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Abstract—Protein is an essential macro-nutrient for per-
ceiving a wide range of biochemical activities and biolog-
ical regulations in living cells. In this work, we have pre-
sented a novel multi-modal approach, named MultiPredGO,
for predicting protein functions by utilizing two different
kinds of information, namely protein sequence and the pro-
tein secondary structure. Here, our contributions are three-
fold; firstly, along with the protein sequence, we learn the
feature representation from the protein structure. Secondly,
we develop two different deep learning models after con-
sidering the characteristics of the underlying data patterns
of the protein sequence and protein 3D structures. Finally,
along with these two modalities, we have also utilized pro-
tein interaction information for expediting the efficiency of
the proposed model in predicting the protein functions. For
extracting features from different modalities, we have uti-
lized various variations of the convolutional neural network.
As the protein function classes are dependent on each
other, we have used a neuro-symbolic hierarchical classi-
fication model, which resembles the structure of Gene On-
tology (GO), for effectively predicting the dependent protein
functions. Finally, to validate the goodness of our proposed
method (MultiPredGO), we have compared our results with
various uni-modal along with two well-known multi-modal
protein function prediction approaches, namely, INGA and
DeepGO. Results show that the overall performance of the
proposed approach in terms of accuracy, F-measure, preci-
sion, and recall metrics are better than those by the state-
of-the-art methods. MultiPredGO attains an average 13.05%
and 30.87% improvements over the best existing comparing
approach (DeepGO) for cellular component and molecular
functions, respectively.

Index Terms—Protein function prediction, multi-
modality, deep learning, gene ontology, protein sequence,
protein structure.
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I. INTRODUCTION

INTERPRETING the protein function is a critical and indis-
pensable aspect to comprehend an organism at a molecular

level, and it is also a help in pharmaceutical implications. Protein
functions or GO terms are not independent classes, but they are
naturally dependent on each other. They are arranged in many-
to-many parent-child relationships, i.e., hierarchical structures
of the GO terms and a protein can be annotated to any ontology
level and more than one GO terms within an ontology.

There are various approaches present in the literature in
predicting protein functions. Protein sequence plays a crucial
role in understanding the protein functions. One of the oldest
approaches to anticipate the function of a new protein is by
finding a substantial sequence similarity to the known protein
sequence [1], [2]. Also, Anfinsen et al. [3] experimentally
proved that protein folding is reversible, i.e., the underlying
sequence determines the tertiary protein structure under native
condition. Hence the observation suggests, similar sequence
determines a similar structure and this has a lead to surge of
utilizing protein structure and sequence for predicting protein
functions [4]–[6]. Along with the sequence and structure of
proteins, the protein-protein interaction network [7] plays
a significant role in understanding the functionalities of the
proteins. The protein interaction network helps to understand the
higher level Gene Ontology term or function. Hence, the protein
interaction information has emerged as an imperative knowledge
for solving different computational biology problems [8]–[12].

These above facts have motivated computational biologists
to build AI-based model for efficiently predicting the protein
functions. Recent advancements in deep learning [13][14] have
unleashed new avenues in solving different well-known prob-
lems ranging from computational biology [15], machine trans-
lations [16], speech recognition [17], image captioning [18].
Subsequently, there is a notable trend of using deep learning for
solving different problems related to bioinformatics [19]–[21]
including protein function prediction [22], [23].

As these AI technologies mature and become more accessible
to researchers, the next frontier is to collect “multi-modal” data
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for the same set of subjects and conduct integrative analyses
using multi-level views on the same phenomena [24]–[26].
Multi-modal approaches show promising results compared to
the conventional single modal based models as the prior can
capture cumulative insightful information from the underlying
multifaceted datasets. Simultaneously, the integrative research
of multi-modal data is embraced by the biomedical research
community due to its promising success for the diagnosis of the
disease along with personalized disease prediction [23], [27].

In this regard, researchers of computational biology field have
investigated extensively in a multi-modal approach. Kulmanov
et al. [23] proposed a deep learning-based hybrid approach for
predicting protein functions by utilizing protein sequence and
protein-protein interaction networks. Also in [28], a novel prob-
abilistic chain-graph-based approach is proposed for predicting
protein functions by utilizing the Gene ontology and the knowl-
edge of interspecies relationships. Recently, three orthogonal
approaches, i.e., sequence similarity, domain architecture, and
protein-protein interaction network data are integrated to predict
the protein functions [29]. But none of the above methods has
considered the 3D structural perspective of the proteins.

Drawing inspirations from these findings, in this article, we
have developed a deep multi-modal protein function model
named MultiPredGO. Here, along with the protein structure
and underlying protein sequence, we have utilized protein in-
teraction information for predicting protein functions. For ex-
tracting features from protein structure and sequence, we have
used two separate deep learning models, while for protein inter-
action network we have used a pre-trained knowledge graph
embedding. This higher-level integrated feature is fed to a
neuro-symbolic classification model for the final protein func-
tion prediction. We have compared our proposed multi-modal
architecture, MultiPredGO, with various single modal along
with two well-known multi-modal protein function prediction
approaches, INGA [29] and DeepGO [23]. For the comparative
analysis, we have used the performance metrics which were
used in the CAFA challenge [30] which are described in the
section II of the supplementary material. The obtained results
illustrate that the proposed multi-modal architecture performs
better than other comparative models in terms of predicting the
protein functions.

II. METHODS AND MATERIALS

Our contributions to the current work are summarized in three
stages.

1) In this study, we prepare a dataset where each gene
spans over two modalities, i.e., underlying amino acid
sequence and 3D PDB structure. Also, we have collected
proteins and their respected Gene Ontology (GO) anno-
tation information from SwissProt’s1 manually annotated
data for better understanding the protein function and the
relationships with different GO terms.

2) In the second stage, for each modality, we have developed
two different deep learning based models to extract the
features and accurately analyzed the extracted features.

1[Online]. Available: https://www.uniprot.org/

i) Protein sequence: For the protein sequence
(FASTA), we have first converted the sequence
in a trigram which is followed by an embedding
layer. The embedding output is finally fed to the
convolutional layer [31] to extract the features.

ii) 3D structure: For the 3D structure, we first extract
the 3D structure from Protein Data Bank (PDB).2

The 3D structure is then converted into four types
of 3D voxelized representations which are further
fed to ResNet-50, a popular convolutional neural
network (CNN) model to extract the features from
the protein structures.

iii) Finally, the extracted features from two modalities
are concatenated with protein interaction informa-
tion to make the resultant features more informa-
tive. Finally, the resultant feature is pass through
the neuro-symbolic hierarchical classification for
predicting the final result.

The detailed descriptions of the important steps of the pro-
posed method are provided in the subsequent subsections. The
proposed deep multi-modal architecture is shown in Fig. 3

A. Problem Formalization

In computational bioinformatics domain, the function of a
particular protein (Pi) is characterized as a set of biochemical
functions {f1, f2, . . . , fn}, where n is the number of molecular
functions related to a particular protein. Suppose, we are given
a multi-modal protein ({Pi}Ni=1) dataset, where ∀i | Pi consists
of two modalities; protein sequence,P i

Seq, and protein structure,
P i
Struc. Formally, our deep multi-modal model (M) predicts the

functionalities of proteins (Pi|i∈{1,2,..N}) by utilizing protein in-
teraction information (IPPI ) along with protein sequence (P i

Seq)
and structure (P i

Struc) modality which can be mathematically
formulated as

fHC

(
fMLP

(
M1(P

i
Seq)⊕ M2(P

i
Struc)⊕ IPPI

) )
(1)

Here, M1 and M2 are two different deep neural network based
models for handling sequence and structure modality, respec-
tively. ⊕ represents the concatenation operator. The integrated
feature representation of protein sequence and structure along
with PPI information is fed to a multi-layer perceptron (fMLP )
which is finally given as an input of hierarchical classifier (fHC )
for predicting protein functions.

B. Feature Extraction Using Multi-Modal Architecture

In this subsection, we have described three components of
our proposed multi-modal architecture in detail: (1) detailed
architecture for extracting features from the protein sequence;
(2) detailed architecture for extracting features from protein 3D
structures, and (3) detailed architecture of the proposed multi-
modal approach, where protein-protein interaction information
is used to predict the protein function.

1) Extracting Features From the Protein Sequence: In this
study, the protein sequence (P i

Seq) acts as one modality among
the two modalities that we have considered for protein function

2[Online]. Available: http://www.rcsb.org/
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Fig. 1. The proposed deep architecture for extracting features from the
protein sequence.

prediction. For the protein sequence, we have downloaded the
FASTA format of the underlying amino acid(AA) sequence. In
FASTA format, each protein is made up of a unique combination
of 20 amino acids (ak), i.e., P i

Seq = {{ak}20k=1}+. The length
of the FASTA sequence varies in the range of 2 to 35,213
but for computational limitations, we have only considered
those proteins whose lengths are < 1002, i.e., in this study
2 ≤ |P i

Seq|1002. We have then built an AA trigram vocabulary
where each unique trigram is represented by 1-base index. If the
length of the sequence is less than 1002, we have padded the
vector with sequence of zeros. Using this trigram vocabulary
with 8000 unique trigrams, we have converted the sequence of
1002 AAs into a vector of 1000 indices ({xk}1000k=1 ). Each index
was represented using a one-hot encoding, i.e., ∀xk = {0, 1}+.
However, due to the sparse nature of one-hot encoding, it leads
to limited generalization performance [23]. To remove this com-
putational bottleneck, we have generated a dense embedding of
size 128 across each trigram, xk ∈ R128 is the dense embed-
ding across each trigram. Thus a protein sequence of 1002 is
converted into a matrix of size 1000× 128. On this matrix, we
have used convolutional layer followed by the maxpool layer for
extracting the features. The detailed hyper-parameter setting of
the convolutional neural network is described in the section I of
the supplementary material. The final feature representation
of the sequence modality is described as follows

F i
Seq : M1(P

i
Seq) = fmaxpool(fconv({xk}1000k=1 )) (2)

The detailed architecture for extracting features from the
protein sequence using the embedding layer along with the
convolutional layers is described in Fig. 1.

2) Extracting Features From the Protein 3D Structure: In
this work, the 3D structure of the proteins is used as another
modality of the proteins. Also, researchers of [29] proved
that the 3D structure of proteins plays a more important role
than the protein sequence for predicting the protein function.
In this work, we have considered four 3D volumetric repre-
sentations (binary(RB), hydropathy(RH ), isoelectric(RI ) and
charge(RC)) of protein.

For extracting features from the 3D structure, firstly, we have
mapped each raw 3D PDB structure into a grid structure. In
this regard, we have utilized a binary volumetric shape with
volume elements named voxels. Voxels are the 3D structure
cube (V ) with a fixed grid length l. One of the crucial modules
in this process is determining the size of the cube, as all the
proteins have different sizes and shapes [6]. The size of the cube
has to be large enough to accommodate a sufficient number of
proteins in consideration and also small enough to satisfactorily
represent most of the proteins. Also, the length of the grid is
another parameter that has to be tuned properly for the proper
representation of the 3D structure.

Therefore, this scaling problem is analogous to evaluating a
maximum radius (rmax) that would be able to accommodate
most protein structures of desirable sizes. Alternatively, it also
has to be small enough so that most enzymes are represented
at a satisfactory resolution. Hence, we consider the homothetic
transformation ratio (λ) for maintaining above both conditions

λ = � l
2
− 1� × 1

rmax
(3)

This transformation allows us to scale all proteins to their
desired sizes. In this transformation, we have ignored the side
chains of the protein structure and concentrated on their back-
bone atoms that are carbon, nitrogen, and calcium. In our
experiment, we have used the grid length(l) as 32 and Rmax

as 40.
Now to capture the features of each 3D structure, we cap-

ture four different attributes (binary(RB), hydropathy(RH ),
isoelectric(RI ) and charge(RC )) of the volumetric representa-
tion. To extract features from each volumetric representation, it
is fed to a well-known pre-trained deep neural network model
named Resnet-50 [32] followed by a dense layer(d1) with
output = 1024 neurons. The output of the dense layer is batch
normalized to [−1,1] and applied to the next dense layer(d2) of
256 neurons which is followed by a sigmoid activation function
for the classification. Hence the mathematical formulation of
extracting features from the structure modality is defined as
follows

F i
Struc : M2(P

i
Struc) = fMLP (1024,256)(fResnet−50(I1)

⊕ fResnet−50(I2)⊕ fResnet−50(I3)⊕ fResnet−50(I4))

In this study, the size of the final feature vector of structure
modality is 1024, i.e.,F i

Struc ∈ R1024. The detailed architecture
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Fig. 2. Flowchart of extracting features from the 3D PDB structures using ResNet-50. The 3D PDB structure first convert into four voxel
representation which fed to ResNet-50 to extract the features.

of extracting the features from the 3D structure is depicted in
the Fig. 2.

3) Incorporating PPI Information With the Multi-Modal Ar-
chitecture: In this section, we have briefly discussed two
key points of the proposed architecture. One is incorporat-
ing the PPI information (IPPI ) with the extracted features
and the other is a detailed description of the multi-modal
architecture.

1) Extracting features from protein-protein interaction
network: As protein-protein interaction information
(IPPI ) is also essential to understand the protein func-
tions, we have integrated the protein interaction informa-
tion with the extracted features of the above two modali-
ties. To do that, firstly, we have extracted the knowledge
graph embedding based feature for the protein-protein
interaction network. The protein-protein interaction net-
work for multi-species is obtained from STRING [33]
database. EggNOG [34] database was used to extract the
confidence score and orthological relationships between
the proteins. A confidence score of 300 was used to
filter less frequent connections. The final network had
84,78,935 proteins with 1,90,649 edge types and a total
of 11,58,66,95,610 edges. A knowledge graph embedding
of 256 vectors across each protein is generated following
the approach mentioned in [35]. This obtained protein
interaction network based embedding is combined with
the feature vectors extracted from the protein sequence
and 3D structures.

2) Multi-modal architecture: The core step of this
study is to integrate features from the three sources
(F i

Struc, F
i
Seq, IPPI ). The final concatenated feature vec-

tor (F = {F i
Struc ⊕ F i

Seq ⊕ IPPI}) is then passed to a
fully connected dense layer which serves as an input
to the neuro-symbolic model. Due to the large size of
GO, we developed three separate models, one for each
sub-ontology with selected GO terms to imitate the hier-
archical structure of the GO, a series of fully connected

layers is also considered, one for each class. Two types
of layers are considered in this architecture.
� The Classification layer that has input from the

output of the first fully connected layer. The
Classification layer has sigmoid as the activation
function and it is associated with each class of
the gene ontology. This layer is responsible for
classifying proteins for the prediction classes.

� The Maximum merge layer is used to select the
maximum value of the classification layer of the
classes and their children. It enables us to maintain
consistency in the hierarchical classification and also
preserves the hierarchical relationships between the
classes. The details of the hierarchical classification
model is described in section III of the supplemen-
tary material.

Such a hierarchical structure of fully connected layers
ensures discrimination between each of the classes in a
hierarchical manner. Each of the layers intends to learn
features that would discriminate it from its sub-classes.
The maximum merge layer of internal nodes and the
classification layer of the leaf nodes form the final output
model. The detailed diagram of the proposed multi-modal
architecture is depicted in Fig. 3.

III. RESULTS AND COMPARATIVE DISCUSSION

In this section, the details of the dataset formation and a brief
comparative analysis of the proposed technique with different
state-of-art methods are concisely illustrated.

A. Dataset Formation

In this study, we have collected the genes which span over
two modalities, i.e., protein sequence and 3D structure. Along
with this condition, we considered those genes for which we can
obtain the relationships between the genes and the functional
annotations in terms of Gene Ontology (GO).
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Fig. 3. The proposed deep multi-modal architecture for predicting protein functions. For different modalities, we use different deep uni-model
architectures. Along with protein sequence and protein structure, we integrated protein interaction information with the extracted features of the
deep learning models.

To understand the proteins and their relationships with their
respective GO terms, we have exploited SwissProt’s3 manually
annotated data. From there, the protein sequence, its respective
accession number (entry), length and GO class annotations are
extracted. Due to our computational limitations, we could not
consider the entire protein dataset. We have only considered
those proteins that have length equals to 1002, so that we can
convert each protein sequence into a vector of 1000 indices.
We have further selected only those entries that have at least
one experimental evidence code and removed those protein
sequences having any ambiguous amino acid code(B, J, X, Z,
U, O). Here, we have selected only potential output class that
has 250, 50, 50 protein annotations in biological process (BP),
molecular functions (MF), cellular component (CC) classes,
respectively. In this regard, the top 589 GO terms for MF, 932
GO terms for BP, 436 GO terms for CC are considered for final
output class and three separate models are developed for them.
In the next step, we have downloaded the protein 3D structure
from Protein Data Bank (PDB) 4 for each gene sequence. But as
not all the proteins have PDB ids corresponding to them, we have
considered only those proteins which have 3D PDB structures.

The final dataset is prepared by considering the two modalities
(protein sequence and protein 3D structure) of proteins. This
dataset is not prepared from scratch, rather it is an exemplifica-
tion of a benchmark dataset that is used in [23]. Thus the final
dataset has 11536, 9982, 10741 proteins and their respective
annotations are in BP, MF, CC, respectively. The final dataset
can be accessed from the supporting online repository https:
//github.com/SwagarikaGiri/Multi-PredGO supporting online
repository.

B. Results and Comparative Discussion

In this subsection, we analyzed the performance of the pro-
posed deep multi-modal architecture with different state-of-the-
art-methods along with the different uni-modal architectures.

3[Online]. Available: https://www.uniprot.org
4[Online]. Available: https://www.rcsb.org/

TABLE I
COMPARATIVE ANALYSIS OF THE PROPOSED MULTI-MODAL ARCHITECTURE

WITH DIFFERENT MODELS IN TERMS OF BIOLOGICAL PROCESS

The proposed method utilizes protein sequence and protein 3D
voxel structures along with the protein interaction information.
For understanding the benefits of each modality, we have also
reported the results of each modality after analyzing/utilizing
the extracted features of each modality, separately. Finally,
we have performed 4-fold cross validation and the integrated
multi-modal architecture shows better performance in terms of
all five performance metrics. Also as comparing methods, we
have used different deep learning-based uni-modal architectures
for protein function prediction. Along with the uni-modal archi-
tecture, we have also compared the performance of the proposed
method with two multi-modal methods e.g. INGA [29] and
DeepGO [23]. The details of all these comparing methods are
described in section IV of the supplementary material.

We have performed a comparative analysis of the performance
of the above-mentioned models and the corresponding results
are reported in Table I, II, and III. As we can sub-categorize the
protein functionalities into three groups, i.e., biological process,
cellular component, and molecular function, we have reported
the comparative analysis based on these three categories in
Table I, II, and III, respectively. From Table I, it is clear that
for the biological process, the proposed method, MultiPredGO,
performs well than other state-of-the-art methods in predicting
the protein functions in terms of average precision (0.3257) and
MCC (0.2829). For the biological process, the overall perfor-
mance of the proposed multi-modal architecture is almost the
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Fig. 4. Receiver Operating Characteristic (ROC) curve along with Area under Curve (AUC) value for the proposed deep multi-modal protein
function prediction model, MultiPredGO. ROC curve of each sub-figure represents for the three specific protein class functions.

TABLE II
COMPARATIVE ANALYSIS OF THE PROPOSED MULTI-MODAL ARCHITECTURE

WITH DIFFERENT MODELS IN TERMS OF CELLULAR COMPONENT

TABLE III
COMPARATIVE ANALYSIS OF THE PROPOSED MULTI-MODAL ARCHITECTURE

WITH DIFFERENT MODELS IN TERMS OF MOLECULAR FUNCTION

same as the best performing comparing method, i.e., DeepGO.
Though for biological process, DeepGO performs same as the
MultiPredGO, but the overall performance of MultiPredGO is
better than other state-art-of-the-art methods for predicting pro-
tein functionalities in terms of cellular component and molecular
function.

From Table-II, it is clearly evident that the performance of the
MultiPredGO model is superior to other comparing methods
with respect to all five performance metrics. For the cellular
component process, MultiPredGO attains an improvement of
12.01%, 18.95%, 6.02%, 5.6% and 22.45% over the best ex-
isting comparative methods with respect to Fmax, AvgPre,
AvgRc, AUC and MCC metrics, respectively. Hence, Mul-
tiPredGO shows an average of 13.05% improvements over the
best existing protein function prediction method. Along with
this, MultiPredGO also performs better than bi-modal architec-
tures (MultiPredPPINStruct and MultiPredSeqStruct) and
uni-modal architectures, where we have considered protein

structure (MultiPredStruct) and protein-protein interactions
(MultiPredPPIN ), separately.

Also, from the Table III, it is clearly evident that the proposed
multi-modal architecture (MultiPredGO) performs better than
other comparing methods for all performance metrics except
average precision. For Fmax, AvgRc, AUC and MCC, Multi-
PredGO attains improvements of 40.09%, 43%, 8% and 28%,
respectively, over the best comparing method for molecular
function. Hence, after analyzing the results reported in Table I, II
and III, we can infer that the overall performance of the proposed
multi-modal architecture is better than other existing methods.
The best values are highlighted in bold fonts in different tables.
Also, in Fig. 4, we have also plotted the ROC curve of the
proposed method along with other comparative methods.

The superiority of the proposed multi-modal architecture is
happened due to the inherent power of the deep learning along
with the voxel representation of the 3D protein structures. Deep
learning models perform well if we represent the data in a very
informative way. The more the model understands the data, it
performs well accordingly. In this regard, we represent the 3D
protein structures by four voxel representations which can be
integrated to generate the final abstract representation of the
3D protein structure. Due to this informative representation,
deep models accurately predict the protein functions than other
existing methods. Also to prove that the better results attained
by our proposed method are statistically significant, we have
carried out the Welch’s t-test [36]. The p-value of the test is less
than 5% and the results for the cellular component are reported
in Table-I of the supplementary material.

IV. CONCLUSION & FUTURE WORK

This paper presents a deep multi-source multi-modal archi-
tecture that can accurately predict the protein functions. Here,
along with the two modalities we have also utilized the protein
interaction information while predicting the protein functions.
The two modalities are: the underlying amino acid sequences and
the 3D protein data bank (PDB) structures. The main novelty of
the work is to exploit 3D PDB structures as 2D voxels using
ResNet-50. Finally, the results of the multi-modal architecture
show that the multi-source multi-modal architecture performs
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well than other uni-modal architectures and other state-of-the-
art-methods in terms of different performance metrics.

In the future, we will explore different deep learning models
(e.g., 3D convolutional neural network, capsule network, etc.)
to extract features from 3D PDB structures. Also, along with
these two modalities, we will add more modalities to perform a
comprehensive study. We would also like to extract features from
other popular pre-trained models and explore the possibility of
better pre-trained models for feature extraction.
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