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ABSTRACT: Protein function prediction is essential for disease
treatment and drug development; yet, traditional biological
experimental methods are less efficient in annotating protein
function, and existing automated methods fail to fully leverage
protein multisource data. Here, we present MSF-PFP, a computa-
tional framework that fuses multisource data features to predict
protein function with high accuracy. Our framework designs specific
models for feature extraction based on the characteristics of various
data sources, including a global-local-individual strategy for local
location features. MSF-PFP then integrates extracted features
through a multisource feature fusion model, ultimately categorizing
protein functions. Experimental results demonstrate that MSF-PFP outperforms eight state-of-the-art models, achieving FMax scores
of 0.542, 0.675, and 0.624 for the biological process (BP), molecular function (MF), and cellular component (CC), respectively. The
source code and data set for MSF-PFP are available at https://swanhub.co/TianGua/MSF-PFP, facilitating further exploration and
validation of the proposed framework. This study highlights the potential of multisource data fusion in enhancing protein function
prediction, contributing to improved disease therapy and medication discovery strategies.

■ INTRODUCTION
Proteins, as the cornerstone of life, are indispensable for the
maintenance and repair of living tissues. Their complex
functions are critical for the execution of essential biological
processes.1 In recent years, the exploration of proteins’ role in
life activities and the accurate identification of their functions
have become a major focus in the field of biomedical research.
As such, research on protein functions is essential for the
development of new treatments for a wide range of biological
processes.2

Protein function prediction is a vital tool in modern
biological research, offering a deeper understanding of proteins
and their roles in various biological processes. By employing
computational and mathematical techniques, scientists can
predict a protein’s structure, stability, and activity. This
information can lead to the identification of novel drug targets
for diseases such as cancer,3 HIV,4 and Alzheimer’s5,6 and
improve the development of new drug therapies.7,8 Accurate
and efficient protein function prediction methods are urgently
needed, and further research is required to develop and apply
these methods to a broader range of biological processes.

In traditional protein function prediction, it is assumed that
proteins with similar sequences will exhibit similar functions.
For example, tools such as BLAST,9 PSI-BLAST,10 and
Diamond11 use dynamic programming algorithms to perform
approximate comparisons of two protein sequences. They
utilized sequence homology theory to generate a comparison

score, which is then used to predict the function of the queried
protein. Functional annotation of proteins using sequence
homology theory is inefficient and consumes computer
resources. Machine learning models for protein function
show good performance and use features extracted from
large amounts of data to enhance the learning process and get
the best prediction results through continuous iterative
updates. For example, MultiLoc12 predicts novel subcellular
localization based on support vector machines (SVMs);
SherLoc13 predicts eukaryotic protein localization using
SVMs; ECPred14 builds multiple binary classifiers using a
machine learning approach; and Srivastava et al.15 compare the
performance of two data mining methods, SVM and Random
Forest, to predict protein function. Machine learning
algorithms can extract hidden patterns from data more quickly
and with guaranteed accuracy than traditional manual labeling.
Thus, machine learning methods are used for protein
prediction and consistently achieve good results.
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However, machine learning requires extensive prior feature
engineering, and the quality of the processed features has a
significant impact on the results. Moreover, model training
becomes more difficult when dealing with high-dimensional
features and performs poorly when dealing with long
sequences. Feature engineering for deep learning is not
complicated and requires only preprocessing of the data.
Protein sequences are a kind of text that is difficult to feature
engineer, so deep learning is more friendly when dealing with
textual data. The most typical sequence prediction method is
DeepGOPlus,16 which removes PPIN information from
DeepGO and uses deep neural networks and sequence
similarity for GO classification. DeepGOPlus uses the whole
sequence for prediction, making it difficult to focus on local
information. ProtVecGen-Ensemble17 normalizes seqences by
length and log-normalization and then divides the prepro-
cessed sequence into base sequences of different lengths. The
information carried by the sequences is highly accurate and
reliable, but it is difficult to extract; and the influence of other
factors, such as sequence folding and mutation, is not
considered at the same time, which increases the difficulty of
prediction and leads to low prediction accuracy. The STRING
database18 contains many protein interaction networks
(PPINs), which are involved in or share a certain physiological
function when two proteins have interaction information.
Protein function can be inferred by querying the neighboring
nodes of the protein. In recent years, PPIs have also become
important data sources for protein function prediction.
DeepNF19 uses the STRING network processing as a low-
dimensional representation of protein features. It adds different
autoencoders at different network layers, but it does not take
into account the deeper features in PPIN. FunPred 3.020

utilizes the domain-specific and physicochemical properties of
amino acids in PPIN to incorporate four basic classifiers
(XGBoost, Random Forest, Extra Tree, and RFE), all of which
play a crucial role in the performance of predictions.

Furthermore, the 3D structure of proteins, which
encapsulates fundamental physicochemical properties, in

addition to positional and folding information, is more
advantageous for protein function prediction. DeepFRI21

employs sequence features extracted from protein language
models and structures, which are subsequently fed into graph
neural networks for predicting function and link structure and
sequence. However, obtaining protein structures is exceedingly
challenging and expensive. AlphaFold2,22 with an accuracy of
over 92% and an average error of 1 Å, predicts protein
structures. Ma et al.23 utilize PyTorch to replicate the DeepFRI
model and AlphaFold2 to generate a “virtual structure” data
set, demonstrating the usability of AlphaFold2’s predicted
structures. Currently, most models leverage cross-fertilization
techniques for protein function prediction and predominantly
rely on sequences, structures, structural domains, biological
networks, medical literature, cross-references, and so forth.

Although there are many methods to predict protein
function, there are still some limitations. Due to the large
amount of protein data and the complex structure of protein
data, the existing models do not properly extract the deep-level
features in the data, and models with a large number of
parameters rely too much on high-performance computing
resources with high time complexity. Protein data sources are
abundant, the existing models do not make full use of protein
multisource data, and the fusion of multiple features is also a
problem that urgently needs to be solved. The existing models
have a weak generalization ability and cannot predict multiple
protein functions with high accuracy.

In this work, we develop a model called MSF-PFP that is
designed to predict protein function by fusing feature
extraction and feature fusion. To extract features, MSF-PFP
employs submodules focused on protein sequence, domain,
and interaction information. By borrowing concepts from
natural language processing and computer vision processing,
the model learns deep features embedded in the data. This
enables MSF-PFP to generate precise and inclusive features
from protein sequences, enhancing its ability to predict protein
function accurately. For feature fusion, MSF-PFP develops a
module that combines features from the three submodules.

Figure 1. MSF-PFP overview: the model takes the sequence, domain, and PPI of proteins as inputs, which are processed by the GLI, LI, MLAP and
finally fed into the multilayer fully connected network for fusion and classification, where GLI is the Global-local-individual feature extraction
module, LI is the Local-individual feature extraction module, and MLAP is the Multi-Layer Adjacency Perception module.
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This approach makes full use of multisource data and solves
the problem of inadequate expression of protein function by a
single feature. Multisource data complement each other’s
discrepancies between data, and this fusion allows for a more
comprehensive use of multisource data and more accurate
prediction of protein function. Our method ensures that the
model effectively consolidates information from multiple
sources, resulting in improved accuracy in protein function
predictions.

Overall, the design of MSF-PFP highlights the importance of
using advanced techniques and methods to predict protein
function. By incorporation of ideas from natural language
processing and computer vision processing, MSF-PFP learns
accurate features from protein sequence data and makes more
accurate predictions about protein function. The experimental
results showed that MSF-PFP excelled when compared to the
existing superior models. Ablation experiments demonstrated
the effectiveness of the designed feature extraction module in
protein function prediction.

■ METHOD
MSF-PFP. MSF-PFP consisted of two stages for fusing

multiple source features of proteins (Figure 1). In the first
stage, feature learning employs natural language processing
techniques and computer vision ideas to extract deep features
of proteins. This stage also introduces a global-local-individual
feature extraction strategy. The second stage, fusion, combines
the feature representations from the previous stage with
multilayer fully connected networks to predict protein
functions.
Global-Local-Individual Feature Extraction Module.

Protein sequences are arrangements of amino acids closely
related to the functions of proteins. To fully explore the
individual amino acids, the local arrangement of amino acids,
and the overall arrangement of the sequence, MSF-PFP
proposed the global local individual feature extraction module.

To ensure that each amino acid has a relatively independent
and complete representation, MSF-PFP employs Token24 for
the disambiguation of words. Subsequently, the word
embeddings generated by the tokenizer are applied to the
segmentation results, ensuring that each amino acid letter is
uniformly distributed across the high-dimensional feature
space. The calculation of this process is publicized below

= | |Token D input (1)

=x TokenEmbedding( )Em (2)

where D is the dictionary of Token.
This approach leverages natural language processing

techniques to convert amino acids into features that are
evenly distributed in the high-dimensional space, preserving

the individual information on each amino acid and making it
easier for the feature extraction module to learn the deeper,
more complex features embedded in the protein sequence.

The traditional self-attention mechanism module is unable
to simultaneously consider both the individual information on
amino acids and the overall information on amino acid
sequences. In contrast, computer vision processing methods
are better able to capture the location information in the data.
MSF-PFP introduces the Global Attention module (GA),
compressing the token sequence into the embedding
dimension to maximize the retention of the overall sequence
information, resulting in a more robust and accurate feature
representation. The overall structure is shown in Figure 2.

As shown in Figure 2, the result of word embedding is
represented as x, and the Layernorm can be expressed as

= =x x
x

Layernorm( )L (3)

Here, the shape of x is represented as (batch_size,embed_-
dim,seq_len), where embed_dim stands for the word embedding
dimension, and seq_len represents the sequence length. The
mean of the input data for the current layer is denoted as μ,
and the standard deviation is represented as σ.

Subsequently, the results of Layernorm are fed into the
global average pooling layer and global max pooling layer to
extract the maximum and average information from the data,
respectively. At this stage, MSF-PFP treats embed_dim as the
compressed dimension and performs pooling operations at
each embedding dimension to compress the feature and obtain
valid information in the compressed dimension. The pooling
can be expressed as

=P xAvgpool( )Avg L (4)

=P xMaxpool( )Max L (5)

where the shape of P after pooling is represented as
(batch_size,embed_dim).
PMax and PAvg are fed into the MLP with shared weights for

feature extraction, which can be expressed as

= +
=

h W P bj
i

N

ij j j
0 (6)

= = +
=

i
k
jjjjjj

y
{
zzzzzza g h g W P b( )j j
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0 (8)

Figure 2. Global Attention module overview.
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=g h ReLU h( ) ( ) (9)

where hj denotes the weighted sum of all the inputs of the
current node, g denotes the activation function, and aj = Pk
represents the current output and the next layer of inputs. y is
the result of the value of the output layer.

After MLP processing, yMax and yAvg are summed, the
attention weightWattn is calculated using the sigmoid activation
function, and then Wattn is multiplied by input x to obtain final
result OUTGA. The calculation process can be expressed as

= +y y yAvg Max (10)

=W Sigmoid y( )attn (11)

= ×OUT W xGA attn (12)

where the shape of OUTGA is (batch_size,embed_dim,seq_len).
In the context of the above mandate, the incorporation of

word embedding and attention modules aims to maximize the
utilization of both the individual information and the overall
arrangement information on amino acids. Previous studies
have established a correlation between protein functions and
the local arrangement order of amino acids. Given the ability of
convolutional neural networks (CNNs)25 to effectively learn
local position information on features, MSF-PFP employed a
multilayer CNN to comprehensively exploit the local position-
al features embedded within protein sequences. The
calculation of this process is publicized below

=

+
=

OUT i Dim bias Dim

weight Dim k OUT i k

( , ) ( )

( , ) ( , )

OUT OUT

k

Dim

OUT GA
0

1
j j

IN

j

(13)

where DimOUT is the output dimension of the 1D convolution,
and DimIN is the embedding dimension of the
OUTGA(embed_dim). ★ is the one-dimensional convolutional
cross-correlation operation, calculated as follows

= ×x kernel x kernel( )i
j

j i j
(14)

where x denotes the sequence being convolved, kernel is the
convolution kernel, i is the index of the convolution result, and
j is the index of the convolution kernel.

This approach facilitated the extraction of protein sequence
features from multiple scales, encompassing the individual,
local, and overall perspectives, thereby yielding a more accurate
and stable feature representation. The adoption of this
multiscale feature extraction strategy, encompassing the
individual, local, and overall perspectives, is anticipated to
enhance the performance of a diverse range of NLP tasks and
provide valuable insights into the process of sequence feature
extraction.
Local-Individual Feature Extraction Module. In the

field of protein function prediction, each protein domain is
considered an independent amino acid fragment that possesses
a distinct functional role. According to the idea of the Global-
local-individual feature extraction module, MSF-PFP proposes
a Local-individual (LI) feature extraction module for protein
domains.

To fully capture the individual features of structural
domains, MSF-PFP employed a word embedding method26

to encode each protein domain ID. This approach facilitates

the generation of features that are uniformly distributed within
a high-dimensional space, thereby providing a comprehensive
representation of the individual features of each protein
domain. The calculation of this process is publicized below

= | |ID D input (15)

=x IDEmbedding( )Em (16)

where D is the dictionary of domain IDs.
To obtain localized information more accurately about the

domains, MSF-PFP constructed a corresponding CNN
module. The calculation of this process is publicized below

=

+
=

OUT i Dim bias Dim

weight Dim k x i k

( , ) ( )

( , ) ( , )

OUT OUT

k

Dim

OUT Em
0

1
j j

IN

j

(17)

where DimOUT is the output dimension of the 1D convolution,
and DimIN is the embedding dimension of xEm.

This module places significant emphasis on local positional
information within protein domains, ensuring that the global
context of each domain is considered. The integration of the
CNN module with the word embedding method enables LI to
explore deeper features within the protein domain data at both
the individual and local scales. Consequently, this combination
leads to a more comprehensive and accurate representation of
the features within the protein domain data.
Multi-Layer Adjacency Perception Module. In the

protein−protein interaction (PPI), the scoring matrix is a
crucial component for assessing the strength of interactions
between proteins. To effectively learn the intricate features of
this matrix, the Multi-Layer Adjacency Perception module
(MLAP), as part of the MSF-PFP framework, is designed. The
detailed computational process of the multilayer perceptron is
demonstrated in eqs 6-9 above, and the computational process
of this step is simply calculated here

= +z Wa bi i i i1 (18)

=a z( )i i i (19)

where zi is the weighted output of layer i, Wi is the weight
matrix linking layer i − 1 to layer i, ai is the activation output of
layer i, bi is the bias vector of layer i, and σi is the activation
function for layer i.

The employment of MLAP is justified by its robust fault
tolerance and exceptional generalization capabilities.

The MLAP module combines multiple layers of architecture,
enabling the capture of complex linear relationships present
within the scoring matrix. The interlayer information transfer
further refines this characterization, resulting in a more
comprehensive understanding of the protein interactions.
Additionally, the strong classification ability of MLAP allows
for the provision of more accurate and robust feature
expressions for the subsequent feature fusion module.
Feature Fusion Module. In the field of multifeature fusion

tasks, the issues of exorbitant parameter growth, sluggish
computation velocity, and elevated computational expenses
due to excessive model complexity are pervasive. To tackle
these challenges, MSF-PFP adopted MLP as the fundamental
structure of the feature fusion module.

The adoption of MLP confers upon the fusion process both
speedy and precise feature integration thanks to its superior
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classification as well as generalization capabilities. This
designation serves as an accurate foundation for the
subsequent classification task, effectively ameliorating the
computational efficiency and accuracy of traditional protein
function prediction methodologies.

The MSF-PFP approach not only mitigates the issues arising
from excessive model complexity but also enhances the
model’s ability to generalize, leading to more accurate
predictions. Moreover, MSF-PFP demonstrates a higher
computational efficiency compared to its counterparts, making
it a viable choice for protein function prediction tasks.

In summary, MSF-PFP addresses the key concerns
associated with multifeature fusion tasks by employing MLP
as the basic structure of the feature fusion module. This design
provides a solid foundation for the final classification task and
significantly improves the computational efficiency and
accuracy of traditional protein function prediction approaches.

■ EXPERIMENTS AND RESULTS
The data sets from all the comparison experiments were
divided into 5-fold cross-validation data sets, with BP, MF, and
CC serving as the corresponding labels for model training. FMax
score, AUC, Recall, and Precision were used as the evaluators to
assess the model’s performance during the 5-fold cross-
validation. Among them, FMax is one of the key metrics in
the CAFA Challenge. The evaluators are defined as follows:

=
·

+
F Max

t t
t t

2 AvgPr( ) AvgRc( )
AvgPr( ) AvgRc( )Max t

(20)

= ·
=

t
k t

pr tAvgPr( )
1
( )

( )
i

k t

i
1

( )

(21)

= ·
=

t
n

rc tAvgRc( )
1

( )
i

n

i
1 (22)

=
·

pr t
T G p J S p G t

J S p G t
( )

( , ) ( ( , ) )

( ( , ) )i
j j i i j

j i j (23)

=
·

rc t
T G p J S p G t

T G p
( )

( , ) ( ( , ) )

( , )i
j j i i j

j j i (24)

Here, t denotes the threshold for prediction, where t ∈ [0, 1],
and the step size is 0.1. J denotes the value to determine
whether the protein prediction is true or not, if true, then 1,
otherwise 0. Note that the total number of proteins is n.
FMax, Precision, and Recall were used to measure the accuracy

of the model’s predictions, while the AUC was used to evaluate
the model’s ability to identify relevant proteins. The AUC
calculation is derived from the confusion matrix with the
following formula:

=AUC TPR t FPR t t( )( ( ))d
(25)

Among others,

=
+

TPR t
TP t

TP t FN t
( )

( )
( ) ( ) (26)

=
+

FPR t
FP t

FP t TN t
( )

( )
( ) ( ) (27)

In the confusion matrix, TP, FP, TN, and FN are indicated as
the number of true positives, false positives, true negatives, and
false negatives, respectively.

Additionally, the cross-validation method was chosen to
ensure that the data sets used for training and testing were
representative of the entire data set, thereby providing a
reliable evaluation of the model’s performance.
Data Set. In this study, a multisource feature fusion strategy

was adopted for the task of protein functional multilabel
classification, so the data sets used include protein sequences,
protein domains, and protein interaction information scoring
matrices. Existing publicly available data sets cannot simulta-
neously satisfy the need for multisource information, so this
study collected and organized protein data sets with all three of
these data sources.

The first data set (2019 Human)27 of this study was collated
in 2019. Protein sequence data were retrieved from the
UniProt28 database for human data and downloaded as FASTA
files. Protein structural domains were obtained from the public
database InterPro29 and matched to protein sequences. PPI
data were downloaded from the STRING18 database version
V10 human data and processed into scoring matrices. The
contents of the data set are shown in Table 1.

All GO terms were screened for BP terms with a frequency
≥ 40 occurrences, MF terms with a frequency ≥ 20
occurrences, and CC terms with a frequency ≥ 20 occurrences.
The GO term labeling data contained 491 BP terms, 321 MF
terms, and 240 CC terms. This data set retains data that are
missing some kind of GO term labeling, so the amount of data
for BP, MF, and CC will be unequal.

The second data set (2024 Human) of this study is 2024
retrieved and matched data from the above databases, where
PPI data were downloaded from STRING version V11 human
data and processed as the scoring matrix. The content of the
data set is shown in Table 2.

All GO terms were screened for BP terms with a frequency
≥ 20 occurrences, MF terms with a frequency ≥ 15
occurrences, and CC terms with a frequency ≥ 15 occurrences.
The GO term labeling data contained 494 BP terms, 397 MF
terms, and 351 CC terms. This data set retains only data that
are eligible and fully labeled, so the amount of data for BP, MF,
and CC will be equal.
Comparative Experiments. SDN2GO. SDN2GO27 lever-

ages protein multisource data fusion to predict protein
functional labels. In the sequence model, SDN2GO employs
N-gram coding to process protein sequence data and
subsequently utilizes a convolution module to extract features
from the sequence. Notably, SDN2GO has made significant

Table 1. 2019 Human Data Set Details

Data Set BP MF CC

Train 9521 9392 10038
Test 2381 2349 2510

Table 2. 2024 Human Data Set Details

Data Set Proteins

Train 4496
Test 1124
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advancements in feature extraction compared with other
models.

DeepGOPlus. DeepGOPlus16 overcomes the limitations of
sequence length while maintaining excellent prediction
accuracy. The model utilizes a multiscale CNN to extract
high-level features from the motif. In addition, it incorporates
the Diamond tool for calculating sequence similarity and
utilizes a combination of Diamondscore’s K-nearest neighbor
algorithm and DeepGOCNN deep CNNS to efficiently
perform the prediction task. It is worth noting that Deep-
GOPlus performed most prominently in the CAFA3 challenge,
demonstrating its potential for real-world applications.

DeepGOZero. DeepGOZero30 is the first machine learning
method to use GO axioms for zero-shot predic-tions. The
background knowledge of GO terminology is incorporated,
and only sequence data are used for proteins with few or no
annotations in the sequence database, improving the
classification performance of specific GO terms.

Deep_CNN_LSTM_GO. Deep_CNN_LSTM_GO
(DCLG)31 is also a sequence-based prediction method. It
uses the CNN module and Long Short-Term Memory

(LSTM) network. The model combines the advantages of
both architectures to improve the prediction.

PFmulDL. PFmulDL32 combines the architectural strengths
of multicore CNNs and RNNs to perform functional
annotation of proteins using amino acid sequences. Notably,
the model shows an exceptional ability to predict both “major
class” proteins, which are usually well predicted by existing
mainstream models, and “rare class” proteins, which are less
common.

Performance Evaluation. To validate the effectiveness of
MSF-PFP, a comprehensive comparative experiment was
conducted with seven other excellent models. The exper-
imental results of 2019 Human are presented in Figure 3.
Precision of MSF-PFP was determined to be 0.657, 0.752, and
0.683 in BP, MF, and CC terms, respectively. These results
indicated that MSF-PFP significantly outperformed the other
models in terms of protein function prediction accuracy.
Furthermore, FMax of MSF-PFP was found to be 0.542, 0.675,
and 0.624 in the BP, MF, and CC data sets, which were higher
than the other models. These results clearly demonstrate the
reliability and efficiency of MSF-PFP in predicting protein
functions.

Figure 3. Comparison of MSF-PFP with seven correlation models of 2019 Human.

Table 3. Performance Comparison of 2019 Human between naiv̈e, Diamond, DCLG, DeepGOZero, PFmulDL, DeepGOPlus,
SDN2GO, and MSF-PFP, where the naiv̈e and Diamond Methods Are Baseline Models in CAFA Competitionsa

Performance evaluation metric

Fmax AUC Recall Precision

Method BP MF CC BP MF CC BP MF CC BP MF CC

naiv̈e 0.127 0.209 0.321 0.581 0.684 0.760 0.181 0.395 0.552 0.098 0.142 0.227
Diamond 0.262 0.456 0.241 0.672 0.770 0.704 0.212 0.400 0.193 0.420 0.595 0.404
DCLG 0.131 0.242 0.374 0.742 0.840 0.882 0.147 0.254 0.432 0.117 0.232 0.330
DeepGoZero 0.170 0.326 0.380 0.769 0.867 0.889 0.184 0.305 0.412 0.158 0.350 0.354
PFmulFL 0.255 0.469 0.486 0.803 0.900 0.912 0.207 0.394 0.439 0.337 0.582 0.545
DeepGoPlus 0.333 0.553 0.528 0.864 0.940 0.933 0.274 0.476 0.481 0.425 0.661 0.586
SDN2GO 0.511 0.665 0.604 0.923 0.959 0.953 0.434 0.547 0.547 0.620 0.673 0.673
MSF-PFP(ours) 0.542 0.675 0.624 0.935 0.964 0.951 0.461 0.613 0.575 0.657 0.752 0.683

aBold indicates optimal values, and underlining indicates suboptimal values.
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The complete evaluation results are listed in Table 3. The
evaluation metrics of MSF-PFP across BP, MF, and CC
showed optimal or suboptimal values, demonstrating that
MSF-PFP outperforms the other models in this task. These
results clearly confirm the efficacy of MSF-PFP in predicting
protein functions.

The results of the 2024 Human experiments are shown in
Figure 4. Precision of MSF-PFP in BP, MF and CC data sets is
0.414, 0.561, and 0.528, respectively, and FMax of MSF-PFP is
0.336, 0.506, and 0.493, respectively. The experimental results
demonstrate the effectiveness of MSF-PFP in the protein
function prediction task.

The results of the complete experiment are shown in Table
4.

In conclusion, the superiority of the MSF-PFP method over
the other eight methods may be attributed to its exceptional
ability of multisource feature fusion. This capability enables
MSF-PFP to learn information from multiple sources and
capture more complex features. When compared to other
encoding methods, tokenized protein sequence data better
preserve the individual order of each amino acid and its
meaning, resulting in a more densely packed feature matrix and

reduced loss of critical information in deep learning networks.
The introduction of GLI allows the model to efficiently extract
rich features in sequences, surpassing the capabilities of the
conventional CNN modular feature extraction methods and
enabling the model to fully utilize sequence data to enhance its
performance. In conclusion, MSF-PFP proved to be a reliable
method for predicting protein function.
Ablation Experiment. In this study, we present a deep-

learning-based MSF-PFP model for predicting protein
functions based on protein sequences, structural domains,
and PPI information. To verify the efficacy of the token
embedding module, as well as the proposed GA module in the
GLI, and the necessity of the newly proposed GLI, we
conducted ablation experiments.

The baseline model for this study employed the 3-Gram
approach to slice and code proteins; however, MSF-PFP took a
different approach by utilizing the token method. Each amino
acid was regarded as a word in the context of the protein
sequence, and word embeddings were subsequently processed.
This approach allowed MSF-PFP to fully leverage individual
information on amino acids and effectively disambiguated
protein sequences. In this study, the proposed method was

Figure 4. Comparison of MSF-PFP with seven correlation models of 2024 Human.

Table 4. Performance Comparison of 2024 Human between naiv̈e, Diamond, DCLG, DeepGOZero, PFmulDL, DeepGOPlus,
SDN2GO, and MSF-PFPa

Performance evaluation metric

Fmax AUC Recall Precision

Method BP MF CC BP MF CC BP MF CC BP MF CC

naiv̈e 0.104 0.149 0.314 0.566 0.631 0.725 0.151 0.285 0.417 0.079 0.101 0.235
Diamond 0.207 0.351 0.229 0.768 0.873 0.832 0.148 0.285 0.174 0.400 0.526 0.388
DCLG 0.105 0.156 0.348 0.680 0.795 0.849 0.125 0.244 0.371 0.092 0.115 0.332
DeepGoZero 0.130 0.226 0.335 0.713 0.849 0.852 0.140 0.241 0.359 0.124 0.217 0.315
PFmulFL 0.159 0.293 0.402 0.748 0.866 0.893 0.145 0.271 0.373 0.182 0.324 0.435
DeepGoPlus 0.198 0.351 0.428 0.778 0.893 0.901 0.171 0.307 0.414 0.234 0.410 0.443
SDN2GO 0.325 0.473 0.446 0.846 0.921 0.917 0.288 0.413 0.408 0.376 0.556 0.493
MSF-PFP(ours) 0.336 0.506 0.493 0.865 0.917 0.926 0.283 0.461 0.462 0.414 0.561 0.528

aBold indicates optimal values, and underlining indicates suboptimal values.
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compared with the commonly used One-Hot, CBOW, Skit-
Gram, and 3-Gram methods, and the experimental results are
presented in Figure 5.

As presented in Figure 5, the Token module achieves
improved performance in all evaluation metrics for BP, MF,
and CC.

In terms of feature extraction, the baseline model employed
a CNN structure to process the features. However, traditional
CNNs may struggle to effectively hand over the correlation
features between the embedded dimensions in encoded
protein sequences. By treating these embedded dimensions
as compressed dimensions and designing the GA module,
MSF-PFP can fully use the correlation features among the
embedded dimensions to improve feature extraction. In the
second part of the ablation experiments, MSF-PFP compared
its performance across various attention modules, demonstrat-
ing its effectiveness in this task.

The experimental results of this study are listed in Figure 6.
MSF-PFP was compared to a variety of attention mechanism
modules, including the Self Attention (SA), Multi-Head
Attention (MHA), Convolutional Block Attention Module
(CBAM), spatial attention (SP), Efficient Channel Attention
(ECA), and GA modules. It turned out that the GA module
performs the best in terms of protein sequence feature
extraction. This demonstrates the efficacy of the GA module
in protein sequence feature extraction.

The primary objective of MSF-PFP is to integrate
multisource protein data for accurate protein function
prediction, which provides the rationale for the last set of
ablation experiments. In this study, multiple data sources are
incrementally added to verify the effectiveness of multisource
feature fusion. The experimental results are shown in Figure 7:
multiple data sources can effectively compensate for the feature
richness of single data sources. Multisource feature fusion can

Figure 5. Ablation experiments with the Encoding module.

Figure 6. Ablation experiments with Attention modules. NoAttn denotes a model that does not introduce an attention mechanism.

Figure 7. Ablation experiments with Multi-Source Feature, where Seq&Domain indicates the use of sequence and domain data, Seq&PPI indicates
the use of sequence and interaction data, and MSF-PFP indicates the use of sequence, domain, and PPI data.
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fully utilize the existing protein data to achieve accurate
prediction of protein function.

■ DISCUSSION AND CONCLUSION
Numerous studies have demonstrated that understanding
protein function is essential for exploring life processes and
biological principles. Predicting protein function based on deep
learning methods can enhance the efficiency of current protein
function annotation. However, existing approaches fail to fully
leverage the diversity of protein data as well as effectively learn
location information.

To address these limitations, we propose a novel method
called MSF-PFP that combines natural language processing
and computer vision techniques to integrate multisource
protein data. The method consists of three modules: GLI,
LI, and MLAP, respectively, designed for learning sequence,
domain, and PPI feature information.

After fusing multisource information, MSF-PFP predicts
protein function. Experimental results indicate that MSF-PFP
outperforms other state-of-the-art models. The FMax scores for
BP, MF, and CC reached 0.542, 0.675, and 0.624, respectively.

Ablation experiments demonstrate the effectiveness of the
GLI module, which extracts protein sequence features.
Furthermore, the feature fusion strategy of MSF-PFP
significantly enhances the protein function prediction. Overall,
MSF-PFP represents a promising approach for predicting
protein function by using deep learning techniques.

In future investigations, we intend to expand our data set by
incorporating additional species and introducing novel
features, such as protein structural information and phys-
icochemical properties, to enhance the predictive accuracy of
protein function. Moreover, we also plan to integrate large
language models for more precise protein sequence repre-
sentations.
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