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Abstract: The prediction of grain protein function is essential for the advancement of food
science. Traditional experimental methods are associated with high costs and significant
time requirements. Computational methods are recognized for their efficiency and reduced
time demands. A new multimodal deep learning method, MMSNet, is proposed in this
study, and protein data of four types of grains (japonica, indica, maize, and wheat) are
analyzed. This method fuses the protein structure information predicted by AlphaFold2
and combines a multiscale one-dimensional convolutional neural network (1DCNN) with
a two-dimensional convolutional neural network (2DCNN) to enable the model to capture
sequence and structural information effectively. We used a residual attention mechanism to
replace the traditional pooling layer, thereby improving the feature extraction capability of
the network layers in 2DCNN. The experimental results indicate that secondary structure
and spatial structure information contribute to improving model performance. Compared
with two classical methods, MMSNet demonstrates optimal performance, which validates
the effectiveness of our approach in integrating complex grain protein data and highlights
its potential to open new avenues for grain protein function prediction.

Keywords: grain protein function prediction; deep learning; residual attention;
convolutional neural network; secondary structure; alphafold2

1. Introduction
With the growing global population and increasing demand for healthy diets, food

science and technology are facing unprecedented challenges and opportunities [1]. As
an indispensable part of the human diet, grains are not only a source of primary energy
and nutrition but are also utilized as essential raw materials in the food industry owing
to their rich protein content [2]. The unique functional properties of grain proteins [3],
such as solubility, emulsification, and gelling ability, influence the texture, taste, and
nutritional value of foods. This study focuses on predicting the biological functions of
grain proteins based on gene ontology (GO) terms, and the study of functional properties is
beyond the scope of this study. Gene ontology describes the molecular function, biological
process, or cellular component roles of proteins. The gene ontology function prediction in
this study used protein amino acid sequence data and structural data. Functional properties
(such as solubility, emulsification, and gelling ability) are determined by the molecular
structure and chemical properties of proteins [4]. Gene ontology function prediction can
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provide indirect reference data for studying functional properties. Therefore, it is necessary
to understand and predict the function of grain proteins.

Traditional protein function prediction relies on time-consuming and labor-intensive
biological experiments. However, with the development of high-throughput sequencing
technology and bioinformatics, computational methods are now being used to effectively
accelerate the annotation of protein function. Earlier methods, such as BLAST [5], trans-
ferred protein functional annotations based on sequence similarity. With the development
of artificial intelligence, many machine-learning methods have been widely used to predict
protein function with good results [6–9]. However, redundancy and noise problems result-
ing from the accumulation of large amounts of protein data have become bottlenecks that
limit the performance improvement of machine-learning algorithms. Kulmanov first used
a convolutional neural network (CNN) to construct a deep-learning model, DeepGO [10],
and combined protein sequences and protein–protein interaction network features to pre-
dict protein functions. In the later proposed DeepGOPlus [11], Diamond (a fast sequence
alignment tool) was used to obtain sequence similarity information [12], and a CNN was
combined to extract sequence features to improve prediction performance. Protein function
is not only determined by its primary structure (sequence) but is also closely related to its
specific spatial structure. The folding and spatial conformation of proteins are decisive
factors in determining their functions [13,14]. DeepFRI uses a graph convolutional network
(GCN) to link sequence and structural data and achieves better performance in protein
function prediction by using experimentally determined protein structure data [15]. Deep
learning methods can accurately capture subtle patterns closely related to functions in
massive amounts of protein data owing to their powerful pattern recognition and automatic
feature extraction capabilities [16].

Previous research on protein function prediction was mostly limited to protein se-
quence data or relied on the acquisition of expensive experimental structural data. However,
a new perspective on protein function prediction was provided through a breakthrough
in protein structure prediction achieved using AlphaFold2 [17]. The accuracy of protein
structure prediction has been improved to the atomic level using AlphaFold2, providing
high-quality structural predictions close to the experimental levels. The availability of
such high-quality structural data has greatly enriched the resources for computational
approaches. TransFun extracts features from protein sequences using a pre-trained protein
language model (evolutionary scale modeling, ESM) via transfer learning and combines
them with protein 3D structures through equivariant graph neural networks [18]. The
Struct2GO model learns the embedding of amino acid residues using graphs [19]. A graph
pooling algorithm based on a self-attention mechanism was used to extract the overall
graph structural features, which were then fused with sequence features obtained from
protein language models to improve the accuracy of the protein function prediction and
the generality of the model. Therefore, a shift has been witnessed in the frontier field of
protein function prediction from single-sequence information to combined structural data
and from single-sequence alignment methods to complex deep learning methods.

The multimodal MMSNet algorithm based on multi-source data fusion is proposed for
grain protein function prediction in this paper, which integrates protein sequence informa-
tion and high-quality protein structure information predicted by AlphaFold2. Secondary
and spatial structural information of amino acids were extracted from structural data,
and convolutional neural networks were employed to learn feature representations for
one-dimensional sequence data and two-dimensional image data, respectively. The pro-
posed method was compared with two representative methods, and a significant improve-
ment in overall performance was observed. The effectiveness of the extracted secondary
structure information in improving the prediction performance was demonstrated, and in-
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corporating a residual attention mechanism into a 2DCNN to extract 3D structural features
significantly enhanced the accuracy and stability of model predictions.

2. Materials and Methods
2.1. Datasets

Protein sequence data with GO annotations for japonica, indica, maize, and wheat
were obtained from the UniProtKB-SwissProt database. All protein data in the UniProtKB-
SwissProt database were carefully verified through a literature review and computer
tools [20], providing high-quality grain protein data for this experiment. The corresponding
grain protein structure data predicted by AlphaFold2 were obtained from the AlphaFold
Protein Structure Database [21]. Simultaneously, the gene ontology’s OBO format data
were obtained from https://geneontology.org/docs/download-ontology/ (accessed on
2 October 2023), and the gene ontology hierarchy was parsed.

Gene ontology annotation is widely used as a classification scheme for protein function
prediction [22]. To describe the biological concepts of protein function, protein function
categories were organized into three sub-ontologies: molecular function, biological process,
and cellular component. Several GO terms can be used to annotate proteins. For each
grain protein dataset, separate datasets were constructed for MF, BP, and CC sub-ontologies
in the initial data preprocessing stage based on previous studies. Some proteins only
possess functions that belong to a specific ontology. Real-path rules are used to propagate
annotations in the GO hierarchy; i.e., if a protein is annotated with a specific GO term,
then the ancestor terms of that term are also used for protein annotation. If a protein
contains GO term annotations from three sub-ontologies, it is simultaneously included in
the MF, BP, and CC sub-ontology datasets. To reduce GO term sparsity, we filtered out GO
categories annotated with fewer than a certain threshold number of proteins from each
dataset. Protein sequences with a length greater than 1002 or ambiguous amino acid codes
(B, O, J, U, X, and Z) were discarded.

The processed dataset was randomly divided into a training set (80%) and a test
set (20%). Then, 80% of the training data were used to train the model, whereas 20%
were used to evaluate the trained models and select the best one. The test set was used
to evaluate the performance of the final model and assess the generalized ability of the
model on unseen data. The number of proteins in the four-grain protein datasets is listed
in Table 1.

Table 1. The number of samples in each of the four-grain protein sub-ontology datasets.

Datasets Sub-
Ontology Training Samples Validation Samples Test Samples Total Number of Classes GO Filtering Threshold

Japonica
MF 1 2157 540 675 3372 121

50BP 2 2067 517 646 3230 254
CC 3 2085 522 652 3259 59

Indica
MF 260 65 82 407 52

10BP 68 17 22 107 28
CC 192 48 61 301 28

Maize
MF 254 64 80 398 48

10BP 76 20 25 121 31
CC 152 38 48 238 27

Wheat
MF 131 33 42 206 56

5BP 37 10 12 59 29
CC 61 16 20 97 27

1 MF represents the molecular function. 2 BP stands for biological process. 3 CC represents cellular components.
The GO filtering threshold indicated that GO terms with annotated protein numbers below this value were
not considered.

https://geneontology.org/docs/download-ontology/
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2.2. Data Representation
2.2.1. Protein Sequence Coding

In this study, protein sequence data were used as the basis. The selected protein
sequence consisted of 20 amino acids (aa). The amino acid sequence was encoded using the
n-gram (n = 1) technique, which is a statistical language model used in natural language
processing. A unigram of amino acid (AA) was generated from the protein sequence,
and a lookup table was constructed with 20 amino acids corresponding to 20 specific real
numbers, ranging from 1 to 20. Based on the lookup table, vocabulary was constructed
for each protein sequence. This means that each amino acid in the protein sequence was
mapped to a number (the index of the amino acid in the lookup table). Based on the
concept of dense embedding and guided by the experimental analysis of Zuallaert [23],
each numerical code in the vocabulary was mapped to a 10-dimensional dense vector
through the embedding layer. The embedding layer adjusts the parameters during training
to obtain the best dense vector representation. To adapt to the input data format of the deep
learning model, each sequence was encoded as a vector of length 1002. If the sequence
length is less than 1002, then the vector is padded with zeros. Each protein sequence is
represented as a sequence feature matrix with dimensions 1002 × 10. The protein sequence
was abstractly modeled using this encoding strategy to capture the local features and
sequence dependencies.

2.2.2. Secondary Structural Features

The addition of a secondary structural feature based on sequence data can enhance
the information content of input data to a certain extent. PDB files containing protein
3D structure data were converted into DSSP files containing secondary structure infor-
mation using the web server of the DSSP website [24,25]. The eight-category secondary
structure states [310-helix(G), α-helix (H), π-helix (I), β-strand (E), β-bridge (B), β-turn (T),
bend (S), and loop or irregular (L)] of the proteins were analyzed using the DSSP file.
Owing to the absence of a secondary structure status for some amino acids in the DSSP file,
a one-hot vector of dimension nine was used to encode the secondary structure status. The
first eight dimensions correspond to eight types of secondary structures, and the last di-
mension indicates the absence of a secondary structure status. In the one-hot vector, the
secondary structure position was set to 1, and the others were set to 0.

Similarly, the secondary structure information corresponding to the amino acids in the
protein sequence was also constructed into a 1002 × 9 feature matrix, which was spliced
with the sequence feature matrix during the initial stage of the model. Therefore, using the
two types of features, sequence encoding and secondary structure, a 19-dimensional feature
vector was obtained for each amino acid in the protein sequence. Finally, each protein
amino acid sequence was represented by a tensor size of 1002 × 19 (combined sequence
and secondary structure features).

2.2.3. Structural Contact Map Features

The Cα atom coordinate information for each amino acid residue was first collected
from the processed DSSP file to characterize the 3D structure of the protein. Next, the
Euclidean distances between each pair of residues were calculated based on the Cα atom
coordinates, and a protein distance map was constructed to quantify spatial relationships
within the protein structure. Figure 1 illustrates the spatial relationships among Cα atoms
in protein structures. The contact map was constructed by setting the distance threshold
to 10 Å; that is, if the distance between the Cα atoms of two residues was less than or
equal to 10 Å, the two residues were considered to be in contact. The critical interactions
between residues in the protein structure were highlighted by setting a reasonable contact
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threshold. These interactions are essential for the structural stability and functional activity
of proteins. Figure 2 shows some details of the distance map and contact map obtained
from the A1L4T4 protein structure data. The protein structure data and contact maps
shown in Figures 1 and 2 are from Oryza sativa subsp. japonica (rice).
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Figure 2. Schematic of details in protein structure data.

Before input into the model, the contact map data were converted into a tensor.
Subsequently, to adapt to the computing resource limitations, the contact map size of each
protein structure was uniformly adjusted to 224 × 224 pixels using bilinear interpolation,
thereby avoiding potential memory overflow issues. This processing step provides a
uniform data format for subsequent inputs to deep learning models, thereby enhancing the
stability of model training.

2.3. Model Architecture and Implementation
2.3.1. Multimodal Multiscale Network (MMSNet)

In this study, a multimodal multiscale deep learning method was proposed for predict-
ing grain protein function. The MMSNet method consists of two branches: the sequence
branch, which processes data containing amino acids and secondary structure information,
and the structure branch, which processes image data obtained from protein 3D structures.
Convolutional neural networks (CNNs) are a type of bio-inspired neural network designed
to mimic the receptive fields of biological neurons [26]. In a CNN, the output is generated
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by performing convolutional operations on an input layer. An overview of the MMSNet
approach is shown in Figure 3.
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We applied a one-dimensional (1D) convolution to the sequence data. The 1DCNN can
effectively capture the local patterns and features of long-sequence data. However, feature
information at different levels and ranges is challenging to capture with a single-scale
convolutional kernel, potentially leading to the omission of important long-distance de-
pendent features and the introduction of unnecessary local feature redundancy. Therefore,
a multiscale one-dimensional convolutional neural network was employed, consisting
of seven groups of one-dimensional convolution and max pooling layers, with kernel
sizes of 8, 16, 32, 64, 128, 256, and 512 for each group of convolution layers. Different
convolutional kernels can capture the features of different dimensions. The features ex-
tracted by the multiscale convolutional kernel are combined to create a richer and more
comprehensive representation of the sequence data.

The spatial characteristics of a protein are represented in a two-dimensional image
by gradually abstracting protein structure data. We used two-dimensional convolution
(Conv2D) to process the image data. Two-dimensional convolution is a technique specifi-
cally designed for processing image data that effectively captures the spatial characteristics
of an image by sliding a convolution kernel across a two-dimensional plane. In protein
image data processing, the capture of local patterns and features of protein structures
through 2D convolution supports further analyses. Pooling layers (such as max pooling
and average pooling) are traditionally used by convolutional neural networks to down-
sample feature maps. However, many redundant features are generated by these pooling
layers, thereby increasing the computational complexity and resulting in a decrease in
overall model performance. To solve this problem, we replaced the ordinary pooling layer
with a residual attention mechanism. The essential features in the feature map can be
adaptively weighed by the residual attention mechanism, leading to a significant reduction
in the number of redundant features and enhancement in the overall performance of the
model. Through a multimodal processing method, the model can make full use of the
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complementary information in different modal data. The GO hierarchical classification
layer is shown in Figure 4.
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2.3.2. Residual Attention Mechanism

This study builds upon Zhu’s research on residual attention [27], making necessary
adjustments and improvements to the original residual attention method based on the
characteristics of the data to be processed with the aim of enhancing the ability of the model
to extract structural features.

The core idea of the residual attention mechanism used in this study is to combine
the convolution operation with the attention mechanism to enhance the representation
of essential features, including convolution, global average pooling, global max pool-
ing, and the calculation of attention scores. Let the input feature map be x with shape
(H, W, Cin) and let yraw be the feature map generated by the convolutional layer with shape
(H, W, Cout). Its expression is as follows:

yraw = Conv2D1×1(x) (1)

Conv2D is a 1 × 1 convolution operation that maps the input feature map x to
the output feature map yraw with global average pooling and global maximum pooling
performed on each channel of yraw. For each channel k:

yavg,k =
1

H × W

H

∑
i=1

W

∑
j=1

yraw(i, j, k) (2)

ymax,k = max
i=1,...,H;j=1,...,W

yraw(i, j, k) (3)

Thus, we obtain two sets of vectors, yavg = [yavg,1, yavg,2, . . ., yavg,Cout] and
ymax = [ymax,1, ymax,2, . . ., ymax,Cout] of the shape (Cout). Finally, the final attention value
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score was computed according to the following equation, with the output having a
shape of (Cout):

score = yavg + λ·ymax (4)

In this formula, λ is defined as a weighting parameter used to adjust the relative
importance of the global mean and maximum values. In our model, λ was set to 0.5.
Figure 5 illustrates the computational relationship of the residual attention mechanism.
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2.3.3. Model Configuration and Training Details

The Tensorflow/Keras deep-learning library was used to implement the deep-learning
framework. We used an NVIDIA A40 GPU with 48 GB of RAM to train the model to handle
large amounts of data and to speed up the training process. During training, the Adam
optimizer was used to optimize the model parameters, and the learning rate was set to
0.0003. A batch size of 32 was used in all experiments, and 200 epochs were set as the
default. The binary cross-entropy loss function was used to measure the difference between
the predicted results and true labels. The loss function is defined as follows:

Loss = − 1
N

N

∑
i=1

[yilog (pi) + (1−yi)log (1−pi)] (5)

where N is the total number of samples, yi is the true label, and pi is the predicted label.
At the end of each training round, we monitored the performance of the model on the
validation set and saved the weights of the best model. To avoid overfitting, we used the
early stopping criterion with patience = 10; that is, if the validation loss did not decrease
for ten consecutive epochs, the training was terminated.

2.4. Comparison with Existing Methods

In this study, the constructed model was compared with two existing deep-learning
models using three sub-ontology datasets (MF, BP, and CC) of the Japonica proteins. The
DeepGOPlus prediction system combines DeepGOCNN model prediction with prediction
based on sequence similarity. This study focused on a comparative analysis of the Deep-
GOCNN model using only the protein sequence data. DeepGOCNN consists of a series of
CNN layers equipped with filters of sizes 8–128, with 512 filters per layer. DeepFRI learns
protein feature representations by propagating sequence-level features of structurally neigh-
boring residues through GCNs and uses structural data from the PDB and SWISS-MODEL
databases to establish a link between protein structure and function prediction.

DeepGOCNN relies on sequence data and does not utilize structural information,
which may limit its accuracy. DeepFRI integrates structural data but relies on traditional
databases, especially in the case of diverse and complex proteins. In this study, both protein
sequence data and high-quality structural data predicted by AlphaFold2 were used.
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2.5. Evaluation Metrics

In this study, Fmax, average precision (AvgPr), average recall (AvgRc), area under the
precision-recall curve (AUPR), and the Matthews correlation coefficient (MCC) were used
as model evaluation metrics to measure the performance of our model and other methods
for grain protein function prediction.

Fmax is a protein-centered evaluation metric utilized in CAFA and represents the
maximum value of the geometric mean of the average precision and average recall for all
proteins in the test set at each threshold [28]. First, the average precision and recall were
calculated using the following formula:

pri(t) =
∑ f I( f ∈ Pi(t)∧ f ∈ Ti)

∑ f I( f ∈ Pi(t))
(6)

rci(t) =
∑ f I( f ∈ Pi(t)∧ f ∈ Ti)

∑ f I( f ∈ Ti)
(7)

AvgPr(t) =
1

m(t)

m(t)

∑
i=1

pri(t) (8)

AvgRc(t) =
1
n

n

∑
i=1

rci(t) (9)

where f is the GO class, Pi(t) is the predicted annotation set of protein i at threshold t,
Ti is the true annotation set for protein i, m(t) is the number of proteins with at least
one predicted annotation at threshold t, n is the total number of proteins. I is an iden-
tity function that returns 1 if the condition is true and 0 otherwise. We then computed
Fmax (prediction threshold t ∈ [0, 1] and a step size of 0.01). If the predicted probability of a
class is higher than or equal to t, it is considered as a predicted class:

Fmax = max
t

{
2 × AvgPr(t)× AvgRc(t)

AvgPr(t)+AvgRc(t)

}
(10)

TP, TN, FP, and FN denote the true positives, true negatives, false positives, and false
negatives, respectively. AUPR and MCC are two reasonable and important evaluation
metrics for highly unbalanced learning problems, providing a comprehensive measurement
standard [29]. The MCC calculation formula is as follows:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

The higher the value of all the evaluation metrics, the better the algorithm perfor-
mance. Additionally, a trade-off between precision and recall is typically observed, where
increasing precision may reduce recall and vice versa.

3. Results and Discussion
3.1. Comparative Analysis of Algorithm Performance Combining Sequence and
Structural Features

This section provides an in-depth discussion of the performance of the three algorithms
based on different feature combinations in grain protein function prediction, focusing on
the impact of structural features on the algorithm performance. Four types of grains were
selected as research subjects, and the performances of different algorithms on the three
types of protein function ontologies were analyzed. The results from the five experiments
were averaged for each set of experimental data. The experimental results are presented
in Table 2.
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Table 2. Function prediction results of four grain proteins.

Grain Sub-
Ontology Algorithm Fmax AvgPr AvgRe AUPR MCC

Japonica

MF
MCNN-1D (S) 1 0.650 0.710 0.604 0.741 0.656

MCNN-1D (S+SS) 0.730 0.772 0.692 0.824 0.734
MMSNet (S+SS+DS) 2 0.764 0.818 0.720 0.849 0.762

BP
MCNN-1D (S) 0.544 0.638 0.476 0.530 0.486

MCNN-1D (S+SS) 0.645 0.710 0.588 0.648 0.593
MMSNet (S+SS+DS) 0.654 0.728 0.592 0.661 0.603

CC
MCNN-1D (S) 0.754 0.796 0.714 0.778 0.691

MCNN-1D (S+SS) 0.789 0.790 0.788 0.814 0.724
MMSNet (S+SS+DS) 0.800 0.824 0.776 0.819 0.739

Indica

MF
MCNN-1D (S) 0.566 0.720 0.468 0.477 0.419

MCNN-1D (S+SS) 0.654 0.808 0.552 0.564 0.500
MMSNet (S+SS+DS) 0.668 0.776 0.594 0.580 0.522

BP
MCNN-1D (S) 0.558 0.804 0.430 0.627 0.457

MCNN-1D (S+SS) 0.588 0.670 0.596 0.641 0.392
MMSNet (S+SS+DS) 0.604 0.748 0.514 0.655 0.482

CC
MCNN-1D (S) 0.699 0.746 0.658 0.677 0.569

MCNN-1D (S+SS) 0.737 0.786 0.696 0.731 0.649
MMSNet (S+SS+DS) 0.752 0.794 0.716 0.728 0.667

Maize

MF
MCNN-1D (S) 0.556 0.690 0.472 0.498 0.423

MCNN-1D (S+SS) 0.563 0.610 0.528 0.509 0.439
MMSNet (S+SS+DS) 0.574 0.642 0.526 0.513 0.442

BP
MCNN-1D (S) 0.716 0.872 0.618 0.766 0.621

MCNN-1D (S+SS) 0.784 0.918 0.688 0.817 0.711
MMSNet (S+SS+DS) 0.798 0.970 0.678 0.831 0.718

CC
MCNN-1D (S) 0.638 0.740 0.560 0.480 0.438

MCNN-1D (S+SS) 0.714 0.896 0.596 0.589 0.512
MMSNet (S+SS+DS) 0.719 0.870 0.614 0.597 0.516

Wheat

MF
MCNN-1D (S) 0.620 0.782 0.516 0.464 0.402

MCNN-1D (S+SS) 0.651 0.814 0.544 0.461 0.371
MMSNet (S+SS+DS) 0.664 0.824 0.558 0.480 0.390

BP
MCNN-1D (S) 0.635 0.720 0.570 0.634 0.522

MCNN-1D (S+SS) 0.705 0.676 0.760 0.669 0.513
MMSNet (S+SS+DS) 0.724 0.680 0.782 0.679 0.530

CC
MCNN-1D (S) 0.449 0.594 0.372 0.335 0.314

MCNN-1D (S+SS) 0.531 0.612 0.476 0.351 0.258
MMSNet (S+SS+DS) 0.547 0.624 0.510 0.368 0.272

S represents the protein sequence feature, SS represents the secondary structure feature, and DS represents the
structural contact map feature. 1 MCNN-1D uses only a one-dimensional convolutional neural network, whereas
2 MMSNet is a model that combines sequence and structural branches. The optimal values of the experimental
results are shown in bold font.

The MCNN-1D(S) algorithm is based only on sequence data. Although capturing
the key features of the sequence and achieving a certain degree of prediction accuracy is
possible in some cases, the overall performance is limited. On three sub-ontology datasets
of four-grain proteins, the MCNN-1D(S+SS) algorithm generally achieved better perfor-
mance than the MCNN-1D(S) algorithm based solely on sequence information across the
five evaluation metrics, demonstrating enhanced prediction accuracy owing to secondary
structure information. The MCNN-1D(S+SS) algorithm was only slightly inferior to the
MCNN-1D(S) algorithm in terms of the evaluation metrics for a small number of datasets.
In the CC dataset of japonica proteins, the AvgPr value of MCNN-1D(S+SS) was 0.006 lower
than that of MCNN-1D(S). In the BP dataset of the indica protein, the MCNN-1D(S+SS)
algorithm had a lower AvgPr value of 0.134 and MCC value of 0.065 than the MCNN-1D(S)
algorithm. In the MF dataset of maize protein, the AvgPr value of MCNN-1D(S+SS) was
0.08 lower than that of MCNN-1D(S). For wheat protein, the AUPR and MCC values of
MCNN-1D(S+SS) in the MF dataset were 0.003 and 0.031 lower than those of MCNN-
1D(S), respectively, the AvgPr and MCC values of MCNN-1D(S+SS) in the BP dataset were
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0.044 and 0.009 lower than those of MCNN-1D(S), respectively, and the MCC value of
MCNN-1D(S+SS) was 0.056 lower than that of MCNN-1D(S) in the CC dataset. Over-
all, the effectiveness of the MCNN-1D(S+SS) algorithm was verified, demonstrating that
secondary structure information is effective in predicting grain protein function.

The MMSNet algorithm adds structural branch and contact map features based on
MCNN-1D(S+SS). The experimental results showed that the prediction performance of
the model was the best when combined with structural contact map features. For the
three ontology datasets of the four grains, the MMSNet algorithm outperformed the
other two algorithms in terms of at least three evaluation metrics. In particular, MMSNet
performed better on the japonica protein dataset, with an AvgRe value only 0.012 lower
than that of MCNN-1D (S+SS) on the CC dataset and an AvgPr value higher than those of
the other two algorithms. This may be due to the larger sample size of the Japonica protein
dataset, which provided richer training information. The advantage of its data volume
compared to the other three grains is that it may reduce the risk of overfitting, thereby
allowing the model to generalize better to unseen data. In terms of the critical metric Fmax,
the MMSNet algorithm outperformed the other two algorithms in all three sub-datasets of
the four grains.

This demonstrated the critical role of algorithm innovation in improving the per-
formance of grain protein function prediction models. At the same time, the excellent
performance of the MMSNet algorithm powerfully demonstrates the potential of combin-
ing multidimensional biological data with advanced computing technology in the field
of grain protein function prediction. It should be noted that the wheat protein dataset,
with the smallest sample size, resulted in more unsatisfactory outcomes for the model
across the three sub-datasets. This phenomenon reflects the limitations of data scarcity in
model training.

3.2. Performance Comparison Between Residual Attention Mechanism and Traditional
Pooling Layer

In the structural branch, a severe performance bottleneck was encountered. Reliance
on ordinary pooling operations to process structural contact map data, which contain rich
structural details, was found to be insufficient for effective extraction and retention of
critical local features. Moreover, essential details are prone to be lost, which negatively
affects the overall recognition ability and generalization performance of the model. As a
result, more advanced and intelligent feature integration strategies have been explored.

A residual attention mechanism was introduced to ensure that the most critical infor-
mation for the final prediction was retained, even when feature reduction was performed,
thereby preventing performance degradation caused by information loss. The effects of
residual attention in the model were compared with those of traditional pooling layers
on the three sub-datasets of japonica protein. Each experiment was repeated five times,
and the results are shown in Table 3. The experimental results show that residual atten-
tion outperformed the other pooling layers in terms of AUPR and MCC metrics for the
three sub-ontologies. In terms of Fmax and AvgPr metrics, the mean effect of the residual
attention outperformed that of the other pooling layers. Only for the Fmax and AvgPr
metrics of the CC sub-ontology dataset, the standard deviation of the residual attention
was 0.002 and 0.003 higher than the global average pooling, respectively. In the case of
the AvgRe metric, the standard deviation of the residual attention in the MF sub-ontology
dataset was 0.002 higher than that of the global maximum pooling, the standard deviation
of the residual attention in the BP sub-ontology dataset was 0.007 higher than that of the
global average pooling, and the mean effect of the residual attention in the CC sub-ontology
dataset was 0.002 lower than that of the global average pooling. When the residual at-
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tention mechanism was employed, a data error of less than 1% was observed in cases of
performance degradation compared with other pooling layer configurations.

Table 3. Experimental results of the model component comparison.

Sub-
Ontology Algorithm Fmax AvgPr AvgRe AUPR MCC

MF

MMSNet (Max Pooling) 0.660 ± 0.033 0.690 ± 0.045 0.632 ± 0.028 0.700 ± 0.055 0.619 ± 0.043
MMSNet (Average Pooling) 0.618 ± 0.044 0.652 ± 0.057 0.584 ± 0.036 0.645 ± 0.069 0.575 ± 0.062

MMSNet (GlobalMax) 0.732 ± 0.025 0.776 ± 0.041 0.696 ± 0.026 0.831 ± 0.021 0.738 ± 0.025
MMSNet (GlobalAverage) 0.754 ± 0.031 0.798 ± 0.046 0.710 ± 0.032 0.845 ± 0.024 0.754 ± 0.028

MMSNet (ResidualAttention) 0.764 ± 0.014 0.818 ± 0.025 0.720 ± 0.028 0.849 ± 0.015 0.762 ± 0.014

BP

MMSNet (Max Pooling) 0.536 ± 0.014 0.600 ± 0.052 0.488 ± 0.016 0.485 ± 0.017 0.450 ± 0.015
MMSNet (Average Pooling) 0.518 ± 0.015 0.566 ± 0.026 0.476 ± 0.021 0.456 ± 0.012 0.420 ± 0.013

MMSNet (GlobalMax) 0.628 ± 0.019 0.696 ± 0.024 0.574 ± 0.016 0.634 ± 0.019 0.579 ± 0.025
MMSNet (GlobalAverage) 0.638 ± 0.015 0.698 ± 0.031 0.584 ± 0.008 0.643 ± 0.016 0.583 ± 0.021

MMSNet (ResidualAttention) 0.654 ± 0.011 0.728 ± 0.020 0.592 ± 0.015 0.661 ± 0.009 0.603 ± 0.009

CC

MMSNet (Max Pooling) 0.746 ± 0.012 0.794 ± 0.021 0.708 ± 0.032 0.734 ± 0.018 0.668 ± 0.015
MMSNet (Average Pooling) 0.732 ± 0.020 0.764 ± 0.029 0.700 ± 0.021 0.712 ± 0.030 0.650 ± 0.024

MMSNet (GlobalMax) 0.790 ± 0.009 0.816 ± 0.022 0.764 ± 0.008 0.816 ± 0.008 0.729 ± 0.012
MMSNet (GlobalAverage) 0.794 ± 0.005 0.814 ± 0.014 0.778 ± 0.010 0.818 ± 0.007 0.734 ± 0.008

MMSNet (ResidualAttention) 0.800 ± 0.007 0.824 ± 0.017 0.776 ± 0.005 0.819 ± 0.005 0.739 ± 0.007

The maximum mean and minimum standard deviations for each set of experimental results are in bold.

This indicates that, even in the most unfavorable situations, a performance level close
to that of the optimal pooling strategy can still be maintained by the residual attention
mechanism, further confirming its excellence in reducing prediction bias and improv-
ing model robustness. This finding emphasizes the importance of adopting flexible and
intelligent feature-processing strategies for specific data characteristics when designing
deep-learning architectures.

3.3. Comparative Analysis of Performance with Other Model Methods

This study provides a detailed performance comparison of three different model
methods on japonica protein datasets. DeepGOCNN uses only the protein sequence
data. Sequence and structural data were combined in DeepFRI using graph convolutional
networks (GCN). In this study, DeepFRI and MMSNet used the same structural data. Each
experiment was repeated five times, and Figure 6 shows the performance comparisons of
MMSNet and the other two algorithms on the three sub-ontology datasets.

In the MF subontology dataset, DeepFRI outperformed DeepGOCNN for all the
metrics. This may be because the three-dimensional structural information of proteins
utilized by DeepFRI plays a crucial role in MF sub-ontology, as molecular functions are
often closely related to specific structural domains or protein conformations. In the BP
and CC sub-ontologies, DeepFRI performed worse than DeepGOCNN, which may be
because the structural features extracted by the GCN contain more noisy data, which
significantly reduces the performance of the model in predicting biological processes and
cellular component functions.

Among the three sub-ontologies, MMSNet outperformed DeepFRI and DeepGOCNN
in terms of the five evaluation metrics. Although both MMSNet and DeepFRI use structural
information, they aim to fully utilize high-precision protein structures and multimodal
integration techniques. Case studies of MMSNet have highlighted the importance of
integrating multisource data to improve the accuracy and stability of predictions.
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3.4. Analysis of Model Prediction Results

To further study and analyze the prediction effect of our model, the MMSNet algorithm
was employed to predict the function of proteins that were not included in the training
dataset. The predicted protein data were selected from the experimental prediction results
of three sub-ontology datasets of proteins (MF, BP, and CC). The comparison results for the
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protein functions selected in this section are shown in Table 4. We focused on analyzing
the functions of some japonica proteins based on the latest research papers and model
prediction results. We want to emphasize that we were not only limited to the study of
model performance, but also paid more attention to the practical significance of the model.

Table 4. Example of protein function prediction results for four types of grains.

Grain Sub-
Ontology Protein Real

Function
Predicted
Function

Japonica

MF

P29250 (LOX2_ORYSJ)

GO:0046872
GO:0043169
GO:0043167
GO:0005488
GO:0016491
GO:0003824

GO:0046872
GO:0043169
GO:0043167
GO:0005488
GO:0016491
GO:0003824

P16081 (NIA1_ORYSJ)

GO:0003824
GO:0005488
GO:1901363
GO:0097159
GO:0046914
GO:0043168

GO:0003824
GO:0005488
GO:1901363
GO:0097159
GO:0003676
GO:0003723
GO:0016787

Q0JKI9 (ARFB_ORYSJ)

GO:0003677
GO:0003676
GO:0097159
GO:1901363
GO:0005488

GO:0003677
GO:0003676
GO:0097159
GO:1901363
GO:0005488

BP

Q10RB4 (BGAL5_ORYSJ)
GO:0008152
GO:0044238
GO:0005975

GO:0008152
GO:0044238

Q8W0A1 (BGAL2_ORYSJ)
GO:0005975
GO:0044238
GO:0008152

GO:0005975
GO:0044238
GO:0008152
GO:0009058
GO:0016051

CC

Q84YK8 (LOXC2_ORYSJ)

GO:0009507
GO:0009536
GO:0043231
GO:0043227
GO:0043229
GO:0043226
GO:0110165

GO:0009507
GO:0009536
GO:0043231
GO:0043227
GO:0043229
GO:0043226
GO:0110165
GO:0016020

Q6YSJ5 (AGO16_ORYSJ) GO:0005737
GO:0110165

GO:0005737
GO:0110165

Q7XP59 (GLR31_ORYSJ)
GO:0005886
GO:0016020
GO:0110165

GO:0016020
GO:0110165

Indica

MF

A2Y9M4 (SSY1_ORYSI) GO:0003824
GO:0016740 GO:0003824

P0C461 (RR12_ORYSI) GO:0003735
GO:0005198

GO:0003735
GO:0005198
GO:0005488

BP

Q01IX6 (DAO_ORYSI)
GO:0009987
GO:0008152
GO:0044237

GO:0009987
GO:0008152

A2YNH4 (6PGL2_ORYSI)
GO:0044238
GO:0071704
GO:0008152

GO:0044238
GO:0071704
GO:0008152

CC

B8BKI8 (MCM2_ORYSI) GO:0032991 GO:0032991
GO:0110165

B8ATT7 (VLN4_ORYSI) GO:0005737
GO:0110165

GO:0005737
GO:0110165
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Table 4. Cont.

Grain Sub-
Ontology Protein Real

Function
Predicted
Function

Maize

MF

P29390 (FRI2_MAIZE) GO:0003824
GO:0016491 GO:0003824

P06677 (ZEA9_MAIZE) GO:0045735 GO:0045735
GO:0003824

BP

P33488 (ABP4_MAIZE) GO:0009987
GO:0009987
GO:0044237
GO:0008152

B6SU46 (AAMT2_MAIZE) GO:0006950
GO:0050896

GO:0006950
GO:0050896

CC

Q9LKX9 (RBR1_MAIZE) GO:0032993
GO:0032991

GO:0032993
GO:0032991

Q41764 (ADF3_MAIZE) GO:0110165
GO:0005737 GO:0110165

Wheat

MF
Q8L803 (RK9_WHEAT) GO:0003735

GO:0005198

GO:0003735
GO:0005198
GO:0003824

Q5I7K3 (RS29_WHEAT) GO:0003735
GO:0005198

GO:0003735
GO:0005198

BP

B6DZC8 (1FEH3_WHEAT)

GO:0008152
GO:0044238
GO:0071704
GO:0005975

GO:0008152
GO:0044238
GO:0071704

O04706 (GAO1B_WHEAT)

GO:0009416
GO:0009314
GO:0009628
GO:0050896

GO:0009416
GO:0009314
GO:0009628
GO:0050896

CC

Q41560 (HS16B_WHEAT) GO:0005737
GO:0110165

GO:0005737
GO:0110165

Q01481 (WIR1B_WHEAT) GO:0110165
GO:0016020 GO:0110165

For some protein samples, all the preset labels were correctly predicted by the model,
demonstrating excellent prediction accuracy. For example, in the MF sub-dataset, the
P29250 (LOX2_ORYSJ) protein was annotated as GO:0046872, GO:0043169, GO:0043167,
GO:0005488, GO:0016491, and GO:0003824. The functions predicted by the model were con-
sistent with actual annotations. The P29250 protein was also annotated with the GO:0046872
function in the UniProt database, as inferred from electronic annotation. Furthermore, Guo
indicated that the P29250 protein might play a key role in biological processes related to
metal ion binding (GO:0046872) [30]. The Q0JKI9 (ARFB_ORYSJ) proteins in the test set
were annotated using GO:0003677, GO:0003676, GO:0097159, GO:1901363, and GO:0005488.
The function of the Q0JKI9 protein was accurately predicted by the model and aligned
with its annotated function. Prathap inferred that the Q0JKI9 protein has a binding func-
tion (GO:0005488) by analyzing the ARF2 gene corresponding to the Q0JKI9 protein [31].
Auxin response factors (ARFs) generally exhibit DNA-binding activity; therefore, it can
be inferred that the Q0JKI9 protein may be involved in DNA binding (GO:0003677). The
UniProt database also inferred that the Q0JKI9 protein had a GO:0003677 function through
automatic annotation. The actual annotated function of the Q6YSJ5 (AGO16_ORYSJ) pro-
tein in the CC sub-dataset was correctly predicted by the model. The above shows that, in
some specific cases, the key features of the data can be accurately captured, and accurate
judgments can be made by the model.

However, for other protein samples, the prediction results reflected the uncertainties
and limitations of the functional predictions posed by the model. Models can occasionally
predict functions that are not included in a label set. For example, the test protein P16081
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(NIA1_ORYSJ) in the MF ontology dataset was manually annotated with the GO:0003824,
GO:0005488, GO:1901363, GO:0097159, GO:0046914, and GO:0043168 functions. The func-
tions GO:0003824, GO:0005488, GO:1901363, and GO:0097159 were successfully predicted
by the model, whereas the annotated functions GO:0046914 and GO:0043168 were not. Ad-
ditionally, the model predicted the functions of GO:0003676, GO:0003723, and GO:0016787.
We mainly focused on and analyzed the function of GO:0016787 (hydrolase activity).
A recent study by Haider revealed transcriptome changes in rice roots in response to
phosphorus starvation [32]. The study mentioned that Os08g0468100, which encodes the
P16081 protein, was downregulated under phosphorus-deficient conditions and may be
related to phosphoric ester hydrolase activity. In the molecular function sub-ontology
hierarchy, phosphoric ester hydrolase activity was classified as a more specific functional
category under hydrolase activity (GO:0016787), suggesting that the P16081 protein may
be related to hydrolase activity (GO:0016787). This demonstrates the feasibility of the
proposed model for predicting unknown functions.

After manual annotation, Q8W0A1 (BGAL2_ORYSJ) in the BP dataset had the
GO:0005975, GO:0044238, and GO:0008152 functions. In addition to the annotated functions,
the two functions GO:0016051 and GO:0009058 were predicted unexpectedly, which may be
due to the correlation between the additional predicted and annotated functions. The gene
expression of japonica germplasms under heat stress conditions was analyzed by Li [33],
who revealed that the expression of genes associated with the function of GO:0009058 was
downregulated. This downregulation suggests that proteins involved in the GO:0009058
function may be present in japonica and that the GO:0009058 function is a subset of the
GO:0008152 function. Therefore, in this study, a certain degree of possibility was suggested
for predicting Q8W0A1 protein function.

The Q84YK8 (LOXC2_ORYSJ) protein in the CC dataset is annotated with GO:0009507,
GO:0009536, GO:0043231, GO:0043227, GO:0043229, GO:0043226, and GO:0110165. The
model additionally discovered the GO:0016020 function during prediction. In the CC
ontology hierarchy, the membranes (GO:0016020) were categorized as functional subsets
of cellular anatomical entities (GO:0110165). Membranes are a more specific and focused
category of cellular components than cellular anatomical entities. A recent study on the
genetic analysis of rice seedlings reported that the LOC_Os08g39850 gene, corresponding to
the Q84YK8 protein, encodes a chloroplast precursor lipoxygenase [34]. As lipoxygenases
can act on the phospholipids of cell membranes, we speculate that the Q84YK8 protein may
be related to membrane function (GO:0016020). Although additional predicted labels are
not explicitly included in the original label set, an intrinsic biological relationship exists
between them and known labels. A method for further data analysis and hypothesis
generation was developed by mining latent knowledge. These three proteins—P16081 from
the MF dataset, Q8W0A1 from the BP dataset, and Q84YK8 from the CC dataset—represent
instances where extra functions were predicted by the model. The additional predicted
functions hold significant value and implications for advancing our understanding of
protein functionalities.

However, the model failed to successfully predict the actual labels for some samples.
For example, the Q10RB4 (BGAL5_ORYSJ) protein in the BP ontology dataset was manu-
ally annotated with functions GO:0005975, GO:0044238, and GO:0008152. However, the
model did not predict the function of GO:0005975, possibly because of the similarities
between GO:0005975 and GO:0044238. Within the BP gene ontology hierarchy, the carbohy-
drate metabolism process (GO:0005975) was classified as the primary metabolic process
(GO:0044238), and potential biases may exist in the model when predicting specific func-
tional categories. Similarly, the Q7XP59 (GLR31_ORYSJ) protein in the CC ontology dataset
had a GO:0005886 function in the Swiss-Prot database, and GO:0016020 and GO:0110165
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functions were manually annotated. However, the GO:0005886 function was not observed
during the prediction process. Owing to the inherent hierarchical relationship between the
two functions, more general or abstract functional categories are likely to be recognized by
the model during predictions because they appear more frequently in the training data.

We also predicted and observed the protein functions in the test sets of indica, maize,
and wheat. For the indica proteins A2YNH4 (6PGL2_ORYSI) and B8ATT7 (VLN4_ORYSI),
the maize proteins B6SU46 (AAMT2_MAIZE) and Q9LKX9 (RBR1_MAIZE), and the wheat
proteins Q5I7K3 (RS29_WHEAT), O04706 (GAO1B_WHEAT), and Q41560 (HS16B_WHEAT),
the model successfully and completely predicted their functions. For the P0C461
(RR12_ORYSI) and B8BKI8 (MCM2_ORYSI) proteins of indica, the P06677 (ZEA9_MAIZE)
and P33488 (ABP4_MAIZE) proteins of maize, and the Q8L803 (RK9_WHEAT) protein
of wheat, the model predicted functions that had not been previously annotated. For
the indica proteins A2Y9M4 (SSY1_ORYSI) and Q01IX6 (DAO_ORYSI), the maize pro-
teins P29390 (FRI2_MAIZE) and Q41764 (ADF3_MAIZE), and the wheat proteins B6DZC8
(1FEH3_WHEAT) and Q01481 (WIR1B_WHEAT), the model did not fully predict their
annotated functions. This prediction bias reflects the challenges faced by models when
dealing with bioinformatic data with hierarchical structures and semantic associations. In
summary, it was demonstrated that MMSNet generally performed well in predicting grain
protein functions.

4. Conclusions
In this study, a deep learning-based multimodal learning technique was developed and

applied to the prediction of grain protein functions. A significant improvement in prediction
performance was shown by the MMSNet method, which integrates 1D convolutional neural
networks (1DCNN), 2D convolutional neural networks (2DCNN), and residual attention
mechanisms, and incorporates the structural information (especially secondary structure)
predicted by AlphaFold2 into the model. Four-grain protein datasets for japonica, indica,
maize, and wheat were preprocessed to analyze and evaluate the prediction performance of
the MMSNet model. The superiority of the MMSNet model in capturing complex patterns
in protein sequences and structures was emphasized by experimental comparison with
existing methods, such as DeepGOCNN and DeepFRI. In particular, the extraction of
relevant features was enhanced by the residual attention mechanism through a flexible and
intelligent feature integration strategy. It has been experimentally proven that the model
performance was significantly improved by this mechanism, which is not achievable with
traditional pooling layers. This innovation highlights the potential of computer vision-
related technologies in the field of protein function prediction has been highlighted by
this innovation.

Prediction of grain protein function can provide fundamental insights into food sci-
ence research. For instance, predictions of enzymatic activity or molecular interactions
might inspire targeted research into functional properties, such as texture enhancement
or nutritional optimization, in specific food applications. This will help bridge the gap
between biological understanding and practical applications in food science. The pre-
diction function can be experimentally verified through biological methods to validate
the practical applicability of our model and uncover new insights into protein function
prediction. Future research should focus on exploring new methods for protein structure
feature extraction, analyzing structural data from a more detailed perspective, and improv-
ing the robustness and accuracy of grain protein function prediction. In summary, new
possibilities in the field of protein function prediction were identified using our multimodal,
multiscale approach.
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