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Abstract

In recent years, a number of computational approaches have been proposed to effectively integrate multiple heterogeneous biological
networks, and have shown impressive performance for inferring gene function. However, the previous methods do not fully represent
the critical neighborhood relationship between genes during the feature learning process. Furthermore, it is difficult to accurately esti-
mate the contributions of different views for multi-view integration. In this paper, we propose MGEGFP, a multi-view graph embedding
method based on adaptive estimation with Graph Convolutional Network (GCN), to learn high-quality gene representations among
multiple interaction networks for function prediction. First, we design a dual-channel GCN encoder to disentangle the view-specific
information and the consensus pattern across diverse networks. By the aid of disentangled representations, we develop a multi-
gate module to adaptively estimate the contributions of different views during each reconstruction process and make full use of the
multiplexity advantages, where a diversity preservation constraint is designed to prevent the over-fitting problem. To validate the
effectiveness of our model, we conduct experiments on networks from the STRING database for both yeast and human datasets, and
compare the performance with seven state-of-the-art methods in five evaluation metrics. Moreover, the ablation study manifests
the important contribution of the designed dual-channel encoder, multi-gate module and the diversity preservation constraint in
MGEGFP. The experimental results confirm the superiority of our proposed method and suggest that MGEGFP can be a useful tool for
gene function prediction.

Keywords: multi-view graph, gene function prediction, graph convolutional network, graph embedding

Introduction
There has been an increasing interest in the research
of computational methods for automated gene func-
tion prediction. Genes give instructions of different func-
tions during biological process as the basic physical unit
of heredity, and the comprehensive insight into vari-
ous gene functions is critical to biomedical research [1].
High cost and time-consuming biological experiments in
the traditional wet-lab annotation methods make auto-
mated function annotation very urgent [2]. Specifically,
the automated gene function annotation classifies genes
into their corresponding functional categories by compu-
tational methods, which can be viewed as a multi-label
classification problem.

Over the past decade, the rapid progress in the
development of high-throughput experimental tech-
niques has led to an explosion of available biological

data with different types. Among these data, a variety
of genome-scale interaction networks are generated,
which describe complex internal interactions among
biological molecules and contain a wealth of information
for inferring the functional patterns of genes [1, 3, 4].
Therefore, it is important to explore how to effectively
integrate multiple heterogeneous networks and extract
the comprehensive information for accurate gene
function annotation. There have been many remarkable
previous works dedicated to gene function prediction
task by jointly considering the information from multiple
networks [5–9], which can be viewed as a multi-view
graph learning problem.

The first category of these methods focuses on
integrating multiple networks directly. They firstly fuse
all separate networks into a single one and then use
the fused network to perform downstream functional
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prediction [6, 10–14]. ProMK [15] is a kernel-based
method, which combines multiple kernels into the best
composite kernel and trains a multi-label classifier on
the obtained kernel. SNF [16] takes diverse sources of
data as input and constructs networks for each type.
Then it fuses all separate networks into a common
view in a nonlinear combination manner. GeneMANIA
[6, 17, 18] integrates multiple heterogeneous networks
into a single kernel, and then infers gene functions via
Gaussian label propagation. [13] is a probabilistic method
which utilizes Bayesian inference to integrate the edges
from various networks. However, the fused network
which is directly integrated by multiple networks in
above methods may lead to the loss of many valuable
information and bring in noises. To remedy this issue,
the multi-view joint feature learning methods are
carried out to generate more accurate representation.
Mashup [1] characterizes gene patterns across multiple
networks jointly. It obtains a canonical low-dimensional
feature from original multiplex topological structures
based on matrix factorization and effectively fuses
the information in multiple views. Then it utilizes the
off-the-shelf support vector machine (SVM) classifier
for each function classification. Further considering
the noise problem in the original biological networks,
EnMUGR [19] proposes a denoised diffusion method and
utilizes the joint regularized decomposition, which leads
to a more robust representation. Nevertheless, most
of the above methods only use shallow models, which
limit the capability of capturing node representations in
nonlinear gene networks.

Due to the powerful feature extraction ability, deep
learning is used to obtain comprehensive gene represen-
tation for multi-view fusion and circumvent the above
issues. DeepNF [20] firstly proposes a deep learning-
based approach which fuses multiple gene networks
through a designed multimodal deep autoencoder. In
particular, it stacks multiple encoder layers to extract
representations for each view at the beginning. Then it
designs a bottleneck layer to connect all layers and obtain
the compressed features. Finally, the network is trained
by minimizing the reconstruction error between each
original and reconstructed feature matrix. Furthermore,
DeepMNE-CNN [9] proposes a semi-supervised autoen-
coder. It calculates the pairwise gene similarity based on
Pearson Correlation Coefficient value among different
networks and utilizes these informative constraints as
the supervised signal for next encoder layer. Then it
concatenates the features from all views and predicts
functions using a multi-scale convolutional neural
network. Although these deep learning-based methods
have achieved better performance, they fail to fully take
into account the neighboring relationship between genes
in the network, which is very crucial for generating
accurate representations.

In recent years, numerous remarkable deep learning-
based models dedicated to multi-view graph representa-
tion learning, which are not designed specifically for gene

function prediction, have also been proposed. Among
them, many unsupervised methods are conducted to
deal with the situation that the node labels are scarce
and noisy. DMNE [21] proposes the first deep learning-
based multi-network embedding method based on an
autoencoder framework and designs a co-regularized
loss to leverage the cross-network associations. MEGAN
[22] develops a generative adversarial network-based
model. It devises a generator to effectively generate
adversarial node pairs for multi-view graph, and the
discriminator enforces the generator to produce more
accurate embeddings. VANE [23] learns a more robust
representation based on two well-designed adversarial
minimax games. The first game aims to extract the view-
independent pattern, while the second one enhances the
robustness of the representations. One2Multi [24] is a
method based on graph autoencoder. It selects the most
informative view and performs graph embedding tech-
nique on the chosen graph. Then it reconstructs multiple
networks by a trainable multi-view graph decoder. DMGI
[25] learns the view-specific embedding by maximizing
the mutual information between the global representa-
tion and the local network patches for each view individ-
ually, then designs a regularization framework to obtain
the consensus representation. However, these methods
all suffer from a lack of scientific and interpretable parti-
tion for the multi-view representation space, which will
benefit the learning process of multi-view integration.
Using current tools, it is difficult to accurately estimate
the contribution of each view during the fusion process.

Recently, Graph Neural Network (GNN) provides a pow-
erful learning model for handling graph-structured data
[26]. It has made significant achievements in numerous
graph data analysis tasks such as graph classification
[27, 28], node classification [29, 30] and link prediction
[31, 32], and has been applied in various domains of
bioinformatics including single-cell RNA-seq analysis
[33, 34], peptide toxicity prediction [35], drug discovery
[36, 37], etc. Graph Convolutional Network (GCN) [38]
is a representative method of GNNs, which performs
convolution operation on the graph and updates the
representation of nodes by iteratively aggregating the
feature from their neighbors. Therefore, GCN can effec-
tively capture the neighborhood relationship between
nodes. It has been proven that genes with connections or
similar topological roles in the interaction networks tend
to have related functions [39, 40]. Therefore, GCN can
be a highly appropriate method for feature extraction in
gene networks and facilitates the downstream function
annotation task. Recently, several methods have been
proposed to leverage GCN to learn the latent pattern
in single gene network for function annotation [41–
43]. However, how to exploit GCN to effectively extract
features from multiple gene networks for function
prediction remains to be investigated.

In this paper, we propose a Multi-view Graph Embed-
ding method for Gene Function Prediction, named
MGEGFP, to learn the comprehensive representations of
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genes across multiple networks for accurate functional
annotation. Our major contributions are as follows:

• To our best knowledge, MGEGFP makes the first
attempt to adopt GCN to jointly analyze multiple
gene interaction networks for inferring gene function.
MGEGFP is proposed to adaptively estimate the
contributions of different views from disentan-
gled representations learned by the designed GCN
encoder.

• We design a dual-channel GCN encoder to explicitly
disentangle the view-specific information and the
common pattern across diverse graphs, which leads
to more accurate gene embeddings. This allows us to
consider that different views have not only their own
view-specific knowledge, but also have consistent
message.

• We devise a multi-gate module to adaptively estimate
the contributions of different views during each
reconstruction process, and further introduce a
diversity preservation constraint to prevent the over-
fitting problem of this multi-gate mechanism, so as
to take full advantages of the multi-view graph.

• Experiments on yeast and human datasets are
conducted for gene function annotation task. We
compare our method with seven state-of-the-art
models in five evaluation metrics. The results show
that MGEGFP outperforms other methods on both
datasets and manifest the effectiveness of our model.

Methods
Notations
Consider a multi-view undirected gene association net-
work as G = {

V, E(1), . . . , E(M)
}
, where each view represents

a specific type of relationship among genes. M is the
number of views. V = {vi}N

i=1 is the set of gene nodes
which are shared across all views, and N is the number
of gene nodes. E(m) denotes the set of all edges in view m,
where m ∈ {1, 2, . . . , M}. The topological structure of each
graph can be specified by a set of symmetric adjacency
matrices

{
A(m)

}M
m=1. The value of A(m)

ij varies from 0 to 1,
which represents the weight of edge linking node i and j
corresponding to view m.

Intra-view graph embedding
Input feature learning

For intra-view learning, we explore how to effectively
learn the embedding for each network independently. As
shown in Figure 1(A), we initialize the input features X(m)

for each individual gene network with random walk with
restart (RWR) [44]. It has been proved that RWR tends to
capture global associations between nodes in the inter-
action network [1, 9, 45]. GCN is capable of capturing fea-
tures among local neighborhoods in the message passing
process [26]. Therefore, the global features extracted by
RWR can be complemented with the local characteristics
captured by the following GCN module. The process of

RWR starting from node i in view m can be expressed as

x(m)

i [t] = γ Ā(m)x(m)

i [t − 1] + (1 − γ )x(m)

i [0], (1)

where x(m)

i [t] is the feature vector of node i, which reflects
the probability of visiting node i after t step random
walks. x(m)

i [0] is an N-dimensional initial vector of node i,
which is a one-hot feature vector with the corresponding
ith entry equal to 1 and other elements equal to 0. γ

is a number in the range (0, 1) and 1 − γ denotes the
probability of restart. Ā(m) is the transition matrix which
is obtained from the original adjacency matrix as

Ā(m)

ij =
A(m)

ij∑
i A(m)

ij

(2)

and Ā(m)

ij represents the probability of going from node j
to node i. After T steps of RWR, we embed each node into
an N-dimensional feature vector, which is used as the
input feature for subsequent learning model. The same
procedure is performed in each view and we can finally
obtain the set of all input feature matrices

{
X(m)

}M
m=1.

View-specific graph autoencoder

Considering the superior ability of GCN to model graph
data, we utilize it as the graph encoder which embeds the
original gene network topology and the obtained node
features into a ds-dimensional embedding space for each
view. The process of intra-view feature learning is the
same for all views, so here we omit the superscript of the
view number for easier reading. In particular, given the
network structure and initial feature matrix, the view-
specific representation can be learned by an L-layer GCN
encoder as

Zl+1
s = f

(
Zl

s, A | Wl
s

)
= δ

(
D̃− 1

2 ÃD̃− 1
2 Zl

sW
l
s

)
, (3)

where Ã = A+I and I is the identity matrix. D̃ is the degree
matrix of Ã which is calculated by D̃ii = ∑

i Ãij. Wl
s is

the layer-specific trainable weight matrix. Zl
s represents

the learned representations by lth layer and Z0
s = X. δ

denotes the nonlinear activation function. To generate
a more informative embedding and alleviate the over-
smoothing problem, we employ the jump connection [46,
47] and aggregate the representations obtained from all
layers to get the final embedding as

Zs = Agg
(
Z1

s , Z2
s , . . . , ZL

s

)
. (4)

In order to facilitate the layer aggregation opera-
tion, the dimension of all hidden layers is set to ds.
Agg can be any layer aggregation function such as
Vector-concatenation, Max-pooling and Mean-pooling.
Subsequently, we exploit the decoder to reconstruct
the original topological structure from the learned
representation. Specifically, we use the Inner-product
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Figure 1. The overall framework of MGEGFP model. (A) Intra-view graph representation learning. For each individual view, we exploit RWR to obtain the
high-quality initial feature representations. Then the original adjacency matrix and the initial features undergo an L-layer GCN equipped with a jump
connection to generate the learned representation matrix, which is then fed into the decoder to calculate the reconstructed adjacency matrix. Then
we minimize the reconstruction error to train the model. (B) Inter-view graph representation learning on the basis of intra-view learning. For simplicity,
we use two views as an example. In multi-view representation learning, a dual-channel GCN encoder is constructed to disentangle the view-specific
information and the common pattern across all views. Then the obtained embeddings in each view pass through the multi-gate module and the outputs
are used to decode the topology structure of each view. Finally, the learned gene representations are concatenated and used to train the plug-in classifier
to annotate gene functions.

operation and the sigmoid activation function to predict
whether there exists an edge between two gene nodes:

p
(
Âij | zi, zj

)
= sigmoid

(
zT

i zj
)

, (5)

where Â represents the reconstructed adjacency matrix
and p(Âij) is the value of Âij, which denotes the probability
that the edge between node i and j exists in the network.
For model training, we minimize the reconstruction error
between Â and A. The binary cross entropy is utilized as
the loss function:

L(m)
rec = − 1

N × N

⎛
⎜⎝

∑
eij∈E

log Âij +
∑
eij /∈E

log
(
1 − Âij

)
⎞
⎟⎠ , (6)

where L(m)
rec represents the reconstruction loss of

view m.

Inter-view graph embedding
Dual-channel graph encoder

Then we explore how to generate comprehensive rep-
resentation by multi-view collaborative learning. Each
individual network has its view-specific context, and at
the same time, there exists consistent latent pattern
among all networks [48]. To this end, we further extend
the single-channel GCN encoder into a dual-channel
GCN encoder to explicitly disentangle both contents from
original multi-view gene network. In particular, the first
channel is the same as the setting in the intra-view
learning process, which captures the view-specific pat-
tern within each individual network. Then, we devise an
additional channel called consensus channel, which aims
to extract the common pattern across all views.
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In this consensus channel, we encode each input graph
structure information and corresponding node features
using a parameter-sharing GCN function. Like the view-
specific channel, we also stack L layers of continuous
graph convolution operation and use the jump connec-
tion. The output common representation of this channel
for each view can be obtained as

Zl+1
c = f

(
Zl

c, A | Wl
c

)
= δ

(
D̃− 1

2 ÃD̃− 1
2 Zl

cW
l
c

)
(7)

Zc = Agg
(
Z1

c , Z2
c , . . . , ZL

c

)
. (8)

Here, we also omit the superscript of the view number
for easier reading. Wl

c is the parameter-sharing weight
matrix across all views, and the dimension of all hidden
layers in this channel is set to dc. The design of shared
weight matrix allows filtering out shared features from
multiple views, and the combination of view-specific
embedding and consensus embedding can obtain larger
expressive capability for genes. The input features for
both consensus channel and view-specific channel are
from RWR. As shown in Figure 1(B), we finally get the
representation Z(m) for each view by concatenating the
output of both channels:

Z(m) = combine(Z(m)
c , Z(m)

s ), (9)

which is used for downstream functional classification.

Multi-gate module

Once we obtain the node representation Z(m) for each
view, a straightforward idea is to concatenate all features
directly which is then fed into each view-specific decoder
to reconstruct the original graph structures. However,
this way ignores the different role of each view during
each reconstruction process and fails to capture the mul-
tiplexity of the multi-view graph. To model the inter-view
relationship more accurately and improve the represen-
tation quality, we design a multi-gate network fusion
module, considering that each view provides a different
contribution in each reconstruction task. Specifically, the
gating module is implemented by MLP with a nonlinear
activation function. Here, we focus on gate m and we
calculate the gate score α(m)(j) for embedding from view j
as

s(m)(j) = g
(
W(m)(j)Z(j) + b(m)(j)

)
(10)

α(m)(j) = exp
(
s(m)(j)

)
∑

i exp
(
s(m)(i)

) , (11)

where the value ranges from 0 to 1. W(m)(j) and b(m)(j) are
the trainable weight matrix and bias vector for view j in

gate m, respectively. g denotes the nonlinear activation
function. s(m)(j) represents the information score. Then we
take a linear combination of the representations of each
view with the learned gate weight, and obtain the fused
representation for view m as

Z(m)
g =

M∑
j=1

α(m)(j)Z(j). (12)

Z(m)
g can be seen as the weighted sum of the represen-

tations from all views, and is then used to reconstruct
the original graph structure. With this mechanism, the
model becomes more accurate by adaptive estimation.
By the aid of disentangled representations, the multi-
gate module can adaptively estimate the contributions
of different views during each reconstruction process.
Therefore, each reconstruction task can evaluate the
importance of the disentangled representations from dif-
ferent views, rather than taking information from all
views equally. Correspondingly, during the backpropa-
gation process, the gradients of multiple reconstruction
tasks will be propagated to the graph encoder. Thus,
a well-designed graph reconstruction mechanism will
supervise the encoder of each view to better disentan-
gle the view-specific and consensus pattern, and gen-
erate more comprehensive feature, which is beneficial
for downstream tasks. As the aforementioned intra-view
learning, we also employ the Inner-product operation
with the sigmoid activation function as the decoder to cal-
culate the reconstructed adjacency matrices. The total
reconstruction loss is the sum of all views:

Lrec =
M∑

m=1

L(m)
rec . (13)

Diversity preservation constraint

In the gated fusion process, we want to preserve the
multiplexity in each reconstruction task as much as
possible to prevent the over-fitting problem. Hence, to
further enhance the capability of the multi-gate module,
we propose a corresponding diversity preservation con-
straint which takes the following form:

Ldpc = 1
M

M∑
i=1

M∑
j=1

S(Z(i)
g , Z(j)), (14)

where S is a function which measures the similarity
between the gated fusion embedding Zg and the view
embedding Z. It can be calculated by cosine similarity,
Manhattan Distance, Euclidean distance or other simi-
larity measure.

Specifically, for each reconstruction task, representa-
tions from its own view are usually more suitable for
reconstruction than representations from other views.
Hence, each gate may tend to give an extremely large
weight to the embedding of its own view in the training
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process, which can cause the model training to fall into
the local minima and result in the over-fitting problem.
In other words, Z(m)

g may be quite similar to Z(m), which
ignores the message from other views, thereby weaken-
ing the effect of the multi-gate module and failing to fully
take advantage of the multi-view graph. By minimizing
this term, the representation of each view can be fully
considered during each reconstruction process and we
can arrive at a more comprehensive embedding. The
final objective function of the inter-view node represen-
tation learning is formulated as

L = Lrec + βLdpc, (15)

where β > 0 is a coefficient which controls the impor-
tance of Ldpc.

Gene function prediction
After we obtain the representation Z(m) of each view, we
concatenate them together and use an out-of-the-box
classifier to annotate gene functions.

The overall process of MGEGFP is summarized in Sup-
plementary Algorithm S1. We formulate the gene func-
tion prediction as a multi-label problem and use Light
Gradient Boosting Machine (LightGBM) [49] as the clas-
sifier. LightGBM is a gradient boosting framework and
utilizes decision tree algorithm for learning. Compared
with the commonly used SVM classifier for functional
annotation, LightGBM has a faster training speed and
lower memory usage, which offers a competitive predic-
tive performance. For each function, we train a binary
LightGBM model on the training set, and finally obtain
a predicted probability for each unlabeled gene.

Experiments
Experimental setup
The parameters in MGEGFP are all initialized by Xaiver
initialization [50] and we optimize the parameters with
Adam [51]. We introduce the dropout [52] technique to
prevent the over-fitting problem. The nonlinear activa-
tion function in the GCN encoder is tanh, except for
the last layer which is equipped with a linear activa-
tion function. The similarity function used for diversity
preservation in Equation 14 is the cosine similarity, which
takes two vectors as the input and outputs the similarity
value. The learning rate is set to 0.005, and the balanced
factor β is tuned in the range of [0.5, 1.0].

Besides, we investigate the model performance as a
function of embedding dimensions and the number of
encoder layers, which are shown in Supplementary Fig-
ure S3 and Figure S4. We also conduct analysis for differ-
ent decoders (detailed descriptions are illustrated in Sup-
plementary Section S2), layer aggregation functions and
initial feature extractors. The results can be found in Sup-
plementary Table S2, Table S3 and Table S4, respectively.
The nonlinear activation function used in the multi-gate
module is ReLU, and we also investigate the effect of

other different activation functions in Supplementary
Table S5.

For each downstream gene annotation task, we first
randomly shuffle the entire labeled genes. Then we take
80% of the genes as the training set, 10% as the validation
set and evaluate the model performance on the remain-
ing 10% genes as the test set. We randomly perform this
data split process 10 times for each method and take
the mean value as the predictive result. We consider the
following five evaluation metrics:

• acc: The percentage of genes which are correctly clas-
sified in the category with their highest prediction
score.

• f1: The F-measure for multi-label classification.
• m-aupr: micro-aupr calculates the average aupr

(area under precision-recall curve) value using
predicted labels and known labels for all classes.

• M-aupr: Macro-aupr calculates the aupr value for
each class independently and then averages over all
classes.

• subset 0–1 loss: The fraction of incorrectly predicted
samples. For each sample, subset 0–1 loss considers
it correctly classified only if the entire set of its labels
are all correctly predicted.

For acc, f1, m-aupr and M-aupr, larger values represent
better performance. In contrast, for the subset 0–1 loss,
smaller values indicate better performance.

Data preparation
We evaluate the performance of MGEGFP on both yeast
and human datasets, which have been also used in [1,
9, 20]. We describe the properties of the datasets in
Table 1, and more detailed descriptions can be found
in Supplementary Table S1. The networks we use are
all downloaded from the STRING database [13]. The
STRING database is based on diverse data sources and
is designed to provide a comprehensive perspective
for protein–protein interaction information. There are
six heterogeneous graphs in total, and each view
represents a specific type of associations between genes:
neighborhood (conserved genomic neighborhood), fusion
(gene fusion events), cooccurrence (phylogenetic co-
occurrence), experiment (high-throughput experiments),
database (curated Protein–Protein Interaction databases)
and coexpression. Each edge in the networks is assigned
a weight with a value between 0 and 1, which represents
the probability of the existence of this edge.

In yeast dataset, each original network contains 6400
gene nodes. To make fair comparisons with the previ-
ously published methods, we also get the annotations
from Munich Information Center for Protein Sequences
(MIPS) [53], which are then divided into three functional
categories: level 1, level 2 and level 3. As shown in Table 1,
level 1 contains 17 most general functional categories,
level 2 includes 74 categories and level 3 consists of 154
most specific categories [1].
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Table 1. The statistics of datasets used in this work. # Views represents the number of input views and # Nodes denotes the number of
gene nodes. # Edges represents the number of edges in coexpression, cooccurrence, database, experiment, fusion and neighborhood
network, respectively. # Classes represents the number of classes in each subset. We describe the properties of all individual networks
in more detail in the Supplementary Table S1.

Dataset # Views # Nodes # Edges # Classes

Yeast 6 6400 314 013/2664/33 486/219 995/1361/45 610 level 1 (17) level 2 (74) level 3 (154)
Human 6 18 362 1576 332/36 128/319 004/618 574/3760/104 958 MF: 11–30 (153) 31–100 (72) 101–300 (18)

CC: 11–30 (82) 31–100 (46) 101–300 (20)
BP: 11–30 (262) 31–100 (100) 101–300 (28)

Table 2. The results for ablation study on yeast level 1 and human MF: 31–100 datasets. We analyze the performance of our model
with single-channel and dual-channel encoder. Moreover, we explore the effect of different fusion strategies and the proposed
diversity preservation constraint.

Yeast: Level 1 Human: MF: 31–100

Model f1 m-aupr M-aupr f1 m-aupr M-aupr

MGEGFP 0.621 0.762 0.642 0.342 0.395 0.327
MGEGFP-1 0.613 0.751 0.631 0.331 0.379 0.319
MGEGFP-2 0.610 0.748 0.632 0.323 0.372 0.315
MGEGFP-3 0.598 0.722 0.613 0.301 0.362 0.296
MGEGFP-4 0.615 0.753 0.637 0.332 0.382 0.318

In human dataset, the number of gene nodes is 18 362
for each graph. The annotations for human are obtained
from Gene Ontology database (GO) [54], which includes
three domains, i.e. Molecular Function (MF), Cellular
Component (CC) and Biological Process (BP). As shown in
Table 1, according to the number of annotated genes by
GO term, each functional domain is further categorized
into three subsets to make a fair comparison with
[1, 9, 19, 20]. In each domain, there are 11–30, 31–100 and
101–300 genes annotated by GO terms in three subsets,
respectively.

Ablation experiments
In this section, a comprehensive ablation study is carried
out to investigate the contribution of each major compo-
nent in MGEGFP. We present the ablation experimental
results in Table 2 and the details of variant models can be
found in Supplementary Table S6. Firstly, to demonstrate
the effect of dual-channel GCN encoder, we remove the
consensus channel and create a variant model with single
view-specific channel named MGEGFP-1. By comparing
the results of MGEGFP and MGEGFP-1, we can observe
that the performance of MGEGFP is better, which implies
that the consensus channel improves the performance of
gene annotation task. This is consistent with our anal-
ysis that the designed weight-shared GCN channel can
effectively model the common attributes of all views and
facilitates to learn high-quality representations.

To validate that our multi-gate fusion mechanism
can effectively integrate multi-view information, we
eliminate the designed fusion module and create two
variant models: MGEGFP-2 and MGEGFP-3. MGEGFP-2 is
equipped with a single-gate fusion mechanism which is
shared for all views, and MGEGFP-3 is a straightforward
way which directly concatenates the features learned by
each view without any gated fusion module. As shown in

Table 2, MGEGFP-2 achieves a better performance than
MGEGFP-3 by an improvement of 1.2%, 2.6% and 1.9% on
f1, m-aupr and M-aupr in yeast level 1, indicating that
fusing multiple networks with weighted gating schemes
instead of simple concatenation can lead to a better
performance. In addition, we can observe that MGEGFP
further outperforms MGEGFP-2. In human MF: 31–100
dataset, we can observe that MGEGFP outperforms
MGEGFP-2 by an improvement of 1.9%, 2.3% and 1.2%
on three metrics. This verifies the effectiveness of the
devised multi-gate module. The reason is that the weight
distribution of each view varies when reconstructing
different networks. The single-gate mechanism simply
assumes that the weight distribution is the same in each
reconstruction process, which is apparently suboptimal,
while the multi-gate mechanism takes the different
contribution of each view in each reconstruction into
account, and helps improve the model capacity.

Especially, we remove the diversity preservation con-
straint in MGEGFP to explore its effect on the over-fitting
problem, and name the variant model as MGEGFP-4.
From Table 2 we can observe that, with the help of the
designed constraint, our multi-gate mechanism can be
further improved and result in a better predictive per-
formance. Besides, we visualize the gate weights in the
database view of gene YPL139C in Figure 2 as a concrete
example. We run 10 times of MGEGFP-4 and MGEGFP,
and the weight distributions of all views are shown in
Figure 2(A) and Figure 2 (B), respectively. As can be seen
from Figure 2(A), without the diversity preservation con-
straint, the gate tends to give its own view a larger
weight for easier reconstruction process, which results in
the over-fitting problem. With the diversity preservation
constraint, this problem can be alleviated (Figure 2B), and
it is beneficial to better capture the multiplexity in the
multi-view graph.
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Figure 2. The gate weights of the database view for gene node YPL139C. (A) Weight distribution of each view in MGEGFP. (B) Weight distribution of each
view in MGEGFP-4, which is not equipped with the diversity preservation constraint. Moreover, from Table 2 we can observe the quantitative results
of the predictive performance for MGEGFP and MGEGFP-4. In yeast level 1, the values of three metrics (f1, m-aupr, M-aupr) are (0.621, 0.762, 0.642) for
MGEGFP, (0.615, 0.753, 0.637) for MGEGFP-4. In human MF: 31–100, the metrics are (0.342, 0.395, 0.327) for MGEGFP, (0.332, 0.382, 0.318) for MGEGFP-4. It
can be seen that with the diversity preservation constraint, our model effectively alleviates the over-fitting problem and the predictive performance is
enhanced.

Table 3. The detailed descriptions of baseline methods.

Methods Method descriptions

SNF [16] A method that uses a nonlinear combination to fuse various type of networks into one network, which represents the
information across all views.

DeepNF [20] DeepNF is a deep learning-based method which designs a multi-modal autoencoder to capture the latent patterns from
multiple graphs.

Mashup [1] Mashup learns a comprehensive low-dimensional feature from multiple topological structures based on matrix
factorization.

DeepMNE-CNN [9] It designs a semi-supervised autoencoder which takes the correlations from multiple networks into consideration, and
uses multi-scale CNN for gene function annotation.

EnMUGR [19] EnMUGR uses the denoised diffusion technique to alleviate the noise problem in each network and then utilizes the
joint regularized decomposition to learn a robust common embedding across all views.

One2Multi [24] It is a graph autoencoder-based framework which firstly selects the most informative view, and then uses the chosen
view to reconstruct multiple networks with a GCN-based encoder and multiple decoders.

DMGI [25] It learns the view-specific representation by maximizing the mutual information between the global representation and
the local patches of the network, and designs a regularization framework to obtain the consensus embedding.

Comparison with the state-of-the-art methods
Baseline methods

As shown in Table 3, the performance of MGEGFP is
compared against seven state-of-the-art algorithms,
including five baseline models dedicated to gene func-
tion annotation: SNF [16], DeepNF [20], Mashup [1],
DeepMNE-CNN [9], EnMUGR [19] and two representative
unsupervised multiple graphs embedding methods:
One2Multi [24], DMGI [25].

For fair comparisons, all the baseline models are
equipped with the same off-the-shelf LightGBM classifier
in the downstream function prediction task, and the
parameters are tuned to achieve the best performance
for each model. For DeepMNE-CNN, we always use the
originally designed CNN classifier. Besides, the initial
features in One2Multi and DMGI are also learned by RWR
as well as MGEGFP for fairness. Moreover, for One2Multi,
we choose the densest network as the input graph, which

is coexpression for both yeast and human datasets, and
adopt the Bilinear decoder used in the original paper for
reconstruction task.

Performance on yeast dataset

Intra-view
We firstly show the performance of intra-view learning
for yeast dataset. As shown in Figure 3, MGEGFP out-
performs all other methods in cooccurrence, database,
experiment and neighborhood networks, and achieves
the second in coexpression and fusion networks. Take
cooccurrence network as an example, the m-aupr value
of MGEGFP achieves 0.394, which is higher than DeepNF
(0.330), Mashup (0.378), DeepMNE-CNN (0.355), EnMUGR
(0.372) and DMGI (0.366). Besides, it can be seen that the
GCN-based methods (MGEGFP and DMGI) consistently
perform well in all individual networks. Especially in
fusion network, MGEGFP and DMGI achieve 0.568 and
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Figure 3. The performance of intra-view gene function annotation on yeast dataset. We take level 1 as a concrete example to illustrate. We compare
our method with DeepNF, Mashup, DeepMNE-CNN, EnMUGR and DMGI. The x-axis denotes the methods, and the y-axis denotes the value of m-aupr.

0.582 for m-aupr value, which outperform other models
by a wide margin. The overall performance of intra-
view learning indicates that GCN is suitable for extract-
ing features in gene networks. This is a great founda-
tion for the subsequent inter-view learning to obtain
more comprehensive embeddings for the downstream
annotation task.
Inter-view

We then report the average value along with stan-
dard deviation of each metric across various models
in Table 4, and the P-value of significance test in the
results between MGEGFP and other baseline models is
shown in Supplementary Table S7. The results show
a considerable improvement in the function prediction
performance with MGEGFP. In level 1, we can observe
MGEGFP significantly performs better than all comparing
methods in m-aupr, M-aupr, f1 and subset 0–1 loss (t-
test, P-value<0.05, Supplementary Table S7), while still
has a competitive performance in acc. Compared with
DeepMNE-CNN, MGEGFP obtains a significantly better
performance by an improvement of 2.8%, 1.6%, 3.1% and
4.5% on f1, m-aupr M-aupr and subset 0–1 loss. For level
2 and level 3 task, MGEGFP still shows a better capacity
for function annotation. Moreover, MGEGFP consistently
outperforms other methods by a wide margin on the
strictest metric subset 0–1 loss, which considers a gene
to be incorrectly classified if the predicted classes do
not entirely match all the true labels. This suggests that
our method can more accurately annotate all functional
classes of each gene at the same time.

Besides, among GCN-based methods, MGEGFP achieves
clearly better results. One2Multi only uses a single
view for encoding, which may result in losing a lot
of important information. Although DMGI achieves

competitive performance in intra-view learning, it does
not fully take into account the relationship among views
during inter-view fusion process.

In summary, the experimental results compared with
all the methods demonstrate that MGEGFP can effec-
tively fuse the information of multiple views and extract
more comprehensive features which are helpful for func-
tion prediction. In addition, a comparison with the results
of intra-view learning in Figure 3 shows that the per-
formance after integrating multiple graphs is obviously
better than the performance using single network, which
proves the effectiveness of the multi-view collaborative
learning.

Model complexity and running time analysis Similar
to the calculation process in [55] and [56], we analyze
the computational complexity for two key components
of our MGEGFP framework. For the dual-channel GCN
encoder, O(L

∣∣E(m)
∣∣ (ds + dc) + LN(d2

s + d2
c )) calculations are

needed to obtain the gene representations in each view,
where

∣∣E(m)
∣∣ represents the number of edges in view m.

For our designed multi-gate module, the time complexity
is O(NM2(ds + dc)).

To further evaluate the running time of MGEGFP, we
conduct a running time comparison with other base-
line methods. All the experimental results reported are
conducted on a server with a Tesla P100 GPU under
CentOS Linux release 7.6.1810. The baseline methods
are re-implemented according to their publicly released
code and we use the default hyperparameter settings
as recommended. The results are shown in Figure 4. It
can be seen that non-deep learning-based methods (SNF,
Mashup and EnMUGR) obviously run faster than other
deep learning-based methods. This is reasonable because
deep learning-based models tend to be more complex,
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Table 4. The comparison results of MGEGFP and other baseline methods for yeast dataset. The mean value and standard deviation of
each metric are computed from 10 random data splits. For each metric, we bold the best performance, and the runner-up is
underlined. For the subset 0–1 loss, the lower value indicates the better model performance. In contrast, for other metrics the higher
values represent better predictive performance.

Methods acc (↑) f1 (↑) m-aupr (↑) M-aupr (↑) subset 0–1 loss (↓)

level 1 SNF 0.785 (0.015) 0.566 (0.008) 0.701 (0.018) 0.550 (0.016) 0.751 (0.012)
DeepNF 0.787 (0.012) 0.578 (0.010) 0.711 (0.008) 0.577 (0.012) 0.733 (0.017)
Mashup 0.811 (0.011) 0.585 (0.012) 0.727 (0.011) 0.601 (0.020) 0.724 (0.015)
DeepMNE-CNN 0.837 (0.016) 0.593 (0.015) 0.746 (0.009) 0.611 (0.018) 0.713 (0.015)

EnMUGR 0.786 (0.018) 0.561 (0.006) 0.701 (0.009) 0.581 (0.004) 0.735 (0.008)
One2Multi 0.788 (0.011) 0.572 (0.018) 0.721 (0.006) 0.583 (0.013) 0.745 (0.018)
DMGI 0.791 (0.011) 0.583 (0.005) 0.717 (0.005) 0.590 (0.021) 0.704 (0.015)
MGEGFP 0.833 (0.015) 0.621 (0.014) 0.762 (0.019) 0.642 (0.022) 0.668 (0.022)

level 2 SNF 0.742 (0.021) 0.520 (0.012) 0.613 (0.011) 0.439 (0.018) 0.818 (0.019)
DeepNF 0.745 (0.015) 0.530 (0.012) 0.633 (0.005) 0.456 (0.013) 0.801 (0.007)
Mashup 0.772 (0.013) 0.528 (0.009) 0.630 (0.018) 0.454 (0.011) 0.807 (0.001)
DeepMNE-CNN 0.782 (0.018) 0.550 (0.008) 0.670 (0.012) 0.492 (0.012) 0.788 (0.008)

EnMUGR 0.761 (0.011) 0.515 (0.016) 0.622 (0.008) 0.443 (0.018) 0.819 (0.016)
One2Multi 0.751 (0.011) 0.519 (0.016) 0.622 (0.009) 0.461 (0.019) 0.812 (0.008)
DMGI 0.745 (0.015) 0.521 (0.008) 0.625 (0.016) 0.431 (0.012) 0.805 (0.013)
MGEGFP 0.804 (0.013) 0.553 (0.009) 0.691 (0.011) 0.481 (0.012) 0.753 (0.009)

level 3 SNF 0.674 (0.011) 0.472 (0.018) 0.548 (0.020) 0.329 (0.014) 0.821 (0.005)
DeepNF 0.715 (0.018) 0.508 (0.012) 0.597 (0.008) 0.363 (0.019) 0.798 (0.014)
Mashup 0.726 (0.015) 0.501 (0.009) 0.601 (0.018) 0.362 (0.004) 0.809 (0.016)
DeepMNE-CNN 0.739 (0.019) 0.520 (0.008) 0.622 (0.009) 0.373 (0.012) 0.791 (0.011)

EnMUGR 0.728 (0.016) 0.511 (0.009) 0.624 (0.012) 0.368 (0.017) 0.788 (0.014)

One2Multi 0.711 (0.013) 0.499 (0.019) 0.605 (0.008) 0.352 (0.014) 0.808 (0.006)
DMGI 0.702 (0.008) 0.498 (0.012) 0.602 (0.011) 0.358 (0.017) 0.801 (0.009)
MGEGFP 0.743 (0.019) 0.533 (0.012) 0.643 (0.011) 0.379 (0.016) 0.757 (0.009)

Figure 4. Comparison of running time. (A) Non-deep learning-based methods. (B) Deep learning-based methods. The running time of deep learning-
based methods is longer, which can be attributed to that these models usually have a large number of parameters to train and need hundreds of epochs
to converge.

which have a large number of parameters to train and
take hundreds of epochs to converge.

Among deep learning-based methods, DeepNF has
the shortest running time, but its performance in the

downstream functional prediction task is inferior to
MGEGFP and DeepMNE-CNN. Besides, compared with
DeepMNE-CNN, which is the best-performing baseline
model among deep learning-based methods, the running
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Figure 5. The predictive performance of MGEGFP and other methods for GO Molecular Function terms on human dataset. Three subsets are used: 11–30,
31–100, 101–300. The x-axis represents various metrics, and the y-axis shows the value of corresponding metrics. Except for subset 0–1 loss, the higher
values mean better model capability.
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time of MGEGFP is shorter. This might be attributed to
that DeepMNE-CNN is an iteratively stacked model, and
the process of constraints extraction for semi-supervised
autoencoder is time-consuming. In conclusion, consider-
ing the better performance of MGEGFP on gene function
prediction, such a running time is acceptable.

Performance on human dataset

The experimental results of MGEGFP and other baseline
models on human dataset are presented in Figure 5. We
present the performance for GO Molecular Function here,
and the detailed results for Cellular Component and
Biological Process terms can be found in Supplementary
Figure S1 and Figure S2.

In 11–30 subset of MF, MGEGFP obtains the best result
in four metrics. In terms of f1 and M-aupr, MGEGFP
outperforms DeepMNE-CNN by 7.81% and 23.40%, and
outperforms EnMUGR by 14.62% and 6.42%. In 31–100
mini dataset, MGEGFP outperforms all comparing mod-
els in all five metrics. The subset 0–1 loss of MGEGFP is
0.921, which is lower than 0.942 for Mashup, 0.941 for
EnMUGR and 0.938 for DeepMNE-CNN. Moreover, for 101–
300 subset, our method also achieves best results among
all methods, and shows a considerable improvement in
all metrics.

Overall, the MGEGFP performance on human dataset
is consistent with the yeast dataset, which validates the
effectiveness of our model. In contrast to other methods,
MGEGFP adequately exploits the neighborhood informa-
tion in the graph and uses GCN to capture latent patterns.
The dual-channel GCN encoder explicitly models both
the view-specific information and consensus pattern,
which leads to a more comprehensive embedding. In
addition, the multi-gate module effectively leverages the
collaborative correlation between views. Together, these
advantages enable MGEGFP to learn a more accurate
representation and have a better function prediction
performance.

Discussion
Motivated by the observations that genes with similar
topological roles are more likely to share correlated func-
tions, we propose MGEGFP here, which employs GCN to
extract embeddings from multiple heterogeneous net-
works for gene function prediction, and constructs adap-
tive contribution estimation model based on disentan-
gled representation. GCN is capable of capturing proxim-
ity relationship between nodes, and leads to a highly pre-
dictive representation for functional annotation. More
importantly, the designed dual-channel GCN encoder
can simultaneously disentangle both the complemen-
tary and common information across multiple views,
which leads to a more comprehensive representation.
Furthermore, the multi-gate module together with diver-
sity preservation constraint are designed to adaptively
estimate the different contributions of each individual
network during each reconstruction process, and can

help better model the correlations of diverse networks.
These designed mechanisms together lead to a more
accurate gene representation which is finally fed into an
out-of-the-box classifier to predict gene functions.

Experimental results demonstrate MGEGFP outper-
forms all the state-of-the-art methods, and manifest
the effectiveness of our model. We further perform an
ablation study to manifest the effectiveness of the major
components in MGEGFP. In the future, we will consider
to incorporate more intrinsic biological characteristics
of genes, such as sequence and structure knowledge
as the input node features to further enhance the
predictive performance. Besides, inspired by several
methods that focus on alleviating the noise problem
based on multiplex networks [57, 58], a possible direction
of our future work is to design a more robust model.
Furthermore, since GCN-based methods always suffer
from the over-smoothing problem, we will try to develop
a more efficient model to tackle this problem.

Key points

• To our best knowledge, MGEGFP is the first method which
adopts GCN to extract latent features from multi-view
gene interaction networks for inferring gene function,
which enhances the performance on both intra-view and
inter-view learning tasks.

• To jointly disentangle and extract view-specific and
consensus semantic information, a dual-channel GCN
encoder is designed for each view.

• We devise a multi-gate module for adaptive estimation
to take advantage of the correlations of multiple graphs,
which leads to a more comprehensive representation for
genes. Furthermore, we propose a corresponding diver-
sity preservation constraint to alleviate the over-fitting
problem.

• The experimental results demonstrate that MGEGFP
achieves the best performance in both yeast and human
datasets against all other state-of-the-art methods, and
confirm that our model can be very useful to gene func-
tion prediction task.
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Data Availability
The implementation of MGEGFP is freely available at
https://github.com/zhanglabNKU/MGEGFP.
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