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Abstract

Protein is the most important component in organisms and plays an indispensable role in life activities. In recent years, a large number
of intelligent methods have been proposed to predict protein function. These methods obtain different types of protein information,
including sequence, structure and interaction network. Among them, protein sequences have gained significant attention where
methods are investigated to extract the information from different views of features. However, how to fully exploit the views for
effective protein sequence analysis remains a challenge. In this regard, we propose a multi-view, multi-scale and multi-attention deep
neural model (MMSMA) for protein function prediction. First, MMSMA extracts multi-view features from protein sequences, including
one-hot encoding features, evolutionary information features, deep semantic features and overlapping property features based on
physiochemistry. Second, a specific multi-scale multi-attention deep network model (MSMA) is built for each view to realize the deep
feature learning and preliminary classification. In MSMA, both multi-scale local patterns and long-range dependence from protein
sequences can be captured. Third, a multi-view adaptive decision mechanism is developed to make a comprehensive decision based on
the classification results of all the views. To further improve the prediction performance, an extended version of MMSMA, MMSMAPlus,
is proposed to integrate homology-based protein prediction under the framework of multi-view deep neural model. Experimental results
show that the MMSMAPlus has promising performance and is significantly superior to the state-of-the-art methods. The source code
can be found at https://github.com/wzy-2020/MMSMAPlus.
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INTRODUCTION
Protein is the most important building block in organisms and
plays an essential role in various life activities. Protein function
describes the role of protein in biochemical reactions, cellular
activities, biological expressions and other life activities [1]. The
study of protein function is helpful to understand the molecular
mechanisms of various life activities in organisms and is of great
importance to the research of physiology, pathology and pharma-
ceutical science.

In the post-genomic era, many protein databases have been
available. However, there are still a great number of proteins
that have no functional annotations [2]. For these proteins with
unknown functions, homology-based transfer is often adopted
for function prediction in early methods [3], such as BLAST [4],

HHblits [5] and Diamond [6]. These methods perform homology
alignment in databases with known functional sequences by eval-
uating the similarity between unknown and known functional
proteins, so that the function of a known protein is transferred to
an unknown but highly similar protein. Homology-based transfer
is based on the biological principle that if two protein sequences
are highly similar, they are likely to have evolved from a common
ancestor, and thus they have similar functions. However, the liter-
ature indicates that homologous transfer based on the similarity
between protein sequences is not very reliable [1].

Benefiting from the development of intelligent modeling with
machine learning, new protein function prediction methods have
been proposed in recent years. For example, Lobley et al. [7]
proposed the FFPred method, by using support vector machine
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to predict amino acid sequences, which is a potential substi-
tute for homology-based annotation method. Cozzetto et al. [8]
further proposed the FFPred3 method to predict protein func-
tion by using feature information such as secondary structure,
transmembrane helices, intrinsic disordered regions and signal
peptides. Kulmanov et al. [9] proposed the DeepGO method, which
combines sequence motifs with protein–protein interaction net-
work to achieve function prediction. You et al. [10] proposed the
DeepText2GO method to improve the automated function predic-
tion (AFP) performance by incorporating text mining information
alongside protein sequence information. In addition, the consen-
sus mechanism in DeepText2GO is used to combine the text-
based classifier with the sequence-based classifier. Gligorijevic
et al. [11] proposed the DeepFRI method to learn the sequence
and structure binding preferences from experimental data. The
method uses the deep language model LSTM-LM [12] to extract
protein sequence information and inputs the protein structure
information and sequence information into the graph convolu-
tional network to obtain complex structure–function relation-
ships. You et al. [13] proposed the DeepGraphGO, which combines
sequence information and protein network information and uses
graph convolutional neural networks to obtain higher-order net-
work information.

The above intelligent methods have demonstrated effective-
ness in protein function prediction, but most of them use exper-
imental information (such as interaction networks) other than
protein sequence, which has a limited ability to express large-
scale data and is more expensive to obtain than sequencing.
Furthermore, for proteins whose function is unknown, it is easiest
to obtain sequence features. Therefore, sequence-based predic-
tion method is still a major research in AFP. Hence, the protein
function prediction discussed in this paper focuses on sequence
features.

Research has shown that combining different feature sets
extracted from the same data source can achieve information
complementarity and performance improvement [14, 15]. That
is, it is reasonable and effective to extract multiple feature views
from amino acid sequences and use these views to construct
prediction models. Yet, it is critical to determine the importance
of the views.

In response to the above challenges, we conduct in-depth
research and propose a multi-view, multi-scale and multi-
attention-based deep neural model (MMSMA) to predict the
protein function. The main idea is as follows: (1) we construct
multi-view features for protein sequences from the view of
one-hot encoding information, evolutionary information, deep
semantic information and overlapping property based on
physiochemistry. (2) Based on the multi-view data, we design a
specific multi-scale multi-attention (MSMA) deep network model
for each view to learn deep features and conduct the preliminary
prediction for protein function. In each MSMA, a multi-scale
deep feature extractor (MSFE) with a feature pyramid structure
is designed to capture multi-scale local features, and a multi-
head attention (MHA) mechanism is adopted to capture long-
range dependence between multi-scale local features. (3) Based
on the preliminary predictions of multiple views, we introduce a
multi-view adaptive decision mechanism to balance the impact
of the multiple views on the final prediction results. (4) We extend
MMSMA by combining it with homology-based method to propose
the MMSMAPlus to further improve the prediction performance of
protein function. The contributions of this study are summarized
as follows:

(i) We investigate feature extraction techniques suitable for
protein function prediction from four views, including one-
hot encoding information, evolutionary information, deep
semantic information and overlapping property information.

(ii) We design MSMAs to extract deep features from different
views and obtain the preliminary protein function predic-
tions. For each MSMA, an MSFE with a feature pyramid
structure is designed to capture local features, and an MHA
mechanism is adopted to capture the long-range depen-
dence between local features.

(iii) We present a multi-view adaptive decision mechanism to
make a comprehensive decision based on the classification
results of all the views.

(iv) We further propose an extended version of MMSMA,
MMSMAPlus, to integrate homology-based protein prediction
under the framework of multi-view deep neural model.

(v) We conduct comprehensive experimental evaluations and
show that the methods proposed in this study can achieve
excellent performance in protein function prediction.

MATERIALS AND METHODS
Overview
The framework of the proposed MMSMA is shown in Figure 1.
MMSMA mainly consists of three modules: the multi-view feature
extraction module, the deep feature extractor and sub-classifier
learning module, and the adaptive decision module, which are
briefly described as follows: for the multi-view feature extraction
module, one-hot encoding features are extracted from the amino
acid sequence, evolutionary information features are represented
through position-specific scoring matrices (PSSM), deep semantic
features are obtained through language model and overlapping
property features are captured from the amino acid sequence.
For the deep feature extractor and sub-classifier learning module,
we propose an MSMA deep neural network for each single view.
The proposed MSMA performs deep feature extraction and pre-
liminary classification for four views, respectively. Each view can
generate a specific preliminary prediction for protein function.
Finally, for the adaptive decision module, we utilize the multi-view
adaptive decision mechanism to realize joint decision of the four
views and obtain the final prediction result of protein function.

Benchmark data set
We obtained the gene ontology (GO) data (February 2021) from
the GO official website (http://geneontology.org/). The data have
44 085 terms in three branches, including 11 153 terms in MFO,
28 748 terms in BPO and 4184 terms in CCO. In this paper, we
collected the reviewed and manually annotated human proteome
sequences from SwissProt (http://www.uniprot.org/uniprot/) [16],
which contains 18 673 protein sequences. For comparison with
other function prediction methods, we also obtained data sets
of the training sequences, experimental annotations (published
before September 2016) and the test benchmarks (published on
15 November 2017; https://github.com/bio-ontology-research-
group/deepgoplus) from the Critical Assessment of Functional
Annotation Challenge Three (CAFA3). The GO glossary released
on 1 June 2016 was used in this paper to evaluate methods.

For each sub-ontology in GO, we first learn the structure knowl-
edge of GO. In particular, we follow the true path rule [17] to
propagate annotations. For example, if a protein P is annotated
with the GO term C, then P will be annotated by the ancestor
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Figure 1. Overview of MMSMA for predicting protein functions. The model consists of three modules: (i) the initial multi-view data construction module
is used to generate four kinds of sequence encoding features. (ii) The deep feature learning and sub-classifier construction module uses MSMA for each
view to obtain deep features and preliminary classification results. (iii) The adaptive decision module implements integrated decisions to produce final
prediction scores for each GO term.

terms of C. Then, we rank the GO terms according to the number
of annotations and select the terms with 50 or more annotations
for the proposed prediction model. The adopted cutoff values are
the same as that in DeepGOPlus [18]. We convert the protein
annotations into a binary label vector. If a protein sequence is
annotated with a GO term, we will assign 1 to the term position
in the binary vector. Otherwise, we will assign 0.

Multi-view features of protein sequences
In this section, protein sequences are extracted from four views,
i.e. one-hot encoding information, evolutionary information, deep
semantic information and overlapping property information. The
feature extraction process of these four views is as follows.

One-hot encoding features
One-hot encoding has been widely used in protein function pre-
diction [18, 19]. A protein sequence can be represented as:

P = [p1, . . . , pl, . . . , pL] , pl ∈ R
21×1 (

1 < l < L
)

(1)

where pl represents the lth residue in protein P. L is the length
of protein P. We encode the residues in protein P one by one.
Specifically, the amino acid sequence is listed and corresponds
to a 21D vector. In each residue, if an amino acid appears, its
corresponding position is assigned 1, and 0 otherwise. There-
fore, a one-hot encoding matrix with the size of 21 × L can be
obtained.

Evolutionary information features
PSSMs are commonly used to represent patterns in proteins [4,
20, 21]. In this paper, the PSI-BLAST algorithm is used to align
each target protein with the SwissProt database. The number of
iterations is set to 3, and the inclusion e-value is set to 0.001. And

then 20 scores can be obtained for each amino acid (corresponding
to 20 outputs of PSI-BLAST). Therefore, for each sequence of
length L, the size of PSSMs is 20 × L. Furthermore, the sigmoid
function is used to normalize each element in PSSMs into the
interval [0, 1] [22], that is,

∼
x = 1

1 + e−x
(2)

Deep semantic features
Proteins are composed of different types of amino acids, and
different amino acid fragments usually have different biological
functions [23]. A simple way to numerically represent amino acid
sequences is one-hot encoding. However, because of the spar-
sity, one-hot encoding features cannot reflect the relationship
between amino acids. Distributed representation, using dense
vectors to represent sentences, can describe the semantic dis-
tance between words more effectively and has therefore gained
momentum in the field of natural language processing [24].

According to the above analysis, we use the deep language
model ProtBERT [25] to extract deep semantic information
from amino acid sequences. Based on the bidirectional encoder
representations from transformers (BERT) model [26], ProtBERT
increases the number of layers and completes the pre-training
on the UniRef100 data set. Unlike the CNN-based model and
the LSTM-based model SeqVec [27], ProtBERT uses the self-
attention mechanism to compare each character in the current
sequence with other parallel sequence characters; therefore, it
has a global receptive field to capture global context information
more effectively.

The specific extraction process of deep semantic features
is as follows: we fine-tune the ProtBERT model on the CAFA3
data set and use the fine-tuned model to extract deep semantic
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Figure 2. The architecture of MSMA. An initial sequence feature I is first sent to a multi-level convolution encoder to get a feature matrix X. Based on the
feature matrix X, an MSFE is adopted to construct a feature pyramid structure to obtain multi-scale feature matrix XT. Then four dilation convolution
layers are built to extract high-order multi-scale information from matrix XT. A 1∗1 convolution layer is applied to fuse multi-scale information and
output feature matrix F. Furthermore, the MHA mechanism is used to extract the long-range dependence for the multi-scale feature F, and the compact
embeddings Vfinal is obtained. Finally, a label predictor is adopted to produce prediction scores for each GO term.

features that are valuable for downstream tasks. For each
sequence with length L, fine-tuned ProtBERT is first used to
extract semantic-level features. Principal component analysis
(PCA) [28] is employed to reduce the dimension of semantic-level
features. The experimental setting of the percentage of PCA is
analyzed in part D of the Supplementary Material section. Finally,
a feature matrix with the size of 292 × L is obtained by keeping
95% of the principal components.

Overlapping property features
According to the physicochemical property, amino acids with
common properties can be grouped into 10 groups, including
‘Polar’ (NQSDECTKRHYW), ‘Positive’ (KHR), ‘Negative’ (DE),
‘Charged’ (KHRDE), ‘Hydrophobic’ (AGCTIVLKHFYWM), ‘Aliphatic’
(IVL), ‘Aromatic’ (FYWH), ‘Small’ (PNDTCAGSV), ‘Tiny’ (ASGC) and
‘Proline’ (P) [29, 30]. In general, an amino acid may have several
physicochemical properties at the same time. For example, a
residue can be related to ‘Hydrophobic’, ‘Aliphatic’, ‘Small’ and
‘Tiny’ simultaneously.

According to the above analysis, we design a 10D vector con-
sisting of 0 or 1 to represent the physicochemical properties
of each amino acid. The 10 physicochemical properties corre-
spond to the elements in the 10D vector. If an amino acid has
a certain property, the corresponding position in the vector is
set to 1, and 0 otherwise. For the amino acid sequence with
the length L, the feature matrix with the size of 10 × L can be
obtained.

Deep sub-classifier learning with the multi-scale
and multi-attention network
Model structure
In MMSMA, we use MSMA to obtain the preliminary predictions
of the multiple views. The MSMA structure is shown in Figure 2.
First, a multi-level convolutional encoder (MLCE) is applied, where
multiple convolutional layers are cascaded one after another.
Because of the small convolution scale of MLCE, local pattern
information can be obtained. Second, an MSFE is proposed by
combining MLCE block with the feature pyramid structure. The
proposed MSFE can maintain the scale invariance. Third, since
protein function may be influenced by long-range information
[31], local patterns cannot capture enough long-range depen-
dence between protein sequences. Therefore, an MHA mechanism

is introduced to capture not only sufficient local patterns, but
also long-range dependence in protein sequences. More details of
MSMA are described as follows.

Multi-level convolution encoder
In order to generate efficient representations for functional frag-
ments, we utilize a multi-layer convolutional neural network to
capture the local correlation between amino acids from each view.
Specifically, the structure of MLCE is a three-layer 1D convolution,
which is based on the sequential correlation to establish the local
patterns. It should be noted that the number of channels in 1D
convolution is equal to the number of units in hidden layer, so that
the information in each dimension of the representation vector
will not be destroyed [32]. In addition, convolution padding is
not used because we capture functional fragments in amino acid
sequences rather than long-range dependence.

Based on the initial embeddings for each view, we design
MLCE to obtain more discriminative feature representations by
extracting local features. First, these embeddings are horizontally
concatenated into the matrix I = [x1, . . . , xi, . . . , xL] ∈ R

de×L, where L
is the length of amino acid sequence and xi ∈ R

de×1
(
1 < i < L

)
rep-

resents the feature vector of the ith amino acid in the sequence.
Adjacent amino acid fragments are combined through a convolu-
tional filter Wc ∈ R

k×de×dc , where k is the filter width, de is the size
of the initial input and dc is the size of the filter output. For the
nth step, we have

hn = g
(
Wc

∗xn:n+k−1 + bc
)

(3)

where ∗ is the convolution operator, g is an element-wise nonlin-
ear transformation, bc ∈ R

1×dc is the bias and hn is the output of
the nth convolution step. Therefore, the output embeddings of the
encoding layer are expressed as X ∈ R

dc×L.

Multi-scale deep feature extractor
Learning local features of protein sequences is helpful to improve
the performance of protein function prediction [23]. Stacking
multiple convolutional filters can obtain more local features [9,
18, 23], but they increase the computational complexity and gen-
erate redundancy. Inspired by FPN [33], AugFPN [34] and FastFCN
[35], we extract multi-scale features by constructing a feature
pyramid structure, which has both lower computation cost and
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better feature extraction ability. Different from stacking convolu-
tional filters [9, 18, 23], progressively finer semantic features can
be obtained by downsampling based on pyramid structure. The
above work has a common advantage, i.e. the scale invariance
of the semantic information, which means that the semantic
information is consistent but has different degrees of detailed
information at different scales [36]. Motivated by the above char-
acteristics, we propose an MSFE that continuously enhances the
semantic information related to the functional prediction task
through a series of scale transformations. Finally, we merge the
deep features at different scales so that the final multi-scale
features contain as much semantic information as possible.

The learning process of the proposed MSFE is described below.
For the amino acid feature matrix X ∈ R

dc×L obtained by MLCE,
we adopt a top-down path to construct pyramid features and
obtain the outputs C1,C2 and C3 successively. C3 from the deepest
layer has the strongest semantic information.

To fuse the multi-scale context information, a simple and crude
way is to summarize the features under different scales in the
top-down path. However, the features under different scales are
different in semantics, and reducing the channel dimension leads
to information loss [34].

Hence, we propose an MSFE. In order to reduce the semantic
difference between different scale features, the proposed MSFE
performs the feature processing on multi-scale features before
feature fusion. First, for multi-scale features {C1, C2, C3} , ., we
upsample them to the same scale through 1 × 1 convolution to
obtain the feature pyramid {M1, M2, M3}. Second, the matrix XT ∈
R

3dc×L can be obtained by concatenating M1M2 and M3. To widen
the receptive field, four separable convolutions with different
dilation rates are employed in parallel to extract features from
XT and concatenate these features to obtain XD ∈ R

4dc×L. Different
dilation rates have different functions. Third, another regular 1×1
convolution block is used to transform XD into the final multi-
scale deep feature F ∈ R

dc×L

MHA mechanism
In a protein sequence, long-range dependence between residues
affects protein function [31]. Therefore, we use a self-attention
mechanism to establish long-range dependence between protein
sequences after obtaining multi-scale deep features F ∈ R

dc×L.
As shown in Figure 3, the self-attention is designed to reweight
each channel according to the interaction of local cross-channel
[37, 38]. First, the average-pooling and max-pooling operations
are used to collect the global information of a feature map,
generating two different spatial context descriptors Fc

avg and Fc
max.

Fc
avg and Fc

max represent the average-pooled features and max-
pooled features, respectively. Second, a shared network is utilized
to generate the weight vectors M� ∈ R

dc×1. The shared network is
implemented by a 1D convolution with kernel size k, where k is the
number of neighbors of the current channel. The specific formula
of self-attention is as follows:

M� = σ
(
C1Dk

(
Fc

avg

)
+ C1Dk

(
Fc

max

))
(4)

where σ is the sigmoid function and C1D represents the 1D
convolution. In general, it is difficult to adjust k because different
GO terms require different numbers of neighbors. Therefore, we
further extend this attention with a multi-head trick [39], that is,
multiple self-attention branches.

Specifically, each head utilizes a different kernel size k. The
number of attention heads is denoted as h. To avoid adjusting the
kernel size k, the strategy we adopt is either to choose a single

Figure 3. The proposed self-attention mechanism. First, global informa-
tion from the multi-scale feature F is aggregated using global average
(GAP) and global maximum (GMP) pooling. Then, a shared convolutional
layer is applied to excite the global information and fuse them by sum-
mation. Furthermore, the attention score matrix M is obtained via the
sigmoid function. Finally, the dot-product of F and M is calculated to
obtain the attention-weighted features F′.

head (h = 1) with fixed k = 3, or to use MHA (h > 1) with fixed
sequences of kernel sizes k1, k2, ..., kn. In addition to h = 1, we also
set h = 2, 4, 6, 8. The details are as follows:

When h = 2, k = 3, 5.
When h = 4, k = 3, 5, 7, 9.
When h = 6, k = 3, 5, ...13.
When h = 8, k = 3, 5, ...17.

When h > 1, the kernel size k is set in an increasing order.
Diversity is introduced into the branches with different k values
to generate better long-range dependence information.

Because of the overlapping effect caused by the similarity
between different heads, we use adaptive weighted fusion (AWF)
to adaptively combine the long-range information, instead
of simple summation. For each head, the max-pooling is
executed first to obtain long-range information representations
Vk1 , Vk2 , . . . , Vkh

(
Vki

∈ R
dc×1

)
. These long-range representations are

then fed into the AWF to generate the weight map, which can
be used to aggregate the context features Vfinal ∈ R

dc×1. Context
features Vfinal containing long-range dependence are calculated
as follows:

Vfinal =
h∑

h=1

αi · Vki
(5)

where αi is the weight of the ith head. ki is the number of neighbors
channels of the ith head. Equation (5) indicates that Vfinal is a
global context view that performs a weighted sum of different
context information. It is worth noting that Equation (5) can be
used to adaptively aggregate contexts based on different neigh-
bors. In fact, the information gain is achieved through similar
semantic features to improve the compactness and consistency
of features in the channel.

Label (go term) predictor
Based on the comprehensive feature representation, the GO term
classifier is constructed through the multilayer perceptron with
one hidden layer. The predicted probability of each label is esti-
mated as follows:

ŷ = Sigmoid
(
f
(
W

(
Vfinal

)))
(6)

where W is the weight of the fully connected layer. f is the
nonlinear activation function ReLU. The sigmoid function is used
to convert the output value into the probability. Cross-entropy loss
is used in this paper, because it has been proved to be suitable for
protein function prediction [9, 18, 19]. Therefore, the loss function
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is defined as follows [40]:

L = −
N∑

i=1

l∑
j=1

(
yij log

(
ŷij

) + (
1 − yij

)
log

(
1 − ŷij

))
(7)

where N is the number of training sequences, l is the number of
GO terms, ŷij ∈ [0, 1] is the predicted probability and yij ∈ {0, 1}
indicates the ground truth of the ith sequence along the jth GO
term.

Multi-view adaptive decision mechanism
With the four views extracted through different representation
theories, it is necessary to combine their preliminary predictions
to make a comprehensive decision.

According to the above analysis, a multi-view adaptive loss-
weighted fusion network is constructed based on the proposed
AWF. The final prediction results of the proposed MMSMA can be
obtained by the joint decision of multiple views. The following
equation defines the comprehensive decision of multiple views,
that is,

f̂ =
M∑

v=1

wvŷv s.t.wT1 = 1, w ≥ 0 (8)

where M is the number of views, wv ∈ R is the weight of the
vth view, ŷv is the preliminary prediction results of the vth view
and f̂ is the comprehensive prediction result. Finally, we use
the cross-entropy loss function (Equation (7)) to optimize the
comprehensive prediction result, which is given by,

� = L
(
f̂ , y

)
(9)

MMSMAPlus: the extension of MMSMA
The proposed MMSMA is built based on data-driven learning. To
further improve the performance of protein function prediction,
we combine MMSMA with the homology-based prediction method
and propose an extended version of MMSMA, i.e. MMSMAPlus. The
specific process is as follows:

First, the Diamond prediction method is utilized to perform
homologous alignment for test set in the training set database.
The e-value of Diamond is set to 0.001, and a bitscore is calculated
for each similar sequence. All annotations of similar sequences
are transferred to the query sequence, where bitscores are used
to calculate the prediction scores. Second, the two prediction
scores SMMSMA and SDiamondScore are combined to calculate the final
prediction score of MMSMAPlus as follows:

SMMSMAPlus = α∗SMMSMA + (1 − α) ∗ SDiamondScore (0 ≤ α ≤ 1) (10)

where 0 ≤ α ≤ 1 is a hyperparameter, which balances the
influence of two terms.

Experiments and results
Experimental setting
The proposed methods are validated on the Pytorch platform with
GO annotations and amino acids of the Human and CAFA3 protein
data sets.

First, we consider proteins with sequence length in the range
[0, 2000]. For sequence longer than 2000, we take the first 2000
amino acids. On the contrary, the corresponding protein vectors
are zero-padded.

For the Human protein data set, 5-fold cross-validation is used.
In each fold, 20% of the training data is randomly selected as
the validation set. After annotation propagation, we select 475,
2933 and 446 GO terms in MFO, BPO and CCO for experiments,
respectively.

For the CAFA3 data set, the experimental setup follows litera-
ture [9, 18]. That is, the training set, testing set and the number of
GO terms are all fixed. The training and testing set contain 66 841
and 3328 protein sequences, respectively. The number of terms
for MFO, BPO and CCO is 677, 3992 and 551, respectively. In the
subsequent experiment, we randomly select 10% of the training
data as the validation set.

In the experiments, the proposed neural network model has
many hyperparameters, such as the number of outputs for the
pyramid structure in MSFE, the number of attention heads in
MHA, optimizers and learning rates. In general, all parameters are
determined by performance on the validation set. Specifically, we
set the number of outputs for the pyramid structure in MSFE to 3,
the number of attention heads in MHA to 4 and the initial learning
rate of Adam optimizer [41] at 0.0005. Further details about the
setting of the number of outputs for the pyramid structure can
be found in part E of the Supplementary Material section. In
MMSMAPlus, the parameter α is involved to combine MMSMA and
homology-based method. The setting of α is analyzed in Part G of
the Supplementary Material section. We tune the values of α using
the validation sets of MFO, BPO and CCO, and final 0.7, 0.7 and 0.9
are used for the three tasks, respectively.

All the baseline methods are downloaded from the websites
provided by authors. The details of the baseline methods are
described in part A of the Supplementary Material section. For
DeepGOCNN and DeepGOPlus, the codes published on GitHub are
used to train the models on the Human data set and the results
on the CAFA3 data set in [18] are referred to for comparison.

Evaluation metrics
To evaluate the effectiveness of the proposed method and to
compare it with the existing baseline methods, we use CAFA
evaluation metrics Fmax and Smin [42, 43], and the area under the
precision-recall curve (AUPR) [44] for performance evaluation. The
details of each metric are described in part B of the Supplemen-
tary Material.

Evaluation and comparison
First, the proposed methods are compared with the baselines
Naive [42], DeepGOCNN [18], DiamondBLAST [4], DiamondScore
[18], TALE+ [45] and DeepGOPlus [18] on the human protein data
set. The results are shown in Table 1. It can be seen from Table 1
that MMSMAPlus achieves the optimal Fmax, Smin and AUPR
values in three sub-ontologies. Compared with DeepGOCNN,
MMSMAPlus performs multi-view deep learning in addition to
homology and deep network. Therefore, the comparison results
between DeepGOCNN and MMSMAPlus indicate that the multi-
view deep learning is able to make fuller use of the protein
sequence information. In addition, we note that TALE+ also
achieves much better performance, which uses features extracted
from label in addition to sequence-based features.

Second, the large-scale CAFA3 data set is used to demonstrate
the universality of the proposed MMSMAPlus. We use the same
training set and test set as in the literature [18], so that the
performance of the proposed methods can be directly compared
with that of the relevant methods. The results in Table 2 show that
MMSMAPlus achieves the optimal performance on MFO and BPO
in terms of Fmax and AUPR, and the suboptimal performance on
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Table 1. The performance comparison of eight methods on the Human data sets

Method Fmax Smin AUPR

MFO BPO CCO MFO BPO CCO MFO BPO CCO

Naive 0.345 0.378 0.549 19.450 72.932 16.583 0.227 0.301 0.483
DiamondBLAST 0.673 0.548 0.622 12.567 66.522 13.731 0.029 0.041 0.041
DiamondScore 0.681 0.556 0.628 12.165 61.723 13.232 0.137 0.154 0.159
DeepGOCNN 0.494 0.468 0.674 17.108 68.665 14.235 0.481 0.441 0.650
MMSMA 0.680 0.497 0.728 13.165 61.237 12.489 0.678 0.488 0.682
TALE+ 0.712 0.609 0.729 11.405 58.512 12.315 0.689 0.587 0.714
DeepGOPlus 0.691 0.588 0.698 11.942 59.729 12.861 0.675 0.572 0.684
MMSMAPlus 0.740 0.612 0.742 11.095 58.087 11.884 0.740 0.626 0.719

Note: Best performance in bold Fmax and AUPR, highest; Smin, lowest.

Table 2. The performance comparison of eight methods on the CAFA3 data sets

Method Fmax Smin AUPR

MFO BPO CCO MFO BPO CCO MFO BPO CCO

Naive 0.290 0.357 0.562 10.733 25.026 8.465 0.130 0.254 0.456
DiamondBLAST 0.431 0.399 0.506 10.233 25.320 8.800 0.178 0.116 0.142
DiamondScore 0.509 0.427 0.557 9.031 22.860 8.198 0.340 0.267 0.335
DeepGOCNNa 0.420 0.378 0.607 9.711 24.234 8.153 0.355 0.323 0.616
MMSMA 0.583 0.518 0.620 7.914 21.785 7.693 0.541 0.457 0.590
TALE+ 0.558 0.480 0.622 8.360 22.549 7.822 0.539 0.427 0.595
DeepGOPlusa 0.544 0.469 0.623 8.724 22.573 7.823 0.487 0.404 0.627
MMSMAPlus 0.595 0.535 0.622 7.922 22.202 7.631 0.559 0.470 0.601

Note: The performance of the models with an alphabet (DeepGOCNN and DeepGOPlus) was taken from the related literature (Ref. [18] in main text). Best
performance in bold Fmax and AUPR, highest; Smin, lowest.

CCO in terms of Fmax. The proposed deep network model MMSMA
of MMSMAPlus achieves the best performance in terms of Smin

on MFO and BPO. The Smin evaluation depends on the number of
false negatives, false positives and the information content of GO
classes [18]. It indicates that MMSMA method is more specific in
false-positive predictions.

In addition, we also evaluate the AuROC of the proposed meth-
ods on the Human and CAFA3 data sets, and the results are
detailed in part C of the Supplementary Material section. It can
be seen that MMSMAPlus achieves the best class-centric average
AuROC in MFO and CCO evaluation and is ranked second in BPO
on the Human data set. In summary, the experimental results
show that the proposed method significantly improves the pre-
diction performance of Human and CAFA3 data sets.

Performance analysis of a multi-view adaptive
decision mechanism
We verify the effectiveness of the multi-view adaptive decision
mechanism employed in this paper by comparing it with
four single-view versions of MSMA, namely MSMA_Onehot,
MSMA_PSSM, MSMA_BERT and MSMA_OPF, referring to MSMA
relying only on the view of Onehot, PSSM, BERT and OPF,
respectively, to predict protein function. The results are shown
in Figure 4. It can be seen that MMSMA, which is based on
all the four views, significantly outperforms the four single-
view counterparts, demonstrating the benefits of the multi-view
adaptive decision mechanism.

Note that MSMA_BERT achieves the best performance among
all single-view versions, suggesting that the BERT view is an effec-
tive feature. To further verify this finding, we conduct four exper-
iments to analyze the performance of MMSMA using three views
only, by discarding one of the four views each time, respectively.

The results in Figure 5 show that the performance of MMSMA
decreases the most when BERT view is removed, which indicates
that the BERT view is an essential one that contains the most dis-
criminative features. This result also shows that the unsupervised
language model-based encoding features have great potential to
capture the functional features of proteins, which agrees with the
finding reported in the literature [46, 47].

Ablation analysis
Ablation experiments are conducted to demonstrate the effective-
ness of the three modules MLCE, MSFE and MHA in the proposed
MSMA. We take the one-hot encoding view as an example to
conduct the ablation analysis on the large-scale CAFA3 data set.
Experiments are conducted with four different combinations of
the three modules, i.e. MLCE only, MLCE and MSFE, MLCE and
MHA, and all three modules combined. The following findings
are obtained from the results in Table 3. First, compared with
MLCE, the introduction of MSFE obviously improves the predic-
tion performance of the three sub-ontologies in terms of Fmax,
Smin and AUPR. For example, the incorporation of MSFE into
MLCE is able to increase by 10.4, 4.8 and 3.2% on MFO, BPO
and CCO, respectively. That is, MSFE can expand the receptive
field and enhance the semantic information representation. Sec-
ond, the incorporation of MHA into MLCE improves the perfor-
mance in terms of Fmax, Smin and AUPR and shows that the
long-range information generated by MHA is beneficial for pro-
tein function prediction. Third, the incorporation of both MSFE
and MHA into MLCE yields the best performance in terms of
Fmax, Smin and AUPR in the three sub-ontologies, which indicates
that the combination of MLCE, MSFE and MHA can effectively
extract deep features that are conducive to protein function
prediction.
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Figure 4. Performance of multi-view and single-view MSMA in terms of Fmax, Smin and AUPR, where MSMA_onehot is trained using the Onehot view, and
MMSMA (Integrated) refers to MSMA trained with multiple views. The arrows denote achievements of better performance (i.e. lower values of Smin, or
higher values of Fmax and AUPR).

Figure 5. Performance of MMSMA with different views removed. (w/o Onehot, w/o OPF, w/o PSSM and w/o BERT refer to the removal of the views of
Onehot, OPF, PSSM and BERT, respectively, from MMSMA.)

Table 3. Effect evaluation of different components in MSMA

MLCE MSFE MHA Fmax Smin AUPR

MFO BPO CCO MFO BPO CCO MFO BPO CCO

√ 0.291 0.315 0.552 10.544 24.987 8.631 0.204 0.270 0.433
√ √ 0.395 0.363 0.584 9.745 24.863 8.320 0.320 0.309 0.541
√ √ 0.357 0.351 0.556 10.086 24.842 8.570 0.284 0.292 0.484
√ √ √ 0.442 0.412 0.595 9.350 24.115 8.150 0.363 0.356 0.550

Note: Best performance in bold Fmax and AUPR, highest; Smin, lowest.

The influence of the number of attention heads
on prediction performance
In this section, we analyze the influence of the number of
attention heads (h) on the prediction performance. Experiments

are conducted by setting h to 1, 2, 4, 6 and 8, respectively. The
experimental results are shown in Table 4. It can be seen that
when h ranges from 1 to 6, the overall trend of Fmax increases
steadily. When h is increased to 8, Fmax on MFO, BPO and CCO
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Table 4. The performance of MSMA with different h on the CAFA3 data set

Number of attention
heads

Fmax Smin AUPR

MFO BPO CCO MFO BPO CCO MFO BPO CCO

h = 1 0.405 0.385 0.587 9.742 24.301 8.256 0.329 0.324 0.542
h = 2 0.425 0.386 0.580 9.502 24.414 8.255 0.347 0.338 0.522
h = 4 0.442 0.412 0.590 9.306 23.898 8.158 0.371 0.358 0.541
h = 6 0.447 0.400 0.586 9.335 24.214 8.210 0.358 0.348 0.535
h = 8 0.420 0.391 0.592 9.527 24.526 8.126 0.329 0.338 0.548

Note: Best performance in bold Fmax and AUPR, highest; Smin, lowest.

Table 5. Prediction results of LYPA2_MOUSE (Uniprot Symbol: Q9WTL7) in BPO [the root GO term (GO:0002084 biological process) is
omitted]

Method Annotations Fmax

DiamondScore GO:0043170, GO:0007155, GO:0098734, GO:0098732, GO:0043412, GO:0098609, GO:0071704, GO:0065007,
GO:0008152, GO:0022610, GO:0044699, GO:0050789

0.417

DeepGOCNN GO:0009987, GO:0008152, GO:0044237 0.378
DeepGOPlus GO:0098609, GO:0043170, GO:0065007, GO:0043412, GO:0071704, GO:0008152, GO:0044699, GO:0007155, GO:0009987,

GO:0050789, GO:0022610, GO:0098732, GO:0098734, GO:0044237
0.469

MMSMA GO:0006082, GO:0006464, GO:0006793, GO:0008152, GO:0009056, GO:0009987, GO:0019538, GO:0032502,
GO:0036211, GO:0042221, GO:0043170, GO:0043412, GO:0043436, GO:0044237, GO:0044238, GO:0044248,
GO:0044260, GO:0044267, GO:0044699, GO:0071704, GO:1901564, GO:1901575

0.467

MMSMAPlus GO:0006464, GO:0007155, GO:0008152, GO:0009056, GO:0009987, GO:0019538, GO:0022610, GO:0036211,
GO:0043170, GO:0043412, GO:0044237, GO:0044238, GO:0044260, GO:0044267, GO:0044699, GO:0048523,
GO:0050789, GO:0065007, GO:0071704, GO:0098609, GO:0098732, GO:0098734, GO:1901575

0.667

Ground truth GO:0042159, GO:0042157, GO:0009056, GO:1901575, GO:0002084, GO:0098734, GO:0044237, GO:0009057, GO:0019538,
GO:0044238, GO:0043412, GO:0071704, GO:0044260, GO:0036211, GO:0035601, GO:0008152, GO:0006464, GO:0043170,
GO:0009987, GO:0044267, GO:0030163, GO:0098732

shows a downward trend. Therefore, setting an appropriate h
value is important to improve the prediction performance of
protein function. If h is too large, redundant information and large
neighborhoods may be generated, which can lead to misleading
long-range dependence and degrade prediction performance.

Case analysis
In this section, we use a protein that does not appear in the
training set as an example to illustrate the performance differ-
ence in GO annotation between MMSMAPlus and the comparison
methods. Table 5 shows the predicted results for the protein
LYPA2_MOUSE (Uniprot Symbol: Q9WTL7) in BPO. The predicted
results of the methods are shown in the upper part of the table,
whereas the last row shows the ground truth for LYPA2_MOUSE
based on the propagation of the BPO experimental annotation
(GO:0002084), containing 22 true GO terms. The GO terms with
correct predictions are bold-faced.

The models predicted different numbers of GO terms for
LYPA2_MOUSE. Compared with the ground truth, DiamondScore
gives correct results for six out of 12 predicted GO terms with
a 50% accuracy, which indicates the existence of homologous
proteins in training set of LYPA2_MOUSE. DeepGOCNN correctly
predicts all three GO terms, but its Fmax is the lowest. DeepGOPlus
gives correct results for eight of the 14 GO terms with 57.1%
accuracy, and the Fmax is better than that of DiamondScore
and DeepGOCNN. The proposed MMSMA correctly predicts 14
out of the 22 GO terms with 63.6% accuracy. The incorporation
of homology information enables the proposed MMSMAPlus
to achieve a higher accuracy of 69.5%, giving correct results
for 16 out of the 23 terms and the highest Fmax. In addition,
MMSMAPlus method successfully predicts all the GO terms that

DeepGOPlus can predict and is able to predict eight more GO
terms.

To further analyze the proposed methods in terms of their
practical significance in life science studies, we have highlighted
the predictions of the five methods in the directed acyclic graph
(DAG) of the protein LYPA2_MOUSE at BPO as shown in Figure 6. It
is clear that MMSMAPlus can make the same correct predictions
of the comparison methods and surpass them by making more
correct predictions, it also provides more annotations at a deeper
layer, demonstrating that MMSMAPlus is a more practical and
powerful method for biological research.

In summary, the real-case analysis demonstrates that the
proposed method MMSMAPlus is superior to the comparison
methods.

DISCUSSION
As a sequence-based deep learning method for predicting protein
function, MMSMAPlus is trained on multi-view sequence features
of proteins, which can rapidly predict GO terms and improves
the performance on the majority of function terms over state-
of-the-art sequence-based methods. Although the high-quality
homology-based methods are not always effective, nevertheless,
they remain a useful approach to inferring protein function [42].
Thus, one important advantage of MMSMAPlus is its ability to
integrate homology-based methods.

Comparing with the benchmark models, the proposed
MMSMAPlus has shown higher prediction accuracy and more
reliable term annotations ability for target proteins. In addition,
the ablation studies illustrate the ability of MMSMAPlus to extract
both local pattern features and long-range dependencies features,
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Figure 6. Predicted GO terms of LYPA2_MOUSE (Uniprot Symbol: Q9WTL7) in DAG of BPO by different methods. Ground truth is obtained by annotation
propagation based on the BPO experimental annotation (GO:0002084).

thus enabling complementary predictions beyond homology-
based transfer.

In summary, our method has both the comprehensive feature
learning ability and the homology-based transfer ability. Thus,
this method has the potential to address the challenges in annota-
tion because of the increasing number of genome sequence data.

CONCLUSION
With the development of high-throughput sequencing technolo-
gies, automated protein function prediction has become one of
the fundamental challenges in the post-genomic era. In this study,
we only focus on sequence-based protein function prediction. In
order to fully explore the information in protein sequences, we

extract amino acid sequences from four views, that is, one-hot
encoding information, evolutionary information, deep semantic
information and overlapping physicochemical property. Based on
these four views, we build a multi-view deep network model
MMSMA with MSFE, MHA mechanism and multi-view adaptive
decision mechanism. Furthermore, the homology-based exten-
sion MMSMAPlus is proposed. Experimental results show that the
design of these modules makes MMSMAPlus superior to existing
methods.

Although the MMSMA and MMSMAPlus achieved promising
performance, there is still room for further improvement. For
example, the proposed model learns the four views independently
to obtain the respective preliminary prediction results, which are
then integrated by the multi-view adaptive decision mechanism.
Alternatively, we can use multi-view learning techniques [48–50]
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to jointly learn multiple views. In the future, more views will be
extracted from sequence features [51, 52], and some multi-view
joint learning techniques will be employed to further improve the
performance of protein function prediction.

Key Points

• We investigate feature extraction techniques suitable for
protein function prediction from four views, including
one-hot encoding information, evolutionary informa-
tion, deep semantic information, and overlapping prop-
erty information.

• We design MSMAs to extract deep features from differ-
ent views and obtain the preliminary protein function
predictions. For each MSMA, a multi-scale deep feature
extractor with a feature pyramid structure is designed to
capture local features, and a multi-head attention mech-
anism is adopted to capture the long-range dependence
between local features.

• We present a multi-view adaptive decision mechanism
to make a comprehensive decision based on the classifi-
cation results of all the views.

• We further propose an extended version of MMSMA,
MMSMAPlus, to integrate homology-based protein pre-
diction under the framework of multi-view deep neural
model.

• We conduct comprehensive experimental evaluations
and show that the methods proposed in this study can
achieve excellent performance in protein function pre-
diction.
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