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A B S T R A C T

With the development of high-throughput sequencing technologies, predicting grain protein function from amino 
acid sequences based on intelligent model has become one of the significant tasks in bioinformatics. The soybean, 
maize, indica, and japonica are selected as grain dataset from the UniProtKB. Aiming at the problem of 
neglecting the sequence order of amino acids and the long-term dependence between amino acids, the PBiLSTM- 
FCN model is proposed for predicting grain protein function in this paper. The sequence of amino acid sequences 
is considered in the Fully Convolutional Networks (FCN), and the long-term dependence between amino acids is 
addressed by the bidirectional Long Short-Term Memory network (BiLSTM). The experimental results show that 
the PBiLSTM-FCN model is superior to existing models, and can predict more accurately by solving the problem 
of capturing long-range dependencies and the order of amino acid sequences. Finally, the interpretability ana-
lyses are performed by the actual protein function compared with the predicted protein function which proves 
the effectiveness of the PBiLSTM-FCN model in predicting grain protein function.

1. Introduction

Grain is one of the main food sources of human beings and provides 
most of the energy requirements (Raubenheimer & Simpson, 2016). 
Grain protein content is the main source of protein in human diet. The 
protein content in oats can be as high as about 16 % (Poutanen et al., 
2022), and the protein content in wheat can reach approximately 18 % 
(Poutanen et al., 2022). Protein is a key factor determining nutritional 
quality. At the same time, proteins are widely distributed in organisms 
and are among the most important biomolecules. The basic units of 
proteins, which are large molecular compounds, are amino acids. The 
sequence of amino acids determines the structure of the protein, and the 
structure of the protein influences its function. Therefore, the study of 
grain protein function is of great significance to the development of 
human daily and proteomics.

With the improvement of the Human Genome Project and the 
continuous development and refinement of high-throughput sequencing 
technologies, a vast amount of protein sequence data has been gener-
ated, leading to a sharp increase in the number of unannotated proteins 
(Alex et al., 2022). Traditional experimental approaches to annotating 

protein functions are time-consuming and labor-intensive. The compu-
tational methods have become one of the mainstream methods for 
protein function prediction.

Traditional computational methods for protein function prediction, 
such as BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990), PSI- 
BLAST (Altschul et al., 1997), FASTA (Radivojac et al., 2013) primar-
ily rely on the analysis of protein sequence similarity to predict func-
tions. The greater the sequence similarity between two proteins, the 
more similar or even identical their protein functions (Gillis & Pavlidis, 
2013). With the development of artificial intelligence, machine learning 
has been applied to the prediction of protein functions. The semantic 
similarity and the K-Nearest-Neighbors were integrated for predicting 
the protein function (Pandey et al., 2009). Support Vector Machine 
(SVM) was proposed to categorize proteins from different functional 
classes based on their amino acid sequences (Li et al., 2016). Decision 
tree and Random Forest were proposed for domain-based prediction of 
protein interactions (Chen & Liu, 2005). Co-learning (Nam et al., 2005) 
and Naive Bayes (Cao, Katheleen, Duong, & Ciso, 2008; Malik, Segun, 
Louise, & Showe, 2008) models were used for protein function predic-
tion, achieving promising results. Compared to traditional machine 
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learning models, deep learning models can learn directly from the 
original amino acid sequence data, without the need for human feature 
extraction. At the same time, the issues such as excessive dimensionality, 
redundancy, and noise in protein sequence data were successfully 
addressed by deep learning (Lv et al., 2019).

DeepGO (Kulmanov et al., 2018), DeepGOPlus (Kulmanov & 
Hoehndorf, 2020), ProtConv (Sara, Hasan, Ahmad, & Shatabda, 2021), 
and Deep_CNN_LSTM_GO (Elhaj-Abdou, El-Dib, El-Helw, & EII- 
Habrouk, 2021), DeepFRI (Gligorijević et al., 2021) and MMSNet (Liu, 
Zhang, Huang, Wei, & Guan, 2025) are the deep learning models 
designed to predict protein functions. DeepGO was proposed to predict 
protein functions using Convolutional Neural Network (CNN) model 
based on protein sequence and protein interaction networks. Based on 
the DeepGO, DeepGOPlus predicts functional annotations of proteins by 
combining DeepGOCNN, which predicts functions from the amino acid 
sequence of a protein using a 1D convolutional neural network, with the 
DiamondScore. ProtConv was proposed by Sara et al. to converted 
protein into vector representations, which are subsequently transformed 
into single-channel 2D images for processing through the CNN. Elhaj- 
Abdou et al. combined the CNN and Long Short-Term Memory (LSTM) 
networks to propose the Deep_CNN_LSTM_GO model for protein func-
tion prediction. This model does not require specialized GPU training 
and can be trained on any standard CPU. A graph convolutional network 
(GCN) was used in the DeepFRI to link sequence and structural data and 
achieves better performance in protein function prediction by using 
experi-mentally determined protein structure data. A multiscale one- 
dimensional convolutional neural network (1DCNN) was combined 
with a two-dimensional convolutional neural network (2DCNN) to 
enable the MMSNet to capture features.

Although existing models have achieved promising predictive per-
formance in protein function prediction, there are still several issues 
with the present protein function prediction model. First, because the 
protein sequence has a certain length, existing models have difficulty 
capturing the long-range dependencies between amino acids when 
processing long protein sequences. At the same time, due to the specific 
environmental adaptability of grain proteins, their protein composition 
varies across different periods(Eugène et al., 2003), leading to more 
complex and stronger dependencies between amino acids. Mature grain 
proteins show great complexity and interaction (Anam et al., 2023). 
Secondly, the valid protein features information and the invalid protein 
information in the protein sequence cannot be identified, which impedes 
the identification of critical amino acid sequences that significantly in-
fluence protein function. Finally, the order of amino acid sequence is not 
considered by the existing models. When the amino acids in the 
sequence change, existing models may struggle to adapt effectively to 
these variations.

Given the current problems, PBiLSTM-FCN was proposed for pre-
dicting the functions of grain proteins in this study. In this study, a 
unique prediction method PBiLSTM-FCN is proposed to handle the 
problem of protein function prediction, taking into account the current 
problems mentioned above. First, the Fully Convolutional Networks 
(FCN) (Karim, Majumdar, Darabi, & Harford, 2019; Shelhamer et al., 
2017) are used to automatically train effective features directly from 
raw protein sequence data, while accounting for the amino acid 
sequence order and adjusting for variations in amino acids. The com-
bination of a deep coarse layer with a shallow fine layer is employed to 
achieve accurate and detailed information. To ensure precise and 
comprehensive feature extraction, the Squeeze-Excitation (SE) block is 
included concurrently to adaptably calibrate the input features. 
Furthermore, the bidirectional Long Short-Term Memory networks 
(BiLSTM) was proposed to extract the global and local features of pro-
teins for addressing the challenge of the long-range dependencies. 
Importantly, the BiLSTM is better equipped to handle the inherent 
complexities of grain proteins.

In summary, the PBiLSTM-FCN model has been proposed to predict 
the functions of grain proteins, enabling the investigation of 

unannotated proteins within public protein databases. Moreover, new 
varieties that are more nutritious and higher yielding can be developed 
with the assistance of this model, thereby promoting advancements in 
agronomy. Protein data from four types of grains—soybean, maize, 
indica, and japonica—were obtained to predict grain protein functions 
in UniProtKB, ensuring diversity across the selected species. For evalu-
ating the model's performance, a thorough analysis was conducted using 
five evaluation metrics, and comparisons with existing models were 
made, demonstrating the superior generalization and robustness of the 
PBiLSTM-FCN. Furthermore, through interpretability analysis methods, 
mis-predicted proteins were identified, and a comparison between the 
actual annotated protein functions and the predicted outcomes from the 
model was conducted. This process revealed potential annotations for 
grain proteins, establishing a foundation for subsequent functional 
validation and biological research.

The architecture of the study was shown in Fig. 1, which includes 
data acquisition, data processing, data division, PBiLSTM-FCN, and 
model evaluation. The PBiLSTM-FCN mode is proposed for grain protein 
function prediction, which combines BiLSTM branch that the long-term 
trend of protein data was learned and FCN branch that local feature 
information of protein data was extracted. The comparative experiments 
between PBiLSTM-FCN and existing models in five evaluation metrics 
were demonstrated that the performance of PBiLSTM-FCN outperforms 
existing models. The results demonstrate the generalization and effec-
tiveness of the model. The interpretability analysis is used by the actual 
protein function compared with the predicted protein function. The 
interpretability analysis of the results also identified potential function 
annotations of protein. Finally, the study is summarized with emphasis 
placed on the application value of the PBiLSTM-FCN model in predicting 
grain protein functions.

2. Materials and methods

2.1. Datasets

Deep learning models typically require large-scale datasets to ensure 
their generalization and robustness. When selecting specific proteins, 
the data was obtained for oats and other grains type. However, the 
dataset sizes for oats were too small to effectively train deep learning 
models. Soybeans is considered as an important food source to meet 
protein demand for the human body, and has been regarded as the most 
popular plant protein with the highest industrial production (Pingxu 
et al., 2022). Maize and its products comprised 30 % of food supply for 
Americas, 38 % for Africans and 6.5 % for Asian (Maqbool et al., 2021). 
Rice is one of the most important food grains in the world (Ma et al., 
2022). Indica and japonica rice are the two subspecies of cultivated rice. 
More than half of the population in the world relies on rice as a staple 
food (Min, Chengjing, Jiaxin, Jiana, & Fangbo, 2023). Rice is not only an 
energy source but also an important nutritional source for rice con-
sumers. The four grains are important among grains, covering the di-
versity of grain species. Plant proteins typically lack one or two essential 
amino acids. In soybeans, methionine and cysteine (SAA) are lacking 
(Pingxu et al., 2022). Lysine and tryptophan are deficient in maize 
(Maqbool et al., 2021). Lysine and threonine are not sufficiently present 
in Indica and Japonica rice (Jiang, Ma, Xie, & Ramachandran, 2016). 
The amino acid profiles of these four grains can complement each other, 
thus providing a more comprehensive coverage of essential amino acids 
when used in combination, sufficient to cover biodiversity. Therefore, 
the four grain types (soybean, maize, indica rice, and japonica rice) with 
sufficiently large datasets were chose for the study.

Considering the diversity of grains and the requirement for large 
datasets, grain protein data for four types of grain proteins—soybean, 
maize, indica, and japonica—were selected from the SwissProt of Uni-
ProtKB (https://www.uniprot.org/uniprotkb). The data in the SwissProt 
database are manually annotated function data from the UniProtKB. 
Gene Ontology (GO) annotations are currently widely recognized as the 
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gold standard for protein function annotation (Huntley, Sawford, Mar-
tin, & Donovan, 2014). The GO is divided into three distinct sub- 
ontologies according to different functional categories: Molecular 
Function (MF), Biological Process (BP), and Cellular Component (CC) 
(Suzi et al., 2023). Separate datasets were constructed for each of the 
three GO sub-ontologies—MF, BP, and CC—based on the scope of GO 
functional annotations. When selecting protein sequences for each type 
of grain, the following criteria was adopted: the protein sequences with 
complete GO annotations were selected to ensure the accuracy of the 
labels. Based on the current Gene Ontology (GO), grain proteins with 
experimental evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, and IC) 
were filtered and retained, removing any proteins without annotations. 
When annotating grain proteins, the hierarchical structure of GO terms 
was utilized. During the annotations of protein, the issue of proteins 
having GO terms from different sub-ontologies was considered. For 
example, if a protein P has both BP and MF terms, it would be included 
in both the BP and MF datasets. In the study, each GO class contains at 
least 50 annotated proteins. The data volume of four grain types (soy-
bean, maize, indica and japonica) and their distribution under different 
sub-ontology (BP, MF, CC) were shown in the Table 1.

The original dataset was divided into an 80 % training set and a 20 % 

test set, ensuring that the test set was entirely independent of the 
training process, thereby allowing for an objective evaluation of the 
model's generalization capability. From the training set, a validation set 
was partitioned to tune model parameters and prevent overfitting, with 
the data samples between the training, validation, and test sets kept 
mutually independent. Furthermore, experiments were conducted 10 
times, with results averaged, reducing the impact of random factors and 
enhancing the reliability of the conclusions.

2.2. Data representation

The amino acid composition method(n-gram) was used (Kabli et al., 
2018) to statistically analyze amino acid sequences and digitize protein 
sequence data in this study. The amino acid was divided into 1-g and 2-g 
groups, as shown in Fig. 2 and Fig. 3, respectively. The protein sequence 
is consisted of 20 natural amino acids {A, C, D, E, F, G, H, I, K, L, M, N, P, 
Q, R, S, T, V, W, Y}，which are encoded as nature numbers{1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}. The trainable 
temporary embedding coding approach was used to initialize each item 
as a random vector with varying word vector dimension sizes. During 
the training process, the dimension of the word vector is trained 
together with other network parameters, and Tables 2 and 3 show the 
encoding strategy of the trainable embedding approach. The embedding 
vector size was designed using the research of Zuallaert, Pan, Saeys, 
Wang, & Neve (2019). Specifically, the word vector dimension size was 
found to be [5,10,15] for a 1-g amino acid composition and [5, 10, 15, 
32, 64, 128] for a 2-g amino acid composition. For instance, the vector 
randomly assigned to amino acid A is [0.01, − 0.02, 0.03,0.01, − 0.01] 
when the size is 5.

2.3. FCN and BiLSTM

Convolutional layers and pooling layers were combined to form the 
FCN, a particular kind of neural network (Villa et al., 2018). This version 
of CNN is devoid of completely connected layers. Fixed-length feature 
vectors are obtained by applying numerous fully connected layers after 
convolutional processes. On the other hand, the convolutional layers 
with varying parameters were substituted for each fully connected layer. 
The input data that have the same length and have a fixed size was 
required in the CNNs. Zero-padding is necessary to make the input data 

Fig. 1. The architecture of the study.

Table 1 
The distribution of protein sequences samples in the grain protein dataset.

Grain type Sub-ontology Training samples Test samples Total

Soybean BP 264 67 331
MF 283 71 354
CC 256 65 321

Maize BP 534 134 668
MF 608 153 761
CC 612 153 765

Indica BP 652 164 816
MF 756 189 945
CC 754 189 943

Japonica BP 2588 647 3235
MF 2858 715 3573
CC 2796 700 3496
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the same size if it is not long enough. However, FCN does not impose any 
limitations on the amount of the input data and is capable of accepting 
files of any size, including varying their dimensions. When processing 
lengthy sequence data, FCN is more adaptable than CNN and retains 
more characteristics from the protein data. This method is used in this 
work to predict the functional properties of grain proteins using an FCN- 
based model.

While knowledge from previous data can was extracted in the 
Recurrent Neural Networks (RNNs) (Zaremba et al., 2015), their context 
range for information storage is constrained. Learning from extended 
sequences can be severely hampered by this restriction, which can result 
in problems like vanishing gradients, bursting gradients, and lengthy 
training times. The-LSTM were presented by Hochreiter and Schmid-
huber (1997) and Hochreiter (1998) as a solution to the RNN's noted 
issues. By including three control gates and a memory cell, the 
sequential input was handled by LSTM and improves the model's ability 
to represent sequences with long-term dependencies. It allows the model 
to learn longer sequences of dependencies and helps mitigate the issue of 
vanishing or ballooning gradients. Consequently, NLP and other 
sequence data processing tasks frequently employ LSTMs. Fig. 4 displays 
the architecture of the BiLSTM network.

2.4. Squeeze-excitation

To better extract distinctive features between amino acid segments 
with high similarity in protein sequences, the Squeeze-and-Excitation 
(SE) block proposed by Hu et al. in 2017 is introduced on the basis of 
the FCN algorithm (Hu et al., 2018). The four components of the SE 
block are Transform, Squeeze, Excite, and Scale. These four methods can 
be used to increase channel attentiveness, which will increase the 
model's capacity to extract characteristics from protein sequences. The 
four components of the Squeeze-Excitation block are explained in detail 
below. 

(i) The formula for a convolutional transform is Ftr : X→U, which 
entails that the input X ∈ ℝW'×H'×C' is mapped to the unweighted 
featureU ∈ ℝW×H×C through the Ftr operation. H,W and C are the 
height, width, and number of feature channels of the feature map, 
respectively. The output of Ftr is expressed as U = [u1,u2,⋯uC], 
where uc is defined as shown in Eq. (1).

uc = vc*X =
∑Cʹ

S=1
vs

c*xs (1) 

Where * represents convolution operation, and the 2D spatial kernel is 
represented by vs

c. The single channel of vc acts on the corresponding 
channel of the model, and the interdependence of the channels is 
divided into two steps of squeeze and excitation to adjust the filter 
response. 

(ii) In order to fully extract the global feature information of protein 
sequence from the feature transformed by convolution, the 
feature U is squeezed. The squeeze operation mainly aggregates 
information within the channels along the spatial dimensions, so 
as to obtain the channel statistics that only cover the relationship 

Fig. 2. Example of 1-g splitting.

Fig. 3. Example of 2-g splitting.

Table 2 
Random encoding strategy for trainable embedding methods.

A C D … Y

0.01 0.02 − 0.01 … 0.01
− 0.02 0.03 − 0.03 … 0.01
0.03 − 0.01 0.02 … − 0.04
… … … … …
− 0.01 − 0.03 0.01 … − 0.02

Table 3 
Example of input sequences for trainable embedding.

C M A A A D Y Y Y A …

0.02 0.02 0.01 0.01 0.01 − 0.01 0.01 0.01 0.01 0.01 …
0.03 − 0.02 − 0.02 − 0.02 − 0.02 − 0.03 0.01 0.01 0.01 − 0.02 …
− 0.01 0.03 0.03 0.03 0.03 0.02 − 0.04 − 0.04 − 0.04 0.03 …
… … … … … … … … … … …
− 0.03 0.01 − 0.01 − 0.01 − 0.01 0.01 − 0.02 − 0.02 − 0.02 − 0.01 …
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between channels, and eliminate the interference of spatial dis-
tribution information. The squeeze operation is usually imple-
mented by using the global average pooling operation to 
compress each channel of the transformed feature U along the 
spatial dimension H × W thereby obtaining the channel statistics 
z ∈ ℝc. Where C represents the number of channels, and the nth 
element of Z is computed using Fsq(un) as defined in Eq. 2.

zn = Fsq(un) =
1

W × H
∑W

j=1

∑H

j=1
un(i, j) (2) 

Where un(i, j) represents the element at the ith row and jth column of the 
nth channel in the feature U where n takes values from 1,2,⋯,C. Fsq(un)

is the function that compresses the input variable of size W × H × C into 
a feature variable of size 1× 1× C. 

(iii) In order to obtain the dependence between channels compre-
hensively and improve the expression ability of protein sequence 
features of the neural network, the compressed channel statistic z 
is stimulated. The excitation operation is achieved through a fully 
connected layer + ReLU function + fully connected layer to form 
a bottleneck structure. The first fully connected layer compresses 
the original input C channels into C/rchannels, The second fully 
connected layer restores C/r channels to C channels. Finally, the 
normalized weight in the range of [0,1] can be obtained through 
the sigmoid function, and the output s is the weight that describes 
the importance of each channel in the feature U. The excitation 
process is represented by the excitation function Fex, as shown in 
Eq. 3.

s = Fex(z,W) = σ[g(z,W) ] = σ[W2δ(W1z) ] (3) 

Where σ and δ represent the sigmoid activation function and the ReLU 

activation function, respectively. W1 ∈ ℝ
C
r×C represents the dimension 

reduction parameter of the first connection layer. W2 ∈ ℝ
C
r×C represents 

the dimension growth parameter of the second connection layer. r rep-
resents the reduction factor that balances the ratio between model 
performance and computational complexity. 

(iv) The feature vector U is multiplied channel-wise with the corre-
sponding weight coefficients s using Fscale, resulting in the final 
output X̃, as shown in Eq. 4 and Eq. 5.

x̃c = Fscale(sc, uc) = ucsc (4) 

X̃ =
[
x̃1,⋯, ̃xc,⋯, x̃C

]
(5) 

The complete squeeze-excitation operation is described above. In 
order to reflect the varying relevance of distinct feature information, 
each channel feature is given an unequal weight. This results in the 
suppression of less important or irrelevant information and the stimu-
lation and amplification of information that is useful for the goal task. 
Consequently, the performance of the PBiLSTM-FCN is enhanced. 
Furthermore, there is no need to modify the neural network topology or 
change the hyperparameters while using the Squeeze-Excitation block. 
It fits well into the current network infrastructure and is quite easy to 
use. The model's complexity and computing load are not appreciably 
increased by the Squeeze-Excitation block. It is frequently used to 
improve model performance in a variety of lightweight models.

2.5. PBiLSTM-FCN

The PBiLSTM-FCN was composed of five main modules. As shown in 
Fig. 5, BiLSTM networks were combined Dropout layer to form BiLSTM 
branch. Conv1D, Batch Normalization (BN) and ReLU were composed to 
form FCN branch. The parallel combination of FCN branch and BiLSTM 
branch forms the PBILSTM-FCN model. The BiLSTM and FCN branch run 
in parallel, which comprehensively utilizes the feature extraction ad-
vantages of FCN and the information mining ability of BiLSTM for long 
sequences.

FCN was formed by combining three Conv1D layers to process input 
data. Ordered amino acid sequence data can be better processed for 
feature extraction, thereby enabling the local information of protein 
data to be captured more effectively. The local features were extracted 
by sliding filters over a one-dimensional sequence in the Conv1D layer. 
Local patterns in protein sequences, such as functional domains, can be 
effectively captured by Conv1D, aiding in the identification of important 
functional domains. To enhance the stability and robustness of the FCN, 
BN layer and ReLU were added after each Conv1D layer. Vanishing or 
exploding gradients was prevented by the BN and dispersed feature 

Fig. 4. BiLSTM network architecture.

J. Liu et al.                                                                                                                                                                                                                                       Food Chemistry 482 (2025) 143955 

5 



distributions in samples was addressed by the BN. A stable distribution 
of input to each layer is ensured by BN, which accelerates the training 
process and improves model stability. Sensitivity to initialization pa-
rameters is also reduced, making training more robust. Nonlinear 
transformations are provided by ReLU, enabling the model to capture 
complex biological signals. A simple and efficient activation function 
that is easy to compute and optimize, ReLU is used to avoid the van-
ishing gradient problem and to enhance the training efficiency of neural 
networks. Additionally, SE modules were added between every two 
Conv1D layers. Channel features are reweighted by the SE, enhancing 
the FCN's focus on important local features and thereby improving 
prediction accuracy and reliability.

BiLSTM was composed of two LSTMs, one LSTM processing sequence 
and the other backward processing. This is particularly useful for un-
derstanding protein sequences, where the function of an amino acid can 
be influenced by its neighboring residues. To address the overfitting 
issue in the neural network model, the BiLSTM branch incorporates 
Dropout alongside the BiLSTM network. Finally, to classify the extracted 
feature information, the outputs from both branches are concatenated 
and passed through a softmax layer. LSTM selectively retains or forgets 
information through its internal memory units and gating mechanisms 
(input gate, forget gate, and output gate), effectively capturing long- 
term trends in time series data.

In summary, the long-term trend of protein data was learned by 
BiLSTM branch and local feature information of protein data was 
extracted by FCN branch. Long-range dependencies in amino acid se-
quences are captured by BiLSTM, aiding in the understanding of the 
overall structure and function of proteins. Conserved patterns and motifs 
within short peptide fragments are identified by FCN to identified the 
order of amino acid sequence. Therefore, PBiLSTM-FCN has been pro-
posed to solve the problem of difficulty in capturing long-range de-
pendencies and the order of amino acid sequences, improving the 
accuracy of model prediction.

The Conv1D in each convolutional block contain numerous filters, 
with filter sizes of 128, 256, and 128 in that order. There are matching 
kernels for the Conv1D in the sizes of 8, 5, and 3. The two parameters 
used in BN are ε and the momentum of the dynamic mean, which are set 
at 0.99 and 0.001, respectively. BN can assist prevent vanishing or 
bursting gradients and successfully address the issue of scattered feature 
distribution in samples. ReLU activation function offers neural network 

training that is effective and simple to compute and optimize. Further-
more, SE are added to the first two Conv1D of the FCN branch, and all SE 
have a dimensionality reduction factor r set to 16. In order to reduce 
model parameters and model calculation, the final layer of the FCN 
branch substitutes a global average pooling layer for the conventional 
fully connected layer. An addition to the FCN that can adaptively adjust 
input features is the SE. This enables the overall model size to increase 
by only 3 %–10 %.

2.6. Evaluation metrics

In protein function classification tasks, model evaluation criteria 
including Accuracy, Precision, Recall, F1-score are frequently employed 
(Xu & Wang, 2019). In order to evaluate the performance of PBiLSTM- 
FCN in comprehensive aspects, the specificity evaluation metric was 
added (Gireen et al., 2023). The five metrics were used in this study as 
evaluation criteria to assess the performance of the protein function 
prediction models. The percentage of the model was shown that is 
genuinely a positive example among the samples that are projected to be 
positive instances, while the percentage of samples was measured by the 
Accuracy that the model predicts is correct. The percentage of samples 
that the model can accurately identify as positive examples is shown by 
the Recall. The F1-score is a comprehensive metric that assesses the 
balance between prediction Accuracy and coverage by taking into ac-
count both Precision and Recall of the model. Among the five perfor-
mance measurements, Accuracy and F1 are the two most significant 
metrics. These five metrics are specifically defined by Eqs. 6–10
respectively. By calculating these metrics, the performance of the pro-
posed model was comprehensively evaluated in protein function pre-
diction tasks. 

Accurary =
TP + TN

TP + TN + FP + FN
(6) 

Precision =
TP

TP + FP
(7) 

Recall =
TP

TP + FN
(8) 

Fig. 5. PBiLSTM-FCN Model Structure.
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F1 =
2 × Precision × Recall

Precision + Recall
(9) 

Specificity =
TN

TN + FP
(10) 

3. Results and discussion

3.1. The prediction results and analysis of the PBILSTM-FCN on different 
grain types

Each experiment was run 10 times, and the average of 10 times 
function prediction results was taken. The results of protein function for 
four different grain types across three sub-ontologies (BP, MF, CC) were 
shown in the Table 4. The word vector size is 128, and amino acid 
composition is 2. Among all sub-ontologies, soybean generally has high 
accuracy, specificity, and F1, especially in BP and MF. The results 
indicate that the soybean has high predictive ability within these two 
ontologies. Specificity is particularly prominent in all types of grains, 
which is crucial for reducing false positive predictions. Accuracy is 
represented by the proportion of samples that the model correctly 
classifies. The F1 is defined as the harmonic mean of precision and 
recall, aimed at balancing the trade-off between the two metrics. The 
high accuracy is achieved through correct classification of the majority 
of samples, and high recall is maintained with effective minimization of 
the false positive rate. As a result, excellent overall performance and 
superior handling of class imbalance issues are demonstrated, ensuring 
precise differentiation between positive and negative instances. From 
the Table 4, it can be seen that models of different grain types perform 
differently in each sub-ontology.

For a clear comparison of grain performance across BP, MF, and CC, 
the results are shown in Fig. 6. In soybeans, the specificity (red bar chart) 
is particularly prominent in all sub-ontologies, indicating that the model 
is effective in correctly identifying true negatives. Similar to soybeans, 
the specificity of maize performs well in all sub-ontologies, demon-
strating the model's powerful ability to distinguish between positive and 
negative predictions. The specificity of indica and japonica are high, 
especially in the BP and MF sub-ontologies, while there is a slight 
decrease in the CC sub-ontology.

3.2. The comparison results and analysis of the PBILSTM-FCN with other 
models on different grain types

To demonstrate the effectiveness of the PBiLSTM-FCN model, mul-
tiple comparative experiments were conducted with other models. First, 
the PBiLSTM-FCN model was compared with basic models (CNN, LSTM, 
and FCN). As test subjects for predicting the function of proteins, the 

soybean, maize, indica, and japonica proteins are selected. The aim of 
these comparisons is to show the advantages of the PBiLSTM-FCN model 
over existing basic models. To further validate the superiority of the 
PBiLSTM-FCN model, an additional comparative experiment was con-
ducted on japonica grain, which has a larger dataset, against the latest 
protein function prediction models (DeepGOCNN, DeepFRI, and 
MMSNet). At the same time, in order to observe the influence of amino 
acid composition and word vector composition on the model, a com-
parison was made between different amino acid compositions and word 
vector compositions on the basic model. The PBiLSTM-FCN is used, and 
word vector sizes are varied according to 1- and 2-g weights. The four 
grain proteins will be used in tests to predict protein function. The ten 
iterations of experimentation were used in every model, after which the 
function predictions are averaged. Additionally, the experimental re-
sults are shown as a percentage, with 1- and 2-g values for n, which 
stands for amino acid composition. The 2-g amino acid composition and 
128-word vectors were selected for use in the comparisons with the 
latest models.

The Soybean protein function prediction results are shown in 
Table 5, over 81 % F1 and accuracy for varying parameter values were 
achieved in the PBiLSTM-FCN. In the BP dataset, an impressive 
87.273766 % was reached in the F1 when n-gram is 2-g and size is 128. 
In the MF dataset, the well performance was shown across various 
parameter settings in the PBiLSTM-FCN, particularly showing 
outstanding performance when using higher dimensions for word em-
beddings. In the MF dataset for soybean, when using a 2-g and a size of 
128, an impressive Accuracy of 89.566377 % was achieved in the 
PBiLSTM-FCN. Moreover, compared to the CNN, the Accuracy 
improvement of 6.686274 % and F1-score improvement of 9.533449 % 
were shown in the PBiLSTM-FCN. In the CC dataset, the LSTM per-
formed better than other models under various parameter settings. The 
lower Accuracy and F1-score were achieved by the LSTM compared to 
the PBiLSTM-FCN, while PBiLSTM-FCN algorithm performs better when 
the dimension of word vector size is higher. In general, the performance 
of different data sets under different parameter settings and models are 
quite different. The excellent performance of the PBiLSTM-FCN model 
across different datasets was shown, particularly when using a higher 
dimensional word vector size, indicating its effectiveness in extracting 
protein features and accurately classifying protein functions.

Maiz protein function prediction results are shown in Table 6, the 
PBiLSTM-FCN model results are better than the other three models 
(CNN, LSTM, and FCN) in regard to Accuracy and F1-score in different 
combinations of word vector size, n-gram, and sub-ontology subsets. In 
the results of maize protein function prediction, the PBiLSTM-FCN 
model's accuracy is above 79 %, and the F1-score is over 70 %. Specif-
ically, in the maize MF data set, the maximum Accuracy and F1-score 
(88.846801 % and 78.360687 %, respectively) were achieved by the 

Table 4 
The prediction results of the PBILSTM-FCN on difficult grain types.

Grain type Sub-ontology Accuracy(%) Precision(%) Recall(%) F1(%) Specificity(%)

Soybean BP 88.333446 81.609949 93.830093 87.273766 83.783784
MF 89.566377 86.721400 87.693513 87.181050 90.843524
CC 86.384032 84.606908 86.991593 85.706566 85.840480

Maize BP 83.22393 74.111709 74.163607 74.114245 87.570820
MF 88.846801 77.602347 79.223470 78.360687 92.150421
CC 83.118925 77.161496 69.400850 73.006987 89.878377

Indica BP 88.055110 79.344762 74.746799 76.908342 92.906584
MF 84.745584 66.047824 61.947255 63.735461 91.110128
CC 81.665445 77.667135 78.478301 78.040732 83.934473

Japonica BP 79.340080 69.295369 62.716729 65.780635 87.072885
MF 85.867983 80.135982 87.610547 83.610528 84.635097
CC 80.085478 78.749999 79.328485 79.010658 80.765669
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PBiLSTM-FCN when the n-gram is 2 g and the size is 128. These results 
are significantly higher than the highest Accuracy and F1-score of other 
models. Comparing the results of PBiLSTM-FCN model with other 
models, it can be observed that in the MF dataset of maize, when n-gram 
is 2-g and size is 64, the Accuracy and F1-score of PBiLSTM-FCN are 
respectively increased by 8.751357 % and 11.073443 % compared with 
CNN. In general, provides the best performance in most cases was shown 
in the PBiLSTM-FCN, and it is particularly obvious when the n-gram is 2. 

This indicates that PBiLSTM-FCN can better identify the relevant in-
formation of protein sequence, and improve the Accuracy of maize 
protein function prediction models. Therefore, it can be concluded that 
the PBiLSTM-FCN exhibits superiority in predicting maize protein 
functions.

Indica protein function prediction results are demonstrated in 
Table 7 that the PBiLSTM-FCN of the protein function with an accuracy 
of more than 81 %. The PBiLSTM-FCN is best when the n-gram is 1 and 

Fig. 6. The bar chart of results on different grain type.
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Table 5 
Soybean protein function prediction results.

Sub-ontology n size Algorithm Accuracy(%) Precision(%) Recall(%) F1(%) Specificity(%)

BP

1

5

CNN 82.834667 75.868729 89.866942 82.175838 77.23356
LSTM 82.931251 78.763315 85.122721 81.794114 81.12943
FCN 83.684108 76.597773 89.106400 82.379638 79.62617
PBiLSTM-FCN 83.749574 76.758085 89.123185 82.471818 79.70914

10

CNN 83.774969 76.203455 89.657296 82.359733 79.45941
LSTM 82.575701 79.006537 84.400276 81.588724 81.03256
FCN 83.820465 76.399530 89.727363 82.489345 79.43862
PBiLSTM-FCN 84.119299 77.783074 88.757872 82.888021 80.5629

15

CNN 83.860919 76.657388 89.434810 82.469605 79.70767
LSTM 83.035207 78.810990 85.254838 81.890340 81.21626
FCN 83.678622 76.601723 89.082741 82.371741 79.63384
PBiLSTM-FCN 84.086603 77.883666 88.631852 82.876492 80.57937

2

5

CNN 83.635053 76.759020 88.728470 82.225708 79.80652
LSTM 83.464150 78.040678 87.192978 82.327730 80.50058
FCN 83.645182 76.669462 88.930376 82.345253 79.67581
PBiLSTM-FCN 85.773566 79.449465 90.376932 84.526490 82.2852

10

CNN 83.073111 76.860328 87.625583 81.577528 79.54285
LSTM 83.452794 78.606597 86.655546 82.406627 80.85253
FCN 83.660384 76.657933 88.999032 82.368302 79.65181
PBiLSTM-FCN 85.788450 79.722255 90.536966 84.697848 82.09678

15

CNN 82.761675 77.760748 85.589036 81.065510 80.51053
LSTM 83.428532 78.531973 86.406079 82.256026 81.03826
FCN 83.636660 76.718093 88.891664 82.356967 79.67789
PBiLSTM-FCN 86.722037 81.017884 90.686623 85.529498 83.67615

32

CNN 83.543773 77.168833 88.401511 82.271845 79.79014
LSTM 83.469416 79.220993 85.965848 82.418250 81.41136
FCN 83.658680 76.641582 88.991942 82.355760 79.65888
PBiLSTM-FCN 86.713482 80.871179 91.017203 85.574588 83.3938

64

CNN 82.777965 78.490359 85.695575 81.908253 80.33482
LSTM 83.214532 79.306163 85.597690 82.287213 81.20964
FCN 83.653720 76.664562 88.969181 82.359204 79.66168
PBiLSTM-FCN 87.228277 81.477041 91.597277 86.210966 83.83717

128

CNN 83.063722 77.717302 87.015175 81.713270 79.87647
LSTM 83.490417 78.987836 85.950057 82.295827 81.5003
FCN 83.621220 76.730092 88.821937 82.333902 79.70236
PBiLSTM-FCN 88.333446 81.609949 93.830093 87.273766 84.23512

MF

1

5

CNN 84.918129 69.152386 94.389374 79.782133 80.54099
LSTM 84.506414 71.615831 91.451696 80.206771 80.83389
FCN 84.141597 67.576682 94.939979 78.953553 79.21423
PBiLSTM-FCN 85.169246 80.234054 83.787658 81.964120 86.09964

10

CNN 83.688996 71.464574 93.046063 80.753080 78.19811
LSTM 84.433128 70.110571 92.783671 79.797987 80.26737
FCN 84.014794 67.206609 95.145581 78.771686 78.97369
PBiLSTM-FCN 84.764751 80.157732 82.856342 81.460114 86.06166

15

CNN 84.815538 69.381968 93.952487 79.776206 80.52338
LSTM 84.716341 71.281173 91.900680 80.193637 81.03686
FCN 83.990119 67.116145 95.203567 78.729448 78.92334
PBiLSTM-FCN 85.647028 80.952619 84.079389 82.464855 86.70087

2

5

CNN 84.945325 71.472787 91.503378 79.839945 81.6504
LSTM 85.971761 76.834809 88.911471 82.287914 84.24386
FCN 84.088725 67.294106 95.150682 78.833472 79.08598
PBiLSTM-FCN 87.929360 82.695014 87.403243 84.965545 88.26686

10

CNN 85.202161 69.827946 94.078379 80.094308 81.06835
LSTM 85.864156 77.296272 88.485550 82.327610 84.27847
FCN 84.034368 67.288495 95.089718 78.808351 79.01592
PBiLSTM-FCN 87.791403 82.957439 86.298626 84.511449 88.73953

15

CNN 84.784501 69.327079 94.168210 79.768902 80.36138
LSTM 85.830325 78.566775 87.244930 82.463206 84.93492
FCN 84.016342 67.162576 95.190374 78.756851 78.96636
PBiLSTM-FCN 87.567754 83.545077 85.462697 84.464177 88.94969

32

CNN 85.160914 71.314384 92.765454 80.434876 81.36266
LSTM 86.707825 80.000607 87.737968 83.559934 86.05278
FCN 84.043224 67.165585 95.220296 78.769186 79.00111
PBiLSTM-FCN 88.786214 84.574610 87.355546 85.901044 89.71019

64

CNN 83.382452 66.779389 94.768227 78.285794 78.09128
LSTM 86.664459 80.790975 86.817141 83.559957 86.56508
FCN 84.009960 67.198518 95.147555 78.766309 78.96584
PBiLSTM-FCN 89.071571 85.734568 87.285188 86.475579 90.26854

128

CNN 82.880103 65.995073 94.752258 77.647601 77.37947
LSTM 87.167469 81.310257 87.447227 84.170391 86.98634
FCN 83.975518 67.135579 95.166787 78.729429 78.90887
PBiLSTM-FCN 89.566377 86.721400 87.693513 87.181050 90.84352

(continued on next page)
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the size is 15, but otherwise, all of the models perform fairly similarly in 
the BP data set of indica. At this point, the PBiLSTM-FCN algorithm's 
accuracy, which stands at 88.29014 %, reaches its maximum. With an 
F1-score of 78.040732 %, the top results in the CC data set were deliv-
ered by the PBiLSTM-FCN when the n-gram is 2 g and the size is 128. 
When n-gram is one gram and size is 5, an increase of 5.541422 % in the 
F1-score in the MF data set was observed compared to other models. 
Among the different algorithms, the best performance was exhibited by 
the PBiLSTM-FCN, followed by the FCN algorithm, LSTM algorithm, and 
CNN. In terms of precision, the best performance on BP and CC datasets 
was delivered by the PBiLSTM-FCN, with a slightly lower performance 
on MF dataset, whereas the worst performance across all sub-ontology 
subsets was shown by the CNN. The highest F1-score continues to be 
achieved by PBiLSTM-FCN, while the lowest performance in this regard 
is consistently demonstrated by CNN. The performance of the FCN and 
LSTM is extremely similar. A trend similar to the previously indicated 
Accuracy and F1-score performance is exhibited by recall and accuracy. 
Overall, the other three models were outperformed by the PBiLSTM-FCN 
in various parameter settings and sub-ontology subsets. The PBiLSTM- 
FCN has better adaptability in the selection of sub-ontology, n-gram 
and word vector dimension, and has better performance in Indica pro-
tein function classification.

Japonica protein function prediction results are shown in Table 8
that the PBiLSTM-FCN's Accuracy above 78 %. Specifically, in the BP 
dataset of japonica, the PBiLSTM-FCN is better than the other three 
models in terms of both Accuracy and F1-score. In addition, the high 
Precision was shown in the PBiLSTM-FCN, but the recall is slightly lower 
than the other three models. The model has fewer false positive pre-
dictions compared other algorithms, but the coverage of actual positive 
results is slightly lower. In the MF dataset for japonica, the PBiLSTM- 
FCN performance is better than the other three models in terms of 

Accuracy, Precision, and F1-score. It is only slightly inferior in terms of 
recall, especially when n-gram is 1-g and size is 5. In this case, the Ac-
curacy and F1-score of the PBiLSTM-FCN are the highest, at 87.251059 
% and 85.377289 %, respectively. On the japonica CC dataset, PBiLSTM- 
FCN still has excellent performance, achieving the highest scores in both 
Accuracy and F1-score, and the performance is relatively stable. 
Compared with the results of other models, it can be found that when n- 
gram is 1-g and size is 10, the Accuracy of PBiLSTM-FCN in MF dataset is 
improved by 3.648091 % compared with LSTM, and the F1-score in CC 
dataset is improved by 4.413416 % compared with CNN. It is worth 
noting that compared to the BP dataset and CC dataset, all models and 
different parameter combinations performance is better on the MF 
dataset in terms of various performance evaluation metrics. This may be 
due to the fact that the MF dataset of japonica is easier to classify protein 
functions. In general, the Accuracy and F1-score of PBiLSTM-FCN are 
significantly superior to CNN, LSTM and FCN under the combination of 
different sub-ontology subsets, n-gram and size, and could effectively 
improve the performance of japonica protein function prediction model.

A substantial amount of data was required in the deep learning 
models to train and learn effectively. Given that Japonica has a large and 
representative dataset, it was chosen for comparison experiments with 
the latest models. In previous comparisons with basic models (Table 8), 
the results showed that the configuration using 2-g and 128-word vec-
tors yielded the best performance. Therefore, this configuration was 
adopted for the comparison with the latest models. The performance 
comparisons were made between CNN, LSTM, FCN, DeepGOCNN, 
DeepFRI, MMSNet, and PBiLSTM FCN on different sub-ontologies (BP, 
CC, and MF). In order to visually demonstrate the differences between 
these models on sub-ontologies, multiple types of charts were compared 
in presentation, and radar charts were ultimately chosen to present the 
results. In the radar charts, lines closer to the outer edge indicate better 

Table 5 (continued )

Sub-ontology n size Algorithm Accuracy(%) Precision(%) Recall(%) F1(%) Specificity(%)

CC

1

5

CNN 80.786536 83.266121 76.445676 79.337679 85.01932
LSTM 80.505676 79.517515 80.205336 79.824033 80.78501
FCN 80.224802 79.350018 80.001822 79.674222 80.43435
PBiLSTM-FCN 81.930389 80.623759 82.088870 81.323850 81.78406

10

CNN 80.804231 83.395986 75.948788 79.110403 85.46986
LSTM 80.974944 79.623989 81.041266 80.299060 80.91391
FCN 79.958334 77.439382 81.440821 79.056568 78.62262
PBiLSTM-FCN 82.270045 81.677594 81.717679 81.673136 82.78866

15

CNN 80.258253 81.608930 76.363558 78.620882 83.9016
LSTM 80.658589 79.148572 80.963359 80.041883 80.37822
FCN 80.224802 79.350018 80.001822 79.674222 80.43435
PBiLSTM-FCN 82.335377 81.057466 82.483492 81.745839 82.19859

2

5

CNN 80.794637 82.887310 76.777237 79.614553 84.67793
LSTM 80.795165 78.329756 81.775862 80.003439 79.92494
FCN 79.951003 77.394816 81.499365 79.074054 78.55616
PBiLSTM-FCN 85.483372 85.156716 84.672510 84.811621 86.23939

10

CNN 80.617528 82.712718 76.228123 78.847011 84.80413
LSTM 81.353864 79.703558 81.625628 80.618123 81.10685
FCN 80.227746 79.364784 79.978626 79.670012 80.46181
PBiLSTM-FCN 86.171688 85.707166 85.556483 85.569227 86.7433

15

CNN 80.651799 82.548343 77.091763 79.508464 84.12042
LSTM 80.431736 78.995721 80.657444 79.801143 80.2236
FCN 80.235614 79.434473 79.941701 79.686527 80.51236
PBiLSTM-FCN 86.465337 85.239140 86.676219 85.914020 86.27247

32

CNN 81.017571 84.636587 74.721839 78.962529 87.03529
LSTM 80.797646 78.904096 81.278187 80.027133 80.36341
FCN 80.224802 79.350018 80.001822 79.674222 80.43435
PBiLSTM-FCN 86.191387 82.909412 88.548912 85.587360 84.14338

64

CNN 80.118485 78.620009 80.567277 79.570466 79.70272
LSTM 81.870444 81.026722 81.289989 81.121238 82.40693
FCN 80.218947 79.307176 80.033379 79.668344 80.39318
PBiLSTM-FCN 86.686592 84.137618 88.141146 86.006131 85.40943

128

CNN 80.797391 82.365842 77.674034 79.594850 83.83372
LSTM 81.167120 79.449073 81.412888 80.371060 80.94474
FCN 80.247933 79.524185 79.870856 79.696436 80.60358
PBiLSTM-FCN 86.384032 84.606908 86.991593 85.706566 85.84048
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Table 6 
Maize protein function prediction results.

Sub-ontology n size Algorithm Accuracy(%) Precisioin(%) Recall(%) F1(%) Specificity(%)

BP 1 5 CNN 78.544200 69.484262 66.851200 68.095159 84.655484
LSTM 78.197051 72.432247 66.265051 69.155263 85.199344
FCN 77.778116 68.740618 68.172917 68.455446 83.034566
PBiLSTM-FCN 79.324042 74.226171 66.990699 70.400204 86.488119

10 CNN 77.789239 69.061987 67.349360 68.116635 83.499010
LSTM 78.471467 74.208613 64.879823 69.148248 86.567809
FCN 77.799325 68.740169 68.153683 68.445530 83.068672
PBiLSTM-FCN 79.550006 75.080869 66.082800 70.263879 87.329809

15 CNN 77.733140 69.486513 67.131978 68.200125 83.622622
LSTM 78.873225 73.846241 66.044326 69.708007 86.356302
FCN 77.788903 68.833927 68.082414 68.455586 83.107915
PBiLSTM-FCN 79.304355 75.418300 65.770018 70.240933 87.313834

2 5 CNN 77.770300 67.710944 66.719982 67.122164 83.500729
LSTM 79.473625 73.794533 66.896786 70.101109 86.578962
FCN 77.202792 66.375590 70.886632 67.749596 80.612815
PBiLSTM-FCN 80.781856 70.439344 71.671246 71.029952 85.249752

10 CNN 77.863730 69.338235 67.352899 68.254985 83.637958
LSTM 79.483164 73.425955 67.346760 70.216837 86.303176
FCN 77.772870 68.805500 68.080977 68.440491 83.084360
PBiLSTM-FCN 81.118251 70.891927 71.938831 71.381859 85.594888

15 CNN 77.565466 68.726226 66.913484 67.785587 83.379753
LSTM 79.537081 73.452183 67.919880 70.564885 86.110251
FCN 77.764336 68.787936 68.126872 68.455610 83.049112
PBiLSTM-FCN 81.728627 71.292109 72.951529 72.077375 85.931934

32 CNN 78.579041 70.866177 65.472565 67.933192 85.593852
LSTM 80.554165 75.425513 67.861928 71.329337 87.645946
FCN 77.798410 68.810606 68.098495 68.451887 83.107060
PBiLSTM-FCN 82.025695 71.648687 73.076722 72.319633 86.273683

64 CNN 77.910185 68.001107 68.665615 68.305155 82.824279
LSTM 79.849080 74.956964 67.402873 70.943732 87.021951
FCN 77.754791 68.692731 68.226789 68.458032 82.972349
PBiLSTM-FCN 82.899403 73.666631 73.726967 73.666960 87.314425

128 CNN 78.210751 68.569391 67.159357 67.807984 83.966642
LSTM 80.389522 75.086803 67.706268 71.160333 87.466088
FCN 77.775899 68.808447 68.063509 68.433102 83.096803
PBiLSTM-FCN 83.223933 74.111709 74.163607 74.114245 87.570824

MF 1 5 CNN 82.665433 64.214089 72.643216 67.948973 86.105265
LSTM 83.184186 72.052242 67.842182 69.846914 89.377378
FCN 82.395773 63.145929 74.638662 68.410869 85.056750
PBiLSTM-FCN 83.298106 71.313612 68.842869 70.029768 89.026284

10 CNN 82.706426 64.190925 73.365976 68.297554 85.919807
LSTM 83.415015 72.913298 68.327245 70.485641 89.598004
FCN 82.385911 63.147251 74.646915 68.416263 85.042978
PBiLSTM-FCN 83.878053 72.329188 69.817783 71.016353 89.437956

15 CNN 82.555668 63.374824 73.548647 67.959453 85.605872
LSTM 83.226002 73.486198 66.667557 69.817811 90.065132
FCN 82.367902 63.056389 74.717097 68.390478 84.991073
PBiLSTM-FCN 84.837906 73.323179 70.774505 72.004601 90.193716

2 5 CNN 83.078022 65.921695 70.340334 67.785492 87.467960
LSTM 83.722096 73.265214 69.484289 71.262167 89.575710
FCN 82.408243 63.103175 74.650352 68.388727 85.063066
PBiLSTM-FCN 86.582262 74.663636 75.459899 75.031185 90.645461

10 CNN 82.065649 63.647246 73.394158 67.877775 85.139648
LSTM 83.751892 74.131105 67.862654 70.760154 90.276168
FCN 82.370532 63.059372 74.665528 68.372146 85.010948
PBiLSTM-FCN 86.759393 74.412395 76.142436 75.250777 90.579421

15 CNN 82.648063 64.830268 73.078981 68.478237 86.021966
LSTM 84.613220 74.561053 70.987830 72.687351 90.152913
FCN 82.380595 63.202110 74.609323 68.432525 85.054355
PBiLSTM-FCN 87.390558 76.535178 75.942011 76.217695 91.547008

32 CNN 81.567773 61.933490 74.850617 67.667930 83.916125
LSTM 84.292080 74.622741 69.627308 71.894036 90.299742
FCN 82.375057 63.225173 74.566566 68.428014 85.064079
PBiLSTM-FCN 87.650529 76.789647 76.627631 76.660382 91.632680

64 CNN 79.389690 56.942675 79.693187 65.975375 79.285362
LSTM 84.238127 73.634201 70.201686 71.828354 89.885884
FCN 82.372394 63.132767 74.677569 68.420704 85.016279
PBiLSTM-FCN 88.141047 76.275187 77.897764 77.048818 91.664830

128 CNN 82.787238 64.312458 71.939112 67.521059 86.465285
LSTM 84.139045 73.961428 70.069517 71.875871 89.899708
FCN 82.392933 63.264475 74.566911 68.451548 85.088183
PBiLSTM-FCN 88.846801 77.602347 79.223470 78.360687 92.150422
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performance, with the red line representing the PBiLSTM-FCN model. 
Five evaluation metrics (Accuracy, Precision, Recall, F1 score, and 
Specificity) were used comprehensively to assess the model perfor-
mance. The performance comparisons of PBiLSTM-FCN with other latest 
models based on these five metrics are presented in Figs. 7 to11. The 
Accuracy evaluation metric is presented in Fig. 7. PBiLSTM-FCN is 
positioned at the outermost edge on all three sub-ontologies, demon-
strating its high accuracy. In contrast, the performance of the Deep-
GOCNN and DeepFRI is poorer, being closer to the center. The result was 
indicated that PBiLSTM-FCN has a significant advantage in overall 
classification accuracy. For Precision (Fig. 8), the line of MMSNet is on 
the outermost layer, while PBiLSTM-FCN follows closely behind. The 
MMSNet performs better in reducing false positives, especially on the BP 
sub-ontology. In the Recall metric (Fig. 9), the CC sub ontology of 
PBiLSTM-FCN has the best results, while the results of FCN and DeepFRI 
in the BP sub-ontology are better than PBiLSTM-FCN. On the BP sub- 
ontology, all relevant instances can be better identified by the FCN 
and DeepFRI, although more false positives may be included. Regarding 
F1 Score (Fig. 10), for the CC and MF sub-ontologies, the highest F1 
score was achieved by the PBiLSTM-FCN, indicating its better compre-
hensive performance in these two sub-ontologies. On the BP sub- 
ontology, the line of DeepFRI is on the outermost layer, the result is 
superior to the PBiLSTM-FCN. For Specificity (Fig. 11)，the line of 
PBiLSTM-FCN is located at the outermost edge on all three sub- 
ontologies, showing its excellent performance in excluding negative 
examples. Conversely, the yellow line of DeepGOCNN is at the inner-
most position, indicating its poor performance in specificity. The 
excellent performance of the PBiLSTM-FCN model was validated by the 
experiments conducted on the representative Japonica dataset. Overall, 
the best performance of the PBiLSTM-FCN was shown in accuracy and 
specificity, making it suitable for protein function prediction. It can 

correctly predict protein functions while minimizing false negatives.

3.3. The ablation experiment results of the PBILSTM-FCN on different 
grain types

The ablation experiments aim to analyze and compare the impact of 
different components of the PBiLSTM-FCN on overall performance, 
proving the effectiveness and robustness of the PBiLSTM-FCN model. To 
clearly observe the performance on each type of grain in different sub- 
ontologies, the ablation experiment results for BP, MF, and CC sub- 
ontologies are presented in Figs. 12 to 14. Based on the three sub- 
ontologies, the performances of four grains (Soybean, Maize, Indica, 
Japonica) are depicted in separate subplots. The performance of 
different models (LSTM module, FCN module, PBiLSTM-FCN) was 
illustrated in each subplot by five evaluation metrics (Accuracy, Preci-
sion, Recall, F1, Specificity). In Fig. 12 of the BP sub-ontology, the re-
sults of the PBiLSTM-FCN model (green) are superior to the LSTM 
module (blue) and FCN module (orange), particularly in terms of Recall 
and F1 Score. For Maize and Japonica, the results of the LSTM are 
notably outstanding in Specificity, while PBiLSTM-FCN shows better 
performance in Precision and Recall. The advantages of bidirectional 
LSTM and FCN were combined into the PBiLSTM-FCN, providing a more 
balanced performance in biological process prediction tasks. On the MF 
sub-ontology (Fig. 13), the results of the PBiLSTM-FCN model exhibit 
similarly high performance as observed on the BP sub-ontology. High 
Recall and F1 scores indicate that the model effectively balances preci-
sion and recall. The performance of models differs significantly across 
various grains and sub-ontologies, indicating that the type of grain has a 
notable impact on model performance. In some cases, the FCN may have 
higher Recall values, while in other scenarios, PBiLSTM-FCN shows 
greater advantages in Specificity. In Fig. 14 of the CC sub-ontology, the 

Table 6 (continued )

Sub-ontology n size Algorithm Accuracy(%) Precisioin(%) Recall(%) F1(%) Specificity(%)

CC 1 5 CNN 78.185709 77.561683 63.369886 69.742597 87.935672
LSTM 78.878478 76.218984 64.138203 69.570813 87.837308
FCN 78.004268 77.529430 63.691499 69.931249 87.610443
PBiLSTM-FCN 81.044463 77.790176 68.589455 72.887108 88.413581

10 CNN 78.174182 78.689051 62.446960 69.403559 88.690901
LSTM 79.622871 76.178392 65.775754 70.544802 87.821577
FCN 77.976071 77.526540 63.731980 69.954789 87.564171
PBiLSTM-FCN 82.337635 79.209481 70.559356 74.610220 89.203759

15 CNN 77.625576 76.554856 64.301194 69.868000 86.655079
LSTM 80.106069 76.866759 66.992312 71.569875 87.946254
FCN 77.951542 77.461372 63.783798 69.959420 87.496570
PBiLSTM-FCN 81.668515 78.930816 69.206691 73.727005 89.053074

2 5 CNN 78.588359 78.196562 62.473162 69.249997 88.877846
LSTM 80.484234 70.387438 67.230977 68.753333 86.711021
FCN 77.993250 77.655068 63.622024 69.940892 87.671382
PBiLSTM-FCN 80.644190 77.782247 67.672825 72.314798 88.416944

10 CNN 78.046020 76.997603 62.451090 68.935483 88.041758
LSTM 80.702221 70.274279 68.692593 69.455002 86.345757
FCN 77.960813 77.504458 63.751924 69.957178 87.533596
PBiLSTM-FCN 81.098652 76.896533 67.845640 72.065323 88.545769

15 CNN 78.090689 78.373118 62.870601 69.681254 88.329283
LSTM 80.926188 71.039886 69.429046 70.210438 86.436015
FCN 77.978005 77.574789 63.686415 69.946910 87.602175
PBiLSTM-FCN 81.351010 78.465520 67.667439 72.618083 89.262595

32 CNN 77.975808 78.555973 61.903892 68.743670 88.711864
LSTM 81.545267 71.233233 69.725234 70.424038 87.001683
FCN 77.993053 77.600098 63.658603 69.941049 87.637114
PBiLSTM-FCN 81.609338 77.060869 69.437193 72.996525 88.425443

64 CNN 77.678972 75.513835 65.536873 70.100321 85.795137
LSTM 81.717448 72.222206 70.020869 71.092075 87.253457
FCN 78.007757 77.565465 63.668113 69.932365 87.635747
PBiLSTM-FCN 82.225707 78.393772 69.001048 73.345516 89.516133

128 CNN 77.480268 73.860585 66.164418 69.501986 84.817393
LSTM 81.668575 72.980674 72.376252 72.647223 86.388762
FCN 77.981243 77.570671 63.698060 69.953035 87.598538
PBiLSTM-FCN 83.118925 77.161496 69.400850 73.006987 89.878377
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Table 7 
Indica protein function prediction results.

Sub-ontology n size Algorithm Accuracy(%) Precision(%) Recall(%) F1(%) Specificity(%)

BP

1

5

CNN 86.813007 76.195646 73.225268 74.153398 91.726918
LSTM 86.808542 75.728316 75.185831 75.359077 91.100766
FCN 87.085973 77.328716 74.517002 75.896742 91.802280
PBiLSTM-FCN 87.886512 80.230723 72.574561 76.191182 93.474184

10

CNN 87.759726 78.637383 74.986489 76.391424 92.476950
LSTM 87.041642 77.152861 74.671089 75.891331 91.690400
FCN 87.143132 77.392401 74.586605 75.963299 91.843669
PBiLSTM-FCN 88.100619 80.288550 73.574784 76.760845 93.404507

15

CNN 86.465999 75.610213 72.655662 73.600835 91.484089
LSTM 87.070656 77.247928 74.589986 75.895678 91.754760
FCN 87.098390 77.371218 74.494212 75.904170 91.826712
PBiLSTM-FCN 88.290140 80.811683 73.578366 76.978780 93.643124

2

5

CNN 87.178381 78.239075 72.980179 75.359134 92.455560
LSTM 86.981494 77.083805 74.635365 75.838716 91.635637
FCN 87.091368 77.319063 74.532158 75.899924 91.801125
PBiLSTM-FCN 87.549469 77.787507 74.682741 76.132581 92.234617

10

CNN 87.765650 79.519203 73.693228 76.323212 92.974513
LSTM 87.335576 77.283909 75.130125 76.188071 91.843650
FCN 87.148388 77.465588 74.476114 75.940099 91.891343
PBiLSTM-FCN 87.995726 78.807674 74.120630 76.369013 92.922527

15

CNN 87.071601 78.454445 72.868940 75.341547 92.438295
LSTM 87.071556 77.256870 74.572213 75.890669 91.762033
FCN 87.149715 77.625135 74.203959 75.859710 91.994891
PBiLSTM-FCN 87.151056 77.400067 74.570977 75.958646 91.856213

32

CNN 86.832136 77.035232 74.522094 75.699403 91.527111
LSTM 87.025848 77.131051 74.678054 75.884145 91.670810
FCN 87.109247 77.343232 74.568550 75.930389 91.810735
PBiLSTM-FCN 87.690141 78.957840 74.097752 76.406013 92.708848

64

CNN 85.329870 73.882428 76.013471 74.204382 89.106686
LSTM 86.968765 76.905244 74.876839 75.864612 91.525847
FCN 87.099311 77.351768 74.530749 75.914615 91.814033
PBiLSTM-FCN 87.506584 78.235795 74.458943 76.276943 92.334900

128

CNN 87.135499 76.991288 71.780925 74.026896 92.502232
LSTM 86.998262 77.120983 74.643394 75.861576 91.654494
FCN 87.093572 77.348392 74.495725 75.894164 91.818189
PBiLSTM-FCN 88.055110 79.344762 74.746799 76.908342 92.906585

MF

1

5

CNN 84.400349 63.316945 55.832941 58.198222 91.726918
LSTM 84.035105 63.148672 64.276698 63.510023 91.100766
FCN 84.595705 64.214035 62.925509 63.562421 91.802280
PBiLSTM-FCN 84.678555 64.380486 63.402942 63.739644 93.474184

10

CNN 84.812000 64.155434 62.500741 63.256320 92.476950
LSTM 84.526326 64.275036 62.974760 63.618073 91.690400
FCN 84.583172 64.658708 62.720694 63.672179 91.843669
PBiLSTM-FCN 85.105873 67.731112 61.218865 64.256407 93.404507

15

CNN 84.815156 66.637185 60.455162 63.025971 91.484089
LSTM 83.513691 60.111107 62.862815 61.022675 91.754760
FCN 84.582509 64.348120 62.922482 63.626541 91.826712
PBiLSTM-FCN 85.124825 66.682912 61.112580 63.721936 93.643124

2

5

CNN 84.174061 62.867263 59.407548 60.849522 92.455560
LSTM 84.421133 63.306432 63.764190 63.423118 91.635637
FCN 84.565529 64.305721 62.897281 63.590117 91.801125
PBiLSTM-FCN 84.585584 64.349641 62.907350 63.620313 92.234617

10

CNN 84.342157 65.498072 61.105408 62.837149 92.974513
LSTM 84.472833 64.183612 63.041051 63.605063 91.843650
FCN 84.587389 63.784846 63.353977 63.459663 91.891343
PBiLSTM-FCN 84.791360 64.506857 62.787906 63.634142 92.922527

15

CNN 83.380128 61.023311 61.606537 61.101429 92.438295
LSTM 84.517011 64.281354 62.937435 63.602224 91.762033
FCN 84.591944 64.337975 62.934747 63.628201 91.994891
PBiLSTM-FCN 84.625506 64.174885 63.862855 63.949578 91.856213

32

CNN 84.580382 64.348804 62.908689 63.620585 91.527111
LSTM 84.549639 64.323976 62.924489 63.616490 91.670810
FCN 84.590876 64.217719 62.964521 63.411352 91.810735
PBiLSTM-FCN 84.650897 64.409227 62.875101 63.632406 92.708848

64

CNN 82.367710 58.520908 68.990773 63.031028 89.106686
LSTM 84.245732 62.999323 60.171101 61.437791 91.525847
FCN 84.546491 65.624621 61.507766 63.419576 91.814033
PBiLSTM-FCN 84.570113 64.322195 62.922650 63.614581 92.334900

128

CNN 81.981558 57.270568 66.233084 59.908327 92.502232
LSTM 84.531986 64.282330 62.959250 63.613859 91.654494
FCN 84.578221 64.283376 62.933801 63.600314 91.818189
PBiLSTM-FCN 84.745584 66.047824 61.947255 63.735461 92.906585
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results of the FCN module outperform the PBiLSTM-FCN in terms of 
Recall, indicating that FCN may have a stronger ability to identify pos-
itive examples. The stable performance was shown in the LSTM, but is 
generally slightly inferior to the results of PBiLSTM-FCN. The perfor-
mance of Soybean and Maize grains remains relatively stable across 
different models, with PBiLSTM-FCN still demonstrating high perfor-
mance by five evaluation metrics.

Overall, the best comprehensive performance across the four types of 
grains was demonstrated, indicating high robustness and generalization 
capability of the PBiLSTM-FCN. The effectiveness of combining LSTM 
and FCN was confirmed in the PBiLSTM-FCN model. Additionally, the 
influence of different sub-ontologies on model performance highlights 
their importance, providing valuable insights for future research.

3.4. The comparison results and analysis of PBILSTM-FCN prediction 
function and real protein function

To further enhance the predictive performance of the model and 
improve the interpretability of the results, The protein from each of four 
important cereal proteins was selected for analysis. By comparing the 
predicted protein functions from PBILSTM-FCN with the known func-
tions in the SwissProt database, we aim not only to optimize the accu-
racy of our model but also to reveal the biological significance of these 
proteins through enhanced interpretability. This approach ensures that 
our research efforts are scientifically rigorous and provide valuable in-
sights for practical applications. The examples of protein function pre-
diction results for four types of grains were shown in Table 9.

First of all, by observing the predicted results of soybean protein 
function and the real functions in the database, it can be found that in 
the SwissProt database, the Q07185 (AOX1_SOYBN) protein has been 
confirmed to have five protein functional categories: GO: 0070469, GO: 

0043229, GO: 005739, GO: 0016020, and GO: 005743. However, the 
GO: 0005743 function was not successfully predicted in the prediction 
results of this experiment. On the gene_ontology website, corresponding 
protein functions can be found based on GO annotations (https://www. 
informatics.jax.org/vocab/gene_ontology). This study used soybean to 
examine mitochondrial gene expression, demonstrating the importance 
of mitochondria in soybean (Manavski et al., 2025). The GO:0005743 
function is the mitochondrial inner membrane, which mainly refers to 
the interior of the mitochondrial envelope, the lumen facing lipid 
bilayer. It is highly folded to form cristae. Further research on the def-
initions of the other four protein functions reveals that the GO:0005739 
refers to the mitochondrion, and the GO:0016020 function is defined as 
the membrane, which are all related to the Inner mitochondrial mem-
brane of the GO: 0005743 function. Therefore, the failure to correctly 
predict the GO:0005743 function may be attributed to the fact that the 
model in this experiment categorizes GO:0005743 as separate mito-
chondrial and membrane functions. But fails to more accurately regard 
the Inner mitochondrial membrane composed of mitochondria and 
membrane as the function of Q07185 (AOX1_SOYBN) protein.

Similarly, the functional annotations of the maize dataset's K7U9N8 
(OP1_MAIZE) protein were shown for GO:0030050, GO:0030048, and 
GO:0007015 in the SwissProt database for its biological process classi-
fication. However, the protein functions obtained by using PBiLSTM- 
FCN only have GO:0030050 function and GO:0030048 function, and 
the GO:0007015 function is missing. The study has shown the impor-
tance of actin was shown in the study in plant growth and development 
(Lv et al., 2024). The GO:0007015 function represents actin filament 
organization, which is defined as a process occurring at the cellular 
level. It includes processes that control the spatial distribution of actin 
filaments, such as transforming actin filament structures into mesh 
works, bundles, or other structures through cross-linking. The 

Table 7 (continued )

Sub-ontology n size Algorithm Accuracy(%) Precision(%) Recall(%) F1(%) Specificity(%)

CC

1

5

CNN 81.289218 76.329920 79.026144 77.644600 91.726918
LSTM 79.404355 71.412619 76.738163 73.874248 91.100766
FCN 81.314468 78.272956 77.405237 77.809771 91.802280
PBiLSTM-FCN 81.368627 76.647768 79.079438 77.843791 93.474184

10

CNN 81.450292 76.066319 79.382545 77.659109 92.476950
LSTM 81.271592 76.420526 79.247822 77.808393 91.690400
FCN 81.317437 76.687459 79.031272 77.841100 91.843669
PBiLSTM-FCN 81.542032 77.611176 78.196506 77.885501 93.404507

15

CNN 81.175849 74.197874 80.014286 76.857104 91.484089
LSTM 81.307731 76.507547 79.198285 77.829660 91.754760
FCN 81.316317 76.701343 79.021093 77.843334 91.826712
PBiLSTM-FCN 81.568010 78.221837 77.896436 78.053146 93.643124

2

5

CNN 80.850484 74.642725 78.089993 76.269443 92.455560
LSTM 81.311403 76.621451 79.073534 77.827650 91.635637
FCN 81.327935 76.830659 78.906090 77.852372 91.801125
PBiLSTM-FCN 81.411149 78.103882 77.845025 77.961109 92.234617

10

CNN 80.781551 74.464879 78.636537 76.472733 92.974513
LSTM 81.307856 76.503804 79.207096 77.831962 91.843650
FCN 81.013089 75.278577 79.794867 77.342705 91.891343
PBiLSTM-FCN 81.381332 77.654114 78.208283 77.881364 92.922527

15

CNN 80.958337 75.392109 79.028912 77.151318 92.438295
LSTM 81.299173 76.509282 79.189888 77.826411 91.762033
FCN 81.324585 76.964362 78.567572 77.717818 91.994891
PBiLSTM-FCN 81.333566 76.684527 79.039280 77.842329 91.856213

32

CNN 81.448806 78.898521 76.374713 77.452698 91.527111
LSTM 81.305654 76.538250 79.175352 77.834306 91.670810
FCN 81.318743 76.759440 78.976529 77.852111 91.810735
PBiLSTM-FCN 81.684080 77.128250 78.731746 77.864345 92.708848

64

CNN 81.269358 76.848526 78.834403 77.813892 89.106686
LSTM 81.240340 76.364856 79.249968 77.779405 91.525847
FCN 81.318563 76.697456 79.030111 77.845122 91.814033
PBiLSTM-FCN 81.532665 77.251850 78.654962 77.935799 92.334900

128

CNN 81.278522 74.250585 79.499240 76.398860 92.502232
LSTM 81.109007 76.047210 78.487507 77.246731 91.654494
FCN 81.335143 76.835224 78.914511 77.859888 91.818189
PBiLSTM-FCN 81.665445 77.667135 78.478301 78.040732 92.906585
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Table 8 
Japonica protein function prediction results.

Sub-ontology n size Algorithm Accuracy(%) Precision(%) Recall(%) F1(%) Specificity(%)

BP

1

5

CNN 79.041284 66.492925 64.359168 65.384455 91.716196
LSTM 78.734515 67.069210 64.387518 65.623113 89.543257
FCN 79.003351 66.324266 65.203680 65.757526 90.479128
PBiLSTM-FCN 80.128164 71.187949 61.762326 66.121567 90.462909

10

CNN 79.204480 67.472462 64.106713 65.674252 90.732943
LSTM 78.979456 66.225108 65.289364 65.752932 90.423044
FCN 78.636537 65.213901 66.196822 65.626593 90.586434
PBiLSTM-FCN 80.309621 71.041370 62.488964 66.463998 91.811888

15

CNN 79.236169 67.418772 63.675182 65.294068 91.586496
LSTM 79.003997 66.417790 65.113797 65.758563 88.972723
FCN 78.921480 66.103142 65.450315 65.772392 90.490705
PBiLSTM-FCN 79.982223 70.454589 62.421996 66.173720 91.673152

2

5

CNN 78.286999 64.020337 63.269576 63.633649 90.722359
LSTM 78.968323 67.447140 63.941884 65.544442 90.006607
FCN 78.955983 66.365633 65.155167 65.753583 90.476338
PBiLSTM-FCN 79.143090 66.226661 65.306230 65.762252 90.496781

10

CNN 78.926187 65.384670 65.250893 65.237200 90.906681
LSTM 78.906183 66.337537 65.183382 65.755240 90.351148
FCN 78.933304 66.320755 65.339473 65.722163 90.308365
PBiLSTM-FCN 78.980223 66.322446 65.256828 65.783586 90.708918

15

CNN 78.382504 63.561181 62.274140 62.755919 89.300575
LSTM 78.991765 66.255453 65.252237 65.749462 90.425194
FCN 78.951346 68.160965 63.601238 65.743583 90.493729
PBiLSTM-FCN 79.334115 66.101268 65.447147 65.771380 90.283989

32

CNN 78.888679 65.394120 65.801467 65.210170 90.492263
LSTM 78.983340 66.257117 65.285164 65.766974 90.460590
FCN 78.850393 66.203692 65.281987 65.737387 90.467108
PBiLSTM-FCN 79.388060 67.931472 64.042952 65.869138 90.564657

64

CNN 79.009537 65.862326 64.742753 65.296597 86.155081
LSTM 78.281128 63.522958 64.566487 63.823770 90.629356
FCN 78.972508 66.221527 65.254596 65.733766 90.989569
PBiLSTM-FCN 79.426808 67.580299 64.612258 66.006134 90.476814

128

CNN 78.178490 61.420696 64.539006 62.647305 86.336100
LSTM 78.956137 66.358924 65.170737 65.758835 90.432187
FCN 79.002347 66.288924 65.276508 65.775559 90.474500
PBiLSTM-FCN 79.340080 69.295369 62.716729 65.780635 91.110129

MF

1

5

CNN 83.682173 74.612952 88.077381 80.754571 82.871028
LSTM 83.636044 74.013386 88.501420 80.610379 81.049141
FCN 83.630570 73.998266 88.509853 80.593902 84.190817
PBiLSTM-FCN 87.251059 83.890997 86.960091 85.377289 82.985270

10

CNN 84.206087 75.152537 87.924893 80.999617 82.868532
LSTM 83.423515 75.100525 86.971230 80.372261 82.703174
FCN 83.603123 73.835720 88.616518 80.551093 82.940753
PBiLSTM-FCN 87.071606 83.211200 87.178821 85.117954 83.925969

15

CNN 84.240610 77.128004 87.174076 81.617532 81.930185
LSTM 83.639002 74.054335 88.472532 80.623237 82.799715
FCN 83.590890 73.849681 88.599921 80.544990 82.946950
PBiLSTM-FCN 87.174025 82.822284 87.823214 85.228270 84.236650

2

5

CNN 83.976007 75.479854 87.674757 81.047194 82.655337
LSTM 82.793734 72.528755 87.037078 79.114802 82.897721
FCN 83.567572 73.748433 88.663190 80.513569 83.052798
PBiLSTM-FCN 85.208944 78.062078 88.007587 82.675046 84.022059

10

CNN 83.303524 74.665169 86.959113 80.285634 82.197659
LSTM 83.530979 73.411786 88.864610 80.371935 82.793738
FCN 83.659786 74.349034 88.264378 80.709510 81.856558
PBiLSTM-FCN 85.091786 77.484505 88.430773 82.536508 83.682018

15

CNN 83.170238 76.148501 85.111219 80.155083 82.283506
LSTM 83.260262 74.172490 86.897363 79.982972 82.792014
FCN 83.687522 74.285664 88.325552 80.695611 83.284367
PBiLSTM-FCN 85.018665 77.196811 88.684353 82.519912 82.960346

32

CNN 83.714357 74.393148 88.290815 80.737223 85.140114
LSTM 83.667627 74.237641 88.351059 80.681515 82.814138
FCN 83.667709 74.224966 88.360509 80.672765 82.985362
PBiLSTM-FCN 85.217890 79.145270 87.188424 82.939250 83.740185

64

CNN 83.712645 74.059509 88.622413 80.687557 83.011149
LSTM 83.471569 73.510705 88.772198 80.388306 82.648366
FCN 83.641764 74.038620 88.485605 80.613870 82.944116
PBiLSTM-FCN 85.726523 79.612037 87.862734 83.503503 83.573583

128

CNN 82.955666 72.368094 87.730557 79.275100 82.413515
LSTM 83.641605 74.245885 88.252456 80.639323 82.920179
FCN 83.652742 74.115925 88.433819 80.639677 83.058791
PBiLSTM-FCN 85.867983 80.135982 87.610547 83.610528 83.934473

(continued on next page)
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GO:0030050 function represents the movement of vesicles along actin 
filaments mediated by motor proteins, and the GO:0030048 function 
refers to the process of movement of organelles or other particles along 
actin filaments or the dynamic processes between actin filaments 
mediated by motor proteins. The GO:0030050 function and 
GO:0030048 function can be summarized as the processes involving the 
movement of a certain structure along the actin filaments represented by 
the GO:0007015 function. The GO:0007015 function has a broader 
definition, while the GO:0030050 function and GO:0030048 function 
provide more specific details within the larger scope of the GO:0007015. 
Therefore, the failure to predict the function of the GO:0007015 func-
tion in this experiment may be due to the fact that the experimental 
model focused on more precise and specific protein functions, while 
overlooking the broader definition of protein functions.

Subsequently, examining the actual situation of Indica protein 
function prediction. The experimental results were shown that there are 
GO:0003676, GO:0003724, GO:0005524, GO:0000166, GO:0003723, 
GO:0016787, GO:0004386, GO:0016887 and GO:0140657 proteins in 
the molecular function classification of the A2XKG2 (RH10_ORYSI) 
protein function. The acid binding, RNA helicase activity, ATP binding, 
nucleotide binding, RNA binding, hydrolase activity, helicase activity 
and ATP hydrolysis activity were represented, respectively. However, in 
the SwissProt database, the A2XKG2 (RH10_ORYSI) protein does not 
have the function of GO:0140657. The ATP of indica has been shown to 
have biological efficacy against urolithiasis in mice (Sathya, Kokilavani, 
Teepa, & Balakrishnan, 2011). The definition of GO: 0140657 function 
represents the activity dependent on ATP, which is characterized by 
coupling ATP hydrolysis with other steps in the reaction mechanism to 
provide energy advantage for the reaction, such as catalyzing a reaction 
or facilitating transport against a concentration gradient. Obviously, the 
function of GO:0140657 is closely related to the hydrolase activity 

represented by the function of GO:0016787 and the ATP hydrolysis 
activity represented by the function of GO:0016887, which leads to the 
speculation of the A2XKG2 (RH10_ORYSI) protein that the function of 
GO:0140657 may exist in the PBiLSTM-FCN model.

Finally, in the japonica protein dataset, Q9AV71 (CESA7_ORYSJ) 
protein was found to have the functions GO:0016759, GO:0016760, 
GO:0016740, GO:0016757, and GO:0046872 through functional anno-
tation verification in the SwissProt database. These functions are defined 
as cellulose synthase activity, cellulose synthase (UDP-forming) activity, 
transferase activity, glycosyltransferase activity, and metal ion binding, 
respectively. The experimental results of this study not only correctly 
predicted the five protein functions mentioned above, but also predicted 
the GO:0016758 function, which represents hexyltransferase activity, 
specifically referring to the catalysis of the transfer of a hexyl group from 
one compound (donor) to another compound (acceptor). Transferase is 
one of the key enzymes in Japan (Li et al., 2019). Similarly, the 
GO:0016757 function representing glycosyltransferase activity specif-
ically refers to the catalysis of the transfer of a glycosyl group from one 
compound (donor) to another compound (acceptor). Obviously, the two 
functions of GO:0016757 and GO:0016758 belong to the transferase 
activity represented by the GO:0016740 annotation. Therefore, this 
paper speculates that the Q9AV71 (CESA7_ORYSJ) protein has the 
function of GO:0016758.

In the analysis of four types of grain proteins, mismatches between 
predicted and actual protein functions were categorized into two types 
for handling. If the model predicts a protein function that does not 
actually exist (false positives), these proteins will be provided to labo-
ratory researchers to help them identify potential new functions. If an 
actual protein function known in the SwissProt database is not predicted 
by the model (false negatives), we will compare the original function 
from the SwissProt database with the predicted function, analyze the 

Table 8 (continued )

Sub-ontology n size Algorithm Accuracy(%) Precision(%) Recall(%) F1(%) Specificity(%)

CC

1

5

CNN 78.991195 77.076006 78.614477 77.826950 85.572647
LSTM 79.078131 78.192843 78.031012 78.111426 85.372649
FCN 79.079218 78.013372 78.225033 78.117527 85.180475
PBiLSTM-FCN 80.556895 79.961107 79.133017 79.535170 88.544616

10

CNN 78.327782 75.600981 76.373478 75.967467 86.029422
LSTM 79.083232 78.075645 78.159619 78.117128 85.103885
FCN 79.087740 77.828782 78.418170 78.118863 84.202081
PBiLSTM-FCN 81.378459 80.620710 80.162339 80.380883 88.414741

15

CNN 78.629729 76.568621 76.931008 76.737658 86.209714
LSTM 78.926530 77.745448 77.490127 77.155846 85.233851
FCN 79.083962 77.816944 78.423652 78.118991 84.958744
PBiLSTM-FCN 80.423801 79.288948 79.567192 79.417898 88.019253

2

5

CNN 78.631436 76.550655 76.966676 76.727244 84.734301
LSTM 79.079110 77.982577 78.246838 78.113973 85.855408
FCN 79.086063 78.124584 78.093308 78.106321 85.158759
PBiLSTM-FCN 79.484033 77.915216 78.988711 78.440611 85.265050

10

CNN 78.874401 76.713993 78.580422 77.543757 84.902790
LSTM 78.707866 78.497065 76.502023 77.371527 85.091413
FCN 79.072954 78.154028 78.059121 78.103823 85.055775
PBiLSTM-FCN 79.949582 78.329016 79.618328 78.961567 85.136084

15

CNN 78.468380 75.539089 77.807758 76.576999 85.103734
LSTM 79.080807 78.080171 78.141224 78.110057 85.136624
FCN 79.082968 78.271922 77.925666 78.095449 86.121889
PBiLSTM-FCN 80.018575 78.597174 79.368938 78.960845 85.382271

32

CNN 79.074312 77.489448 78.191415 77.801606 84.655661
LSTM 79.084452 78.016328 78.233094 78.124016 85.115694
FCN 79.075018 78.359906 77.841421 78.092922 84.969838
PBiLSTM-FCN 79.951223 78.747649 79.147258 78.942324 86.327650

64

CNN 79.079313 78.074932 78.146960 78.110272 85.271359
LSTM 79.079542 78.144583 78.087849 78.115701 84.145691
FCN 79.075992 78.231161 77.989676 78.108946 85.109398
PBiLSTM-FCN 80.059753 78.468588 79.734132 79.086030 86.079936

128

CNN 79.076529 78.156808 78.058552 78.107113 83.672181
LSTM 79.082850 77.980293 78.260634 78.119786 85.151621
FCN 79.076745 78.218399 78.014943 78.115024 85.144670
PBiLSTM-FCN 80.085478 78.749999 79.328485 79.010658 87.072886
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relationship between the two, and determine whether further refine-
ment of the model is needed to improve its predictive performance, 
ensuring it can accurately predict these missing functions in the future. 
Through this approach, we not only enhance the accuracy of the model 
but also improve the interpretability and biological significance of the 
results.

3.5. Discussion

In the study, experiments were conducted on three sub-ontologies of 
four grains type. The results of PBiLSTM-FCN were obtained on accu-
racy, precision, recall, F1 and specificity metrics in Section 3.1. To 
demonstrate the superiority of PBiLSTM FCN over existing models, 
comparisons were made with basic models (CNN, LSTM, and FCN) in 
Section 3.2. At the same time, in order to observe the influence of amino 
acid composition and word vector composition on the model, a com-
parison was made between different amino acid compositions and word 
vector compositions. Based on the experimental results of the Section 
3.2, it can be found that the values of n-gram and size are not necessarily 
related to the optimal results. Whether it is 1-g or 2-g, and whether the 
size is 5 or 128, both accuracy and F1 have the potential to achieve the 
highest score. However, it is possible that the accuracy and F1 can obtain 
higher scores when 3-g, 4-g, or size are other values, which requires 
future research to further explore the optimal n-gram and size for each 
model. On the Japanese dataset, comparisons were also made with the 
latest models (DeepGO CNN, DeepFRI, and MMSNet). The superior 
performance in grain protein function prediction experiments were 
demonstrated in the PBiLSTM-FCN model, effectively leveraging protein 

feature information to enhance the robustness and generalization 
capability of the protein function prediction model. This confirms the 
effectiveness of the PBiLSTM-FCN model. In Section 3.3, a comparison 
was made between the protein functions predicted incorrectly and the 
actual protein functions of four grain proteins for interpretability anal-
ysis. The interpretability analysis of results not only enhances the ac-
curacy of the model but also discovers potential GO annotations based 
on existing protein functions. For example, by performing GO annota-
tion predictions on the protein dataset of japonica, specifically for 
Q9AV71 (CESA7_ORYSJ), the predictive model confirmed the existing 
GO annotations of Q9AV71. Furthermore, Q9AV71 is infered to have 
annotation GO: 0016758, providing new insights into the role of this 
protein in cellular metabolism. In general, the most protein functions 
could be accurately predicted by the PBiLSTM-FCN model, but it may be 
difficult to accurately distinguish extremely similar functions. In addi-
tion, the unconfirmed GO functional annotations in the SwissProt 
database could be predicted in the PBiLSTM-FCN algorithm model, 
which provides some assistance for using biological experimental 
methods to determine the true function of proteins in the future.

In grain protein prediction, there are many factors that affect the 
prediction accuracy of the model. Firstly, the encoding method used to 
convert protein sequences into numerical representations is crucial for 
the prediction results. High-quality input data can significantly enhance 
prediction performance. In the experiments, various encoding methods 
(such as One-Hot encoding, ESM embeddings, and PSSM matrices) were 
employed and verified the effectiveness of the Embedding layer through 
multiple experiments. Secondly, the number of convolutional layers in 
the FCN and the number of BiLSTM layers are also important for the 

Fig. 7. The Accuracy performance of different models on sub-ontologies.
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Fig. 8. The Precision performance of different models on sub-ontologies.

Fig. 9. The Recall performance of different models on sub-ontologies. Fig. 10. The F1 performance of different models on sub-ontologies.
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model's composition. Overly deep or wide networks can lead to over-
fitting or vanishing gradient problems. Excessive BiLSTM layers can 
make the model difficult to train and cause it to memorize details in the 
training data rather than generalize to new data. Through multiple ex-
periments, the optimal model—PBiLSTM-FCN was determined and its 
effectiveness was validated using ablation experiments. Finally, the 

impact of data quantity on model accuracy cannot be overlooked. The 
four types of grains we selected have ample data, but grains like oats 
have relatively smaller datasets, which can easily lead to overfitting in 
deep learning models. For grains with large amounts of data, the model 
can learn features well and generalize to new data.

In summary, the superior performance in protein function prediction 
was demonstrated in the PBiLSTM-FCN model, enhancing the robustness 
and generalization capability of the model. It aids in determining the 
true functions of proteins using biological experimental methods, 
particularly providing assistance for unconfirmed GO function annota-
tions in the SwissProt database.

4. Conclusion

Grain protein function prediction is a significant subject because 
there is an enormous amount of unannotated grain protein. In previous 
protein predictions, the long-range dependencies between amino acids 
were difficulty captured when processing long protein sequences. And 
the order of amino acid sequence is not considered by the existing 
models. When the amino acids in the sequence change, existing models 
may struggle to adapt effectively to these variations. To address these 
issues, the PBiLSTM-FCN was proposed in order to overcome the prob-
lem of amino acid sequence order and efficiently capture long-range 
relationships. Four grain proteins—Soybean, Maize, Indica, and Japo-
nica—were utilized as experimental datasets to predict the protein 
functions. The comparison experiments were conducted based on vari-
ations in the amino acid composition and the size of the word vector. At 
the same time, comparisons were made with the basic models (CNN, 
LSTM, FCN) and the latest models (DeepGOCNN, DeepFRI, and 
MMSNet). The comparisons results were showed that the PBiLSTM-FCN 
performed noticeably better than other existing models. Additionally, 
the interpretability analyses are conducted by comparing the actual 
protein functions with those predicted by the PBiLSTM-FCN. The 
auxiliary support is provided for identifying potential drug targets and 

Fig. 11. The Specificity performance of different models on sub-ontologies.

Fig. 12. The ablation experiments on the BP sub-ontology.
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Fig. 13. The ablation experiments on the MF sub-ontology.

Fig. 14. The ablation experiments on the CC sub-ontology.
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improving grain food processing.
While the issue of long-term reliance between various amino acids in 

lengthy sequences was resolved by the PBiLSTM-FCN, the amino acid 
sequence was not precisely represented that is crucial to the function of 
proteins. Deep learning models are usually “black box” in nature, and it 
is difficult to understand how they make predictions. This lack of 
transparency makes it challenging to understand the model's behavior 
and trust its predictions. Future research will focus on developing new 
methods and techniques to uncover the decision-making mechanisms of 
these models, enabling users to better comprehend how the model 
operates.
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Examples of protein function prediction results for four types of grains.

Datasets Protein Real Function Predicted function

Soybeans Q07185(AOX1_SOYBN) GO:0070469 
GO:0043229 
GO:0005739 
GO:0016020 
GO:0005743

GO:0070469 
GO:0043229 
GO:0005739 
GO:0016020

Maize K7U9N8(OP1_MAIZE) GO:0030050 
GO:0030048 
GO:0007015

GO:0030050 
GO:0030048

Indica A2XKG2(RH10_ORYSI) GO:0003676 
GO:0003724 
GO:0005524 
GO:0000166 
GO:0003723 
GO:0016787 
GO:0004386 
GO:0016887

GO:0003676 
GO:0003724 
GO:0005524 
GO:0000166 
GO:0003723 
GO:0016787 
GO:0004386 
GO:0016887 
GO:0140657

Japonica Q9AV71(CESA7_ORYSJ) GO:0016759 
GO:0016760 
GO:0016740 
GO:0016757 
GO:0046872

GO:0016759 
GO:0016760 
GO:0016740 
GO:0016757 
GO:0046872 
GO:0016758
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