbours (i.e. S1 � S2);

(2) Level-2 neighbours that are not Level-1 neighbours (i.e. S2 � S1);

(3) Level-3 neighbours that are not Level-1 or Level-2 neighbours [i.e.

(S3 � (S2 [ S1)];

(4) Level-1 neighbours that are also Level-2 neighbours (i.e. S1 \ S2);

(5) All protein pairs in the dataset

Figure 2 illustrates these five sets of protein pairs.

For each of the five sets of protein pairs, we compute the fraction of each

set that share some functional similarity based on different levels of the

MIPS annotation scheme Table 2 shows the number of protein pairs from

each of these sets with known annotations at different levels of the MIPS

annotation scheme. Higher levels depict more specific functional annota-

tions. The results are presented in Figure 3.

We can see that protein pairs that are both level-1 and level-2 neighbours

(S1 \ S2) have the highest likelihood of sharing functions. This is expected

since these neighbours display both direct and indirect functional associa-

tions with each other. The set of all protein pairs is used as a baseline to

indicate the likelihood that any pair of proteins taken randomly from the

dataset would show functional similarity with each other. We observe that

the set of strict level-2 neighbours (S2 � S1) displays a higher likelihood

of sharing functions than by chance. The set of strict level-3 neighbours

[S3 � (S2 [ S1)] are less likely to share functions but the likelihood is still

higher than random. From these observations, we can see that the level-2

and level-3 neighbours of a protein can potentially contribute in inferring its

functions. However, as higher level neighbours are defined over more inter-

action links, functional association between them is inevitably more sensi-

tive to noise in the interaction data. Protein interaction data, as with other

high-throughput biological data, contain much noise. In fact, it has been

shown that the reliability of high-throughput yeast two-hybrid assays is only

�50% (Sprinzak et al., 2003). Using higher level neighbours in function

prediction therefore also increases the chance of including erroneous

interaction information. Table 3 shows the number of pairs in each set of

defined sets of protein pairs. With each increasing level k, the number of

level-k neighbours substantially overwhelms those from the previous levels

(1, . . . , k � 1). Hence to improve function prediction by including higher

level neighbours, we must first be able to reduce false positives effectively.

For this study, we are only able to do this for level-2 neighbours and will

hence focus on using these neighbours to improve function prediction.

2.3 Impact on function prediction

To study how well the different sets of neighbours of a protein can be used to

infer its function, we use the neighbours in the sets (S1 � S2), (S2 � S1) and

(S1 \ S2) of each protein to predict its functions using the Neighbour Count-

ing method (Schwikowski et al., 2000). The Neighbour Counting method

predicts the functions of each protein by counting the frequency in which its

neighbour has each function. The function that is the n-th most frequent in a

protein’s level-1 neighbours will be predicted as the n-th most probable

function of the protein. The rank of each predicted function is taken as

its score. The performance of the predictions is evaluated by plotting pre-

cision against recall over varying thresholds as adopted in (Deng et al.,

2003). For a given threshold b, Precision and Recall are defined as:

Precision ¼
P

p2V kp‚bP
p2V mp‚b

Recall ¼
P

p2V kp‚bP
p2V np

,

where np is the number of known functions of protein p; mp,b is the number of

functions predicted for protein p at threshold b and kp,b is the number of

functions predicted correctly for protein p at threshold b.

Precision is plotted against Recall for the predictions made using each set

of neighbours over varying thresholds in Figure 4. We can see that over the

same recall range, the predictions using only proteins from the set (S2 � S1)
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have better precision than those from set (S1�S2). Since there is much more

protein in the level-2 neighbours, a much broader recall range can also be

achieved. This shows that while the level-2 neighbours of a protein may not

share as much similarity with it relative to the level-1 neighbours, the

functions shared by the level-2 neighbours may be more consistent, and

therefore achieve better performance when used to infer the functions of the

protein. We also observe that the proteins from the set (S1 \ S2) achieve the

best results in inferring function.

3 ALGORITHM

As dicussed in the previous section, the functions of a protein are not

only over-represented in its level-1 neighbours, but also in its

level-2 and level-3 neighbours. However, we also know that higher

level neighbours will inevitably contain more false positives. If

we simply extend the Neighbour Counting technique to include

level-2 neighbours, any increase in recall is more than offset by

Fig. 1. Examples of indirect functional association in Yeast proteins. YAL012W and YBL072C are presented as the roots of trees in which their level-1 and

level-2 neighbours correspond to the level-1 and level-2 child nodes. The level-2 neighbours share some functions (underlined) with the root protein while the

level-1 neighbours do not share any functions with the root protein in both cases.

Table 1. Fraction of annotated yeast proteins that share function with

(1) level-1 neighbours exclusively; (2) level-2 neighbours exclusively;

(3) level-1 and level-2 neighbours; and (4) level-1 or level-2 neighbours

Shared functions with Fraction

Level-1 neighbours exclusively 0.016338

Level-2 neighbours exclusively 0.226574

Level-1 and Level-2 neighbours 0.463960

Level-1 or Level-2 neighbours 0.706872

a

b

c

f

d
e S1 – S2 = {(a,b), (b,c), (d,e)}

S2 – S1 = {(a,c), (b,f), (b,d),
(c,e), (e,f)}

S1 S2 = {(c,d), (c,f), (d,f)}

Fig. 2. Example to illustrate the neighbour pairs (S1 � S2), (S2 � S1) and

(S1 \ S2).

Table 2. Number of protein pairs from different sets with known annotations

at different levels of MIPS annotations

Annotation level S1 � S2 S2 � S1 S3 � (S2 [ S1) S1 \ S2

0 6979 269 398 1 725 704 8169

1 6895 266 953 1 703 907 8150

2 6250 237 835 1 521 682 7400

3 3136 121 867 728 976 4718

4 497 185 79 94 592 1014

5 1014 80 250 11

Protein function prediction from interaction data
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the accompanying increase in false positives. Given the noisy nature

of high-throughput protein interaction data, some form of filtering

or weighting should be employed in order to reduce the effects of

including erroneous interactions. We consider two forms of weight-

ing based on local topology and the reliability of different interac-

tion data experimental sources.

3.1 Functional similarity weight

Some existing approaches have suggested using the common

interacting partners between two proteins as an estimate of their

functional similarity. PRODISTIN (Brun et al., 2003) uses the

Czekanowski-Dice distance (CD-Distance) as a metric for func-

tional linkage. The CD-distance between two proteins u and v is

given by

Dðu‚vÞ ¼ jNuDNv j
jNu [ Nv j þ jNu \ Nv j

‚ ð1Þ

where Np refers to the set that contains p and its level-1 neighbours

and X D Y refers to the symmetric difference between two sets X
and Y. Note that D(u, v) < 1 if u and v are level-1 neighbours. If

Nu ¼ Nv, D(u, v) will be evaluated to 0. On the other extreme, if

Nu \ Nv ¼ Ø, D(u, v) will be evaluated to 1. Figure 5 illustrates the

computation of the CD-Distance. While the metric is adapted

from a statistical measure for categorical data, its basis coincides

with the concepts of direct and indirect functional association.

When two proteins share many interactors, they are likely to

share common functions that allow them to bind to the same pro-

teins. The level-1 and level-2 neighbours of a protein have a

CD-Distance of <1 from it while other proteins will have a

CD-Distance of 1 from it.

When proteins u and v interact with some common proteins,

CD-Distance estimates the degree of functional similarity between

them from the fraction of the level-1 neighbours of both proteins

that are common. However, when two proteins interact with a

common protein, they may not necessary bind to it at the same

binding site. We feel that it would be more appropriate to suggest

that when a fraction x of protein u’s neighbours is common to

protein v’s neighbours, x is proportional to the probability that

u’s functions are shared with v through the common neighbours.

Vice versa, if a fraction y of protein v’s neighbours is common to

protein u’s neighbours, y is proportional to the probability that v’s

functions are shared with u through the common neighbours. Taking

the two probabilities to be independent, we estimate the probability

that u shares function with v as the product of x and y.

We devise a new measure, functional similarity weight (FS-

Weight):

SFSðu‚vÞ ¼ 2 jNu \ Nv j
jNu � Nv j þ 2 jNu \ Nv j þ lu‚ v

·
2 jNu \ Nv j

jNv � Nu j þ 2 jNu \ Nv j þ lv‚u
ð2Þ

lu,v is defined as

lu‚ v ¼ max ð0‚navg � ð jNu � Nv j þ jNu \ Nv j ÞÞ

lu,v is included in the computation to penalize similarity weights

between protein pairs when any of the proteins has very few level-1

neighbours. navg is the average number of level-1 neighbours that

each protein has in the dataset. Like the CD-distance measure,

Fraction of neighbour pairs with Functional Similarity
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Fig. 3. Fraction of different sets of protein pairs with functional similarity

over different levels of MIPS annotations. Higher annotation levels translate

to more specific annotations.

Table 3. Pearson correlation values between different metrics and functional

similarity for different sets of interaction neighbours

Neighbours CD-distance FS-Weight FS-Weight R Transitive

FS-weight R

S1 0.471810 0.498745 0.532596 0.532626

S2 0.224705 0.298843 0.375317 0.381966

S1 [ S2 0.224581 0.29629 0.363025 0.369378

Precision VS Recall

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

Recall

P
re

ci
si

o
n

S1 S2
S2 - S1
S1 - S2

Fig. 4. Precision versus Recall for prediction of protein function using

Neighbour Counting with different subsets of interaction neighbours.

Fig. 5. CD-Distance computation for a pair of proteins u and v.
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FS-Weight gives greater weight to common neighbours than non-

common ones.

Figure 6 illustrates the computation of FS-Weight for proteins A

and B. For simplicity l is not included in the computation.

To evaluate the effectiveness of the two measures as an estimator

for functional similarity between protein pairs, we compute the

Pearson’s correlation between CD-Distance and functional similar-

ity for all level-1 and level-2 neighbour pairs from our dataset. We

define functional similarity between two proteins u and v, S(u, v), as

Sðu‚vÞ ¼ jFu \ Fv j
jFu [ Fv j

, ð3Þ

where Fp is the set of functions that protein p has.

We categorize the protein pairs into three sets: S1, S2 and S1 [ S2.

Table 3 shows the respective correlation values. We can see that

FS-Weight has greater correlation with functional similarity than

CD-Distance for all cases.

3.2 Integrating reliability of experimental sources

As shown in Nabieva et al. (2005), different experimental sources of

deriving protein–protein interaction may have different reliability.

Nabieva et al. (2005) show that prediction result can be improved

substantially when these differences in reliability are taken into

account. To estimate the reliability of each experimental source,

we follow the approach used in (Nabieva et al., 2005), which simply

find the fraction of interaction pairs from each source that shares at

least one function. The reliability values of the experimental sources

derived from our dataset in this manner are presented in Table 4. For

each interaction between a pair of proteins u and v, we estimate the

reliability of that interaction using

ru‚ v ¼ 1 �
Y

i2Eu‚ v

ð1� riÞni‚ u‚ v , ð4Þ

where ri is the reliability of experimental source i, Eu,v is the set of

experimental sources in which interaction between u and v is

observed, and ni,u,v is the number of times which interaction

between u and v is observed from experimental source i.
The reliability of an interaction increases with the number of

times it is observed. Observations from different experimental

sources contribute to the overall reliability in different degrees.

We can now modify the FS-Weight measure defined earlier in

(2) to take into account the reliability of each interaction:

SRðu‚vÞ ¼
2
P

w2ðNu\NvÞ ru‚wrv‚w

ð
P

w2Nu
ru‚w þ

P
w2ðNu\NvÞ ru‚wð1 � rv‚wÞÞ þ 2

P
w2ðNu\NvÞ ru‚wrv‚w þ lu‚ v

·
2
P

w2ðNu\NvÞ ru‚wrv‚w

ð
P

w2Nv
rv‚w þ

P
w2ðNu\NvÞ rv‚wð1 � ru‚wÞÞ þ 2

P
w2ðNu\NvÞ ru‚wrv‚w þ lv‚u

ð5Þ

lu,v is modified to take into account only reliable links:

lu‚v ¼ max ð0‚navgrint � ð jNu � Nv j þ jNu \ Nv j ÞÞ‚

where rint is the fraction of all interaction pairs that share some

function. The modified FS-Weight measure is evaluated as

described earlier and the results are tabulated in Table 3 under

the name FS-Weight R. The modified measure displays markedly

greater correlation with functional similarity for all the sets of

neighbours.

3.3 Transitive functional association

If protein u is similar to protein w, and protein w is similar to protein

v, proteins u and v may show some degree of similarity. We refer to

this as transitive functional association. Independent of other evi-

dence, we estimate the functional similarity between u and v by the

product of the functional similarity between u and w, S(u,w), and

that between w and v. Taking transitive functional association into

account, we modify the FS-Weight measure:

STRðu‚vÞ ¼ max
�
SRðu‚vÞ‚ max

w2Nu

SRðu‚wÞSRðw‚vÞ
�

‚ ð6Þ

where SR(u,v) is the FS-Weight score between u and v defined

in (5). We refer to this new measure as transitive FS-Weight

R. The new measure is again evaluated and tabulated in Table 3.

We can see that the new measure shows improved correlation

with functional similarity for the protein pairs over the earlier

measures.

3.4 Functional similarity weighted averaging

Using the FS-Weight measure, we propose a weighted averaging

method, FS Weighted Averaging, to predict the function of a protein

based on the functions of the level-1 and level-2 neighbours. The

Table 4. Estimated reliability for each experimental source in the GRID

protein–protein interactions computed using Equation (4)

Source Reliability

Affinity chromatography 0.823077

Affinity precipitation 0.455904

Biochemical assay 0.666667

Dosage lethality 0.5

Purified complex 0.891473

Reconstituted complex 0.5

Synthetic lethality 0.37386

Synthetic rescue 1

Two hybrid 0.265407

Fig. 6. CD-Distance and FS-Weight computation.

Protein function prediction from interaction data
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likelihood that a protein p has a function x is estimated by

f xðuÞ ¼
1

Z

h
lrintpx þ

X
v2Nu

�
STRðu‚vÞdðv‚xÞ

þ
X
w2Nv

STRðu‚wÞdðw‚xÞ
�i

‚ ð7Þ

where STR(u,v) is the Transitive FS-Weight R score for u and v
defined in (6); rint is the fraction of all interaction pairs that share

some function as defined in (5); d(p, x) ¼ 1 if p has function x,

0 otherwise; px is the frequency of function x in annotated proteins;

0 � l� 1 is the weight representing the contribution of background

frequency to the score and Z is the sum of all weights, given by

Z ¼ 1 þ
X
v2Nu

�
STRðu‚vÞ þ

X
w2Nv

STRðu‚wÞ
�
: ð8Þ

The function fx(u) is similar to the Neighbour Counting method,

using the frequency of occurrence of a function in the neighbours of

a protein to estimate the likelihood of the protein having that func-

tion. However, there are several key differences:

(1) Level-2 neighbours are included in the counting of function

frequency;

(2) The instance of each protein is counted, i.e. if a level-2 neigh-

bour interacts with two different level-1 neighbours, it will be

counted twice; level-1 neighbours that are also level-2 neigh-

bours will also contribute more to the score.

(3) A weight is assigned to each neighbour using the FS-Weight

measure.

(4) The background frequency of function x,px, contributes to the

score with a weight l. When a protein has very few known

neighbours or if the neighbours have very small weights, the

background frequency will contribute more to the score. We

set l¼ 1. l is a heuristic value and may be empirically deter-

mined based on classification performance.

(5) When the reliability is low, FS-Weight will compute lower

scores for each neighbour pair. Since the estimation of

background frequency will also be inaccurate, l is multiplied

with rint.

4 RESULTS

4.1 Level-2 neighbours and FS-Weight

As discussed earlier, the true potential of using level-2 neighbours

for functional prediction can only be unveiled when appropriate

filtering is applied to reduce noise. Here we will repeat the

statistical computations done for Figure 2 with only neighbours

above an FS-Weight threshold of 0.2. The same sets of protein

neighbour pairs are studied, without the set of all protein pairs

since it is not relevant. The results are displayed in Figure 7. We

can see that the fraction of the set S2 � S1 (exclusively level-2

neighbours) with similar functions has exceeded that of the set

S1 � S2 (exclusively level-1 neighbours) substantially with the

application of FS-Weight.

To provide a clear picture of how level-2 neighbours can provide

real improvement to the prediction of protein functions, we modify

the widely used Neighbour Counting method to include level-2

neighbours weighted with FS-Weight. Three approaches are

followed: (1) the original Neighbour Counting; (2) Neighbour

Counting with neighbours weighted with FS-Weight and (3) Neigh-

bour Counting with neighbours weighted with FS-Weight and

including level-2 neighbours. The Precision versus Recall graph

is plotted for the three approaches and is shown in Figure 8. We

can see that both the application of FS-Weight and the inclusion of

level-2 neighbours substantially improve the performance of this

simple prediction method.

4.2 Functional similarity weighted averaging

To evaluate how functional similarity weighted averaging fares, we

compare against some of the well-known existing approaches. How-

ever, owing to the lack of details in some algorithms, we will

Precision VS Recall

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

Recall

P
re

ci
si

o
n

Neighbour Counting /w weight & L2

Neighbour Counting /w weights

Neighbour Counting

Fig. 7. Precision versus Recall curves for (1) Neighbour Counting; (2) Neigh-

bour Counting with FS-Weight and (3) Neighbour Counting with FS-Weight

and level-2 neighbours.

Fraction of neighbours with Functional Similarity
at FSWeight threshold 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

MIPS Annotation Level

F
ra

ct
io

n

S1 - S2

S2 - S1

S1 S2

Fig. 8. Fraction of different set of protein neighbour pairs with functional

similarity over different levels of MIPS annotations. The protein pairs are

filtered with a FS-Weight threshold of 0.2.

H.N.Chua et al.

1628

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/22/13/1623/193937 by guest on 08 January 2024



compare with some approaches based on their datasets. We consider

the following approaches:

Neighbour Counting approach. The Neighbour Counting

approach labels a protein with the function that is most abundant

in its level-1 neighbours. The k most frequent functions are assigned

as the k most likely functions for that protein. The rank of the

frequency for each function is used instead of the actual frequency

count.

x2 approach. This is a statistical approach proposed by

Hishigaki et al. (2001) that make use of x2 statistics to take into

account the frequency of each function in the entire dataset. The

x2 statistics of function j for protein i is computed by

SiðjÞ ¼
ðniðjÞ�eiðjÞÞ2

eiðjÞ
,

where ni(j) is the number of level-1 neighbours of i with function j
and ei(j) is the expected number of level-1 neighbours of i with

function j, which is derived from ni · pj where ni is the size of i’s
level-1 neighbours and pj is the frequency of function j in annotated

proteins. The functions with the k largest x2 statistics are assigned as

the k most likely functions for that protein.

PRODISTIN. It uses the CD-distance between each pair of pro-

teins as a distance metric and clusters the proteins using the BIONJ

algorithm. Only the largest connected component in a protein inter-

action network is used. The BIONJ algorithm produces a hierar-

chical classification tree. A PRODISTIN FC for a function is

defined to be the largest possible subtree in the classification tree

that (1) contains at least three proteins having the function and

(2) has at least 50% of its annotated members having the function.

Un-annotated proteins in the FC are then predicted with the func-

tion. We obtain different number of FC (and predictions) by varying

the criteria in (2) between 50 and 100%.

Markov random fields. Deng et al. (2003) proposed a global

optimization method based on random Markov fields and belief

propagation to compute a probability that a protein has a function

given the functions of all other proteins in the interaction dataset.

It was shown in Deng et al. (2004) that the approach of Vazquez

et al. (2004) models a special case of Deng et al. (2003) while the

approach taken by Letovsky and Kasif (2003) is essentially similar

to Deng et al. (2003).
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Functional flow. Nabieva et al. (2005) proposes a network-

based algorithm that simulates functional flow between proteins.

Proteins are initially assigned infinite potential for a function if a

protein is annotated with that function and 0 potential otherwise.

Functions are then simulated to flow from proteins with higher

potential to their level-1 neighbours that have lower potential.

The amount of flow is influenced by the reliability of the interac-

tions between interaction partners, which is derived similarly as in

our approach. We implemented the Functional Flow algorithm

according to the detailed description of the authors in Nabieva

et al. (2005).

Proteins without any known interaction partners are removed

from the dataset following the methodology of Deng et al.
(2003) to provide a fairer comparison with methods that can

only give a prediction to a protein when it has at least one annotated

neighbour. This reduces the number of proteins to 4062, with 3326

annotated. Figure 9 shows the Precision versus Recall graph for the

different methods based on varying thresholds using the GRID

interaction dataset and MIPS FunCat annotations. We did not com-

pare against MRF in this case as we did not implement the approach.

FS Weighted Average significantly outperformed other

approaches. The second best approach in the comparison is

PRODISTIN. PRODISTIN can only give a prediction for a smaller

number of proteins but within its recall range, it achieves much

better sensitivity than Neighbour Counting and x2.

To compare against the Markov random fields approach, we used

the datasets and results provided by the authors, which consisted of

protein–protein interaction data from MIPS and functional annota-

tions from Gene Ontology. The functional annotation comprises of

three broad categories: biochemical function, subcellular localiza-

tion and cellular Role. These are predicted separately and the

respective Precision versus Recall graphs for the various methods

are presented in Figure 10.

As the interaction data for this dataset do not provide well-defined

experimental sources, we manually categorized the interactions into

several general types so that we can estimate their reliability.

FS Weighted Average outperforms MRF as well as the rest of the

methods in all the three categories of protein characterization. The

relative performances of the different methods are consistent over

the two datasets which used different protein interaction data, func-

tional annotations and functional categorization schemes.

5 CONCLUSIONS

We have shown that level-2 and level-3 neighbours show increased

likelihood of displaying functional similarity with each other than

by random. We also devised a weighting function, FS-Weight, that

leverage on both topology and reliability of interactions estimated

from the frequency and sources of physical evidence to estimate

functional similarity between level-1 and level-2 neighbors. Using

FS-Weight, we developed a weighted averaging technique that

combines weighted evidence from level-1 and level-2 neighbors

with background frequencies to predict protein function and demon-

strated that it substantially outperforms many existing methods.

Although we found that level-3 neighbours also have higher-than-

random likelihood of sharing functions, we are unable to reduce

false positives effectively enough to make them useful for function

prediction. We plan to study the feasibility of including evidence

from level-3 neighbours through devising better ways to reduce

false positives from these distant neighbours.
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