
MELISSA: Semi-Supervised Embedding for Protein Function
Prediction Across Multiple Networks

Kaiyi Wu
kaiyi.wu@tufts.edu

Department of Mathematics
Tufts University
177 College Ave

Medford, MA 02155
USA

Di Zhou
di.zhou@tufts.edu

Department of Computer Science
Tufts University
177 College Ave

Medford, MA 02155
USA

Donna Slonim
slonim@cs.tufts.edu

Department of Computer Science
Tufts University
177 College Ave

Medford, MA 02155
USA

Xiaozhe Hu
xiaozhe.hu@tufts.edu

Department of Mathematics
Tufts University
177 College Ave

Medford, MA 02155
USA

Lenore Cowen∗
cowen@cs.tufts.edu

Department of Computer Science
Tufts University
177 College Ave

Medford, MA 02155
USA

ABSTRACT
Several popular methods exist to predict function from multiple
protein-protein association networks. For example, both theMashup
algorithm, introduced by Cho, Peng and Berger, and deepNF, in-
troduced by Gligorijević, Barotand, and Bonneau, analyze the dif-
fusion in each network first, to characterize the topological con-
text of each node. In Mashup the high-dimensional topological
patterns in individual networks are canonically represented us-
ing low-dimensional vectors, one per gene or protein, to yield the
multi-network embedding. In deepNF, a multimodal autoencoder is
trained to extract common network features across networks that
yield a low-dimensional embedding. Neither embedding takes into
account known functional labels; rather, these are then used by the
machine learning methods applied after embedding. We introduce
MELISSA (MultiNetwork Embedding with Label Integrated Semi-
Supervised Augmentation) which incorporates functional labels in
the embedding stage. The function labels induce sets of “must link"
and “cannot link" constraints which guide a further semi-supervised
dimension reduction to yield an embedding that captures both the
network topology and the information contained in the annotations.
We find that the MELISSA embedding improves on the Mashup
embedding and outperforms the deepNF embedding in creating
more functionally enriched neighborhoods for predicting GO labels
for multiplex association networks in both yeast and humans.
Availability: MELISSA is available at
https://github.com/XiaozheHu/melissa

∗To whom correspondence should be addressed

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
BCB ’23, September 3-6, 2023, Houston, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9386-7/22/08.
https://doi.org/10.1145/3535508.3545542

ACM Reference Format:
Kaiyi Wu, Di Zhou, Donna Slonim, Xiaozhe Hu, and Lenore Cowen. 2023.
MELISSA: Semi-Supervised Embedding for Protein Function Prediction
Across Multiple Networks. In 14th ACM International Conference on Bioin-
formatics, Computational Biology and Health Informatics (BCB ’23), Sep-
tember 3–6, 2023, Houston, TX, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3535508.3545542

1 INTRODUCTION
In 2016, Cho et al. introduced their groundbreaking Mashup al-
gorithm for function prediction by integrating information across
multiplex biological networks [7]. Mashup consists of three steps: in
the first step, the Random Walk with Restart (RWR) algorithm [23]
is run separately for each node for each network; each node is rep-
resented by its diffusion state vector in each network. In the second
step, a low-dimensional embedding is constructed to minimize the
distance to all the individual network-specific vectors globally. In
the last step, these global low-dimensional feature vectors are then
passed to classifiers such as 𝑘-nearest neighbors [6] or support
vector machines [3] in order to do the functional label prediction.

However, in the Mashup paradigm, we notice that biological
knowledge, encoded in the form of the GO [8] functional labels,
is only incorporated in the last step of this process. The embed-
ding itself, constructed in the first and second steps, is entirely
unsupervised and comes only from the topological structure of the
networks. The same is true of deepNF [14], an alternative method
that constructs the embedding using a multi-modal deep autoen-
coder. Therefore, the motivation of this paper is to incorporate the
known GO labels in the low-dimensional embedding to improve
its quality and, thus, improve on the state-of-the-art Mashup and
deepNF algorithms.

One popular approach to include the biological label information
is semi-supervised graph embedding methods [1, 2, 26, 28]. The
biological information, in the form of functional labels, can give
rise to a set of "must-link" (ML) constraints and a set of "cannot-link"
(CL) constraints [1]. These constraints then guide the embedding

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.552672doi: bioRxiv preprint

https://github.com/XiaozheHu/melissa
https://doi.org/10.1145/3535508.3545542
https://doi.org/10.1145/3535508.3545542
https://doi.org/10.1101/2023.08.09.552672

procedure toward a result that encodes both the inherent structure
of the data as well as the information contained in the functional
annotations.

In the protein function domain, genes have multiple functional
labels, both noisy and incomplete [10]. So it can be challenging to
generate both types of constraints. The incompleteness is a chal-
lenging problem: "cannot link" constraints require proteins known
not to be involved in some function. But in our setting, the fact that
a gene lacks a particular functional annotation does not necessarily
indicate that the gene does not play a role in that function. It may
very well be that it simply has not been experimentally observed
yet.

One possible way to handle the above challenges, on a gene-by-
gene basis, would be to use some of the sets of specially curated
negative GO annotations that the community has begun to con-
struct [12, 25]. Our method, MELISSA, instead takes a different
approach. We augment each network with a sparse set of artificial
new nodes, which also are involved in the embedding step. Intu-
itively, the new artificial nodes represent the “centers" of a coarse
clustering of functional labels. We place ML constraints between
the original nodes and these new artificial nodes to bind genes in
the training set to their cluster label and encourage them to cluster.
At the same time, CL constraints are placed between the artificial
nodes themselves to encourage the clusters to separate from each
other (See Section 2.4). MELISSA uses a biclustering procedure [9]
on the annotation matrix that maps genes to GO labels of appropri-
ate specificity to generate the set of coarse cluster labels that will
be assigned as artificial cluster nodes.

After augmentation, the resulting networks now contain positive
and negative weights. The standard RWR approach to compute each
node’s diffusion state vectors cannot be directly applied. Thus, in
MELISSA, we adopted a signed version of the graph Laplacian [13,
16, 18] and generalize the diffusion state representations of each
node to the networks with both positive and negative weights.
Then, the rest of the Mashup pipeline, from dimension reduction
to function prediction based on the low-dimensional embedding,
proceeds as before.

Once the embedding is formed, a variety of different classifica-
tion methods can be applied to the embedded space. Because our
focus is on improving the information content of the embedding, in
this work we pair MELISSA with the simple 𝑘NN classifier, where
comparing functional label prediction of competing embeddings
gives a sense of the functional enrichment in local neighborhoods.
As shown below, in this setting, MELISSA improves the overall
performance of the functional label prediction task, compared to
the original Mashup and the deepNF embeddings, demonstrating
its ability. Thus MELISSA can be used to analyze multiple networks
constructed by the guilty-by-association property and provide an
accurate and scalable framework for network integration and anal-
ysis from different experiments.

2 METHODS
MELISSA varies from Mashup by including a step of network aug-
mentation to encode functional information before the embedding
and the learning phase. This step requires augmenting the networks
with auxiliary cluster nodes which we induce from the available

gene annotations. A summary of the procedure is given in Figure 1.

2.1 Preliminaries and Notation
The datasets that we consider consist of a collection of networks
𝐺𝑖 = (𝑉 , 𝐸𝑖 ,𝑤𝑖) with 𝑖 ∈ {1, ...𝑁 } which share a set of nodes 𝑉
but each has its own set of edges 𝐸𝑖 and the set of edge weights
𝑤𝑖 > 0. In our work, the nodes correspond to genes that appear in
the union of all the networks. The edges 𝐸𝑖 correspond to a different
type of relationship between pairs of genes for each network. As in
the experiment in the original Mashup paper, these relations range
from experimental evidence of interaction or association between
two genes, to co-expression, among other things (see [7]). Finally,
the weights𝑤𝑖 indicate the confidence in the edges being correct.

The adjacency matrices of the graph 𝐺𝑖 are denoted by 𝑨𝑖 , and
their probability transition matrices are denoted by 𝑻 𝑖 where 𝑻 𝑖𝑢𝑣
denotes the probability that a random walk on graph 𝐺𝑖 at vertex
𝑣 transitions to 𝑢 in one step. The functional annotations of the
genes are represented by the binary matrix 𝑩 ∈ {0, 1}𝑙×𝑛 where 𝑙
is the number of distinct labels and 𝑛 = |𝑉 | is the number of the
nodes. In 𝑩, each column corresponds to the set of annotations a
gene has been given, and each row corresponds to the set of genes
with a given annotation.

2.2 Review of the Mashup Embedding
The original Mashup procedure consists of the following three core
steps:

(1) Diffusion. On each 𝐺𝑖 , a diffusion process is run which
creates a RWR matrix representation 𝑾𝑖 ∈ R𝑛×𝑛 of the
network.

(2) Embedding. A shared embedding is created using the ma-
trix representations generated in the diffusion step. This is
achieved via a singular value decomposition or dictionary
learning techniques. Ultimately this gives a 𝑑-dimensional
vector representation of every node in the dataset.

(3) Learning. Once every node in the dataset is represented by
a vector, existing function prediction methods can be applied
using the embedding and the available annotations.

The original Mashup uses a support vector machine (SVM) for the
final learning step. However, we can apply any function prediction
method. Therefore, we consider the Diffusion and Embedding
steps to be the main contribution of Mashup and briefly describe
them in detail.

The Diffusion step generates a matrix representation of each
network. There are many ways of generating node embeddings,
such as Diffusion State Distance [5, 6], Node2vec [15], and spectral
methods [19]. Mashup adopted a RandomWalk with Restart (RWR)
based approach [17], i.e., for each vertex 𝑢 ∈ 𝐺𝑖 , Mashup iteratively
computes the 𝑡-step RWR distribution 𝒔𝑡𝑢 ∈ R𝑛 as follows, let 𝒔0𝑢 =

𝒆𝑢 ,
𝒔𝑡+1𝑢 = (1 − 𝛼)𝑻 𝑖 𝒔𝑡𝑢 + 𝛼𝒆𝑢 . (1)

where 𝒆𝑢 ∈ R𝑛 is the vector with entry 1 at the 𝑢-th index and 0
elsewhere and 0 ≤ 𝛼 < 1. Following [5–7], the node embedding of
𝑢 is the diffusion state 𝒔∞𝑢 , the stationary distribution at the fixed
point of the iteration (1). By stacking the diffusion states 𝒔∞𝑢 as

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.552672doi: bioRxiv preprint

https://doi.org/10.1101/2023.08.09.552672

Figure 1: Workflow of MELISSA extending Mashup. Nodes and labels are first biclustered, and each network is augmented with
one auxiliary node for each cluster. ML constraints (dashed edges) are added to pull the nodes in the same cluster closer to each
other, while CL constraints (solid edges) are added to push the clusters away from each other in the embedding. Then we run
the Mashup procedure as summarized in Section 2.2 on each of the augmented networks.

columns, we obtain the diffusion state matrix 𝑾𝑖 , which is the
RWR representation matrix used in Mashup.

Once each set of 𝑁 networks has been represented by its associ-
ated RWR matrix𝑾𝑖 , Mashup then combines the matrix represen-
tations and constructs a low-dimensional embedding. The original
Mashup framework proposed two embedding strategies, the first
being a dictionary learning approach and the second being the
singular value decomposition (SVD). For the sake of simplicity, we
focus on the SVD approach, i.e., the low-dimensional embedding
𝑿 ∈ R𝑑×𝑛 are formed by the scaled largest 𝑑 left singular vectors
of the concatenated matrix log 𝑺 where 𝑺 = [(𝑾1)𝑇 , · · · , (𝑾𝑁)𝑇]𝑇
and log(·) denotes the element-wise logarithm. As suggested in [7],
for the optimization purpose in the implementation, the SVD-based
embedding can be computed by the eigenvalue decomposition of
the 𝑛×𝑛 matrix 𝑹 =

∑𝑁
𝑖=1 log(𝑾𝑖)𝑇 log(𝑾𝑖). A small constant (e.g.,

reciprocal of the number of genes) was added to each entry of𝑾𝑖

to avoid taking the log of zero entries. Taking the top 𝑑 eigenvalues
𝚲 = diag(𝜆1, · · · , 𝜆𝑑) and eigenvectors 𝑼 = (𝒖1, · · · , 𝒖𝑑) ∈ R𝑛×𝑑 ,
the low-dimensional embedding is 𝑿 = 𝚲

1/4𝑼𝑇 .
Note that Mashup as described in [7] involves concatenating the

diffusion state matrices from different networks vertically when
performing the joint factorization; the Mashup code allows us to
concatenate either horizontally or vertically. In our experiments,
we found the vertical approach always performed better than the
horizontal one.

Our key observation is that Mashup uses only network topology
to construct its embedding. Our objective is to attain a more func-
tionally meaningful low-dimensional embedding of the networks
by augmenting the original networks so that the Diffusion and
Embedding steps are aware of known functional annotations. We

hypothesize that the improvements in the embedding transfer to
the performance in the Learning step.

2.3 Review of the deepNF Embedding
deepNF [14], introduced in 2018, tries to learn a useful low-dimensional
embedding of proteinswith amultimodal deep autoencoder (MDA) [24]
that preserves non-linear network structure across multiple net-
works characterized by diverse connectivity patterns. In [14] it is
shown that deepNF preserves the non-linear network structure
with its deep neural network (DNN) architecture in an efficient and
scalable manner, and at the same time denoises the links in the
networks.

The deepNF method involves the following three steps:

(1) Pre-processing. On each network 𝐺𝑖 , a RWR procedure is
run to create its matrix representation 𝑾𝑖 ∈ R𝑛×𝑛 . Then
each RWR matrix is converted into a Positive Pointwise
Mutual Information (PPMI) matrix 𝑸𝑖 ∈ R𝑛×𝑛 that captures
the structural information of the network.

(2) MDA Embedding.
A MDA is trained that takes the PPMI matrices as input. A
canonical 𝑑-dimensional feature representation across the
networks is extracted from the middle layer of the MDA.

(3) Learning. The middle layer of the MDA which serves as the
low-dimensional vector representation of every node in the
networks is then fed into function prediction classifiers.

We elaborate on each step in a bit more detail next. In the pre-
precessing step, each RWR matrix 𝑾𝑖 is generated in the same
way as in the Mashup Diffusion step. After that, the PPMI matrix

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.552672doi: bioRxiv preprint

https://doi.org/10.1101/2023.08.09.552672

𝑸𝑖 for the 𝑖-th network is computed as,

𝑸𝑖
𝑙𝑚

= max

{
0, log2

(
𝑾𝑖
𝑙𝑚

∑
𝑙

∑
𝑚𝑾𝑖

𝑙𝑚∑
𝑙 𝑾

𝑖
𝑙𝑚

∑
𝑚𝑾𝑖

𝑙𝑚

)}
.

Once each network has been transformed into its information-
rich matrix representation, deepNF integrates the PPMI matrices
with MDA to construct a low-dimensional feature representation
that best approximates all networks. In particular, deepNF first
trains a low-dimensional non-linear embedding for each biologi-
cal network and then concatenates the network embeddings from
the previous step into a single hidden layer, allowing the MDA
to learn feature representations using all networks. The single
bottleneck layer of the MDA is then extracted as the integrated low-
dimensional feature representation. Mini-batch stochastic gradient
descent with momentum is used to train the MDA.

2.4 Semi-Supervised Embedding via Graph
Augmentation

Although the networks 𝐺1, · · · ,𝐺𝑁 have edges that encode inter-
actions and can be used to reconstruct protein functions, we intend
to fully utilize any known protein functions from the beginning,
even before the Diffusion step starts. This can be done by aug-
menting the original networks using the ML and CL constraints
and employing a semi-supervised embedding approach. However,
directly adding the ML and CL constraints between the original
nodes might outweigh the original edges and, as a result, destroy
the original networks’ clustering structure. Therefore, we first aug-
ment the networks with auxiliary nodes that encode functional
information and then apply the constraints to gently enhance the
clustering structure without polluting it.

To introduce the auxiliary nodes that encode functional infor-
mation, we simultaneously bicluster the proteins and the function
labels (see Figure 2). Within the resulting biclusters, each pair of
proteins has similar function labels, and functional labels are rarely
shared across clusters. Therefore, this suggests we introduce one
auxiliary node for each cluster. There are several popular algo-
rithms for producing biclusters [20]. MELISSA uses the method
of [9], which produces more balanced biclusters for better practical
performance. The number of biclusters is a parameter of MELISSA.
Given the few labels at specific functional levels, we do not want
to choose too many biclusters in our initial study. Thus, we mainly
test relatively small numbers of biclusters, e.g., 2, 4, and 8. We also
experiment with larger numbers of biclusters for some generic
functional levels with many labels. A thorough study of tuning this
parameter is a subject of future work.

The next step is to augment the graphs by introducing one aux-
iliary node for each cluster and adding the ML and CL constraints
as suggested in [27]. More precisely, in each network, we link the
auxiliary nodes to all nodes in the corresponding clusters and put
positive weight on the added edges to pull the nodes in the same
cluster close to each other. Those added edges are the ML con-
straints and we denote its set by 𝐸ML with weight 𝑤+ > 0. In
addition, we add pairwise CL constraints between the auxiliary
nodes to push the clusters away from each other in the embedding.
The set of those added edges is denoted by 𝐸CL with weight𝑤− < 0.

ADH7

CABP2

ARNT2

CTTN

CABP5

CYTH4

BAAT

GO:
0038203

GO:
0046872

GO:
0022892

GO:
0016788

ADH7

CABP2

ARNT2

CTTN

CABP5

CYTH4

BAAT

GO:
0038203

GO:
0046872

GO:
0022892

GO:
0016788

Figure 2: Left: A fragment of the bipartite graph with gene
nodes connected to their labeled GO terms, with nodes or-
dered lexicographically. Nodes on the right are: GO:002678
hydrolase activity; GO:0022892: transmembrane transporter
activity; GO:0038203 TORC2 signalling; and GO:0046872
metal ion binding. Right: The same graph with nodes and
labels grouped by biclustering, where the transmembrane
transporter activity and metal ion binding labels are placed
in the same bicluster, with a separate bicluster containing
the TORC2 signaling label and the hydrolase activity. The
biclusters are highlighted in green and the sets of nodes shar-
ing an auxiliary coarse label are highlighted in yellow.

Note, for the sake of simplicity, we drop the superscript 𝑖 in this
section.

Since the augmented networks become signed graphs due to the
negatively weighted edges introduced by the CL constraints, we
need to look at the so-called signed graph Laplacians [13, 16, 18]
to understand the effects of the added ML and CL edges. Let 𝛿𝑢 =∑

𝑣∈N𝑢
|𝑤𝑢𝑣 | be the signed weighted degree of node 𝑢, where N𝑢

denotes the neighboring nodes of node𝑢, and 𝑫 = diag(𝛿1, · · · , 𝛿𝑛)
be the signed degree matrix. Then the signed graph Laplacian is de-
fined by 𝑳 = 𝑫 −𝑨. Let 𝒀 ∈ R𝑑×𝑛 be the 𝑑-dimensional embedding
of the nodes, as usual, the energy function E(𝒀) is defined as

E(𝒀) = Trace(𝒀𝑳𝒀) =
𝑑∑︁
ℓ=1

∑︁

𝑒 (𝑢,𝑣) ∈𝐸
𝑤𝑢𝑣 (𝒀ℓ𝑢 − 𝒀ℓ𝑣)2

+
∑︁

𝑒 (𝑢,𝑣) ∈𝐸ML

𝑤+ (𝒀ℓ𝑢 − 𝒀ℓ𝑣)2 +
∑︁

𝑒 (𝑢,𝑣) ∈𝐸CL

|𝑤− | (𝒀ℓ𝑢 + 𝒀ℓ𝑣)2
 .

To minimize the energy E(𝒀), for 𝑒 (𝑢, 𝑣) ∈ 𝐸ML, we should have
𝒀ℓ𝑢 ≈ 𝒀ℓ𝑣 which pulls the nodes in one cluster closer to the corre-
sponding auxiliary node and, therefore, the nodes within the same
cluster will be placed closer to each other indirectly. On the other
hand, for 𝑒 (𝑢, 𝑣) ∈ 𝐸CL, we expect 𝒀ℓ𝑢 ≈ −𝒀ℓ𝑣 , which pushes the
auxiliary nodes away from each other and, therefore, places the
nodes belong to different clusters apart indirectly.

As we can see, the edge weights𝑤+ and𝑤− for the ML and CL
constraints are parameters of MELISSA. In our initial study, since
the edge weights on the original networks are confidence scores
ranging between (0, 1], we simply set𝑤+ = 1 and𝑤− = 0 or −1 in
our numerical tests to demonstrate the idea of MELISSA. We plan
to optimize those weights in our future work.

Once the augmented graphs are constructed, we still want to
use the RWR matrix to represent the graph. In MELISSA, we still

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.552672doi: bioRxiv preprint

https://doi.org/10.1101/2023.08.09.552672

use the diffusion state matrix. Thus, we need to generalize the
diffusion state matrix 𝑾 to signed graphs. For graphs with only
positively weighted edges, from (1), by direct calculation, we have,
for 𝛼 ∈ (0, 1),

𝑾 = 𝛼𝑫 (𝑫 − (1 − 𝛼)𝑨)−1 ,

where 𝑫 = diag(𝛿1, · · · , 𝛿𝑛) is the weighted degree matrix with
𝛿𝑢 =

∑
𝑣∈N𝑢

𝜔𝑢𝑣 being the usual weighted degree for node 𝑢. Thus,
a natural generalization to a signed graph is obtained by replacing
the weighted degree matrix 𝑫 with the signed weighted degree
matrix 𝑫 and defining the diffusion state matrix for signed graphs
as follows,

𝑾 = 𝛼𝑫
(
𝑫 − (1 − 𝛼)𝑨

)−1
. (2)

We use this approach to construct𝑾𝑖 , 𝑖 = 1, · · · , 𝑁 , for each aug-
mented graph and then follow Mashup’s step to combine those
matrix representations to obtain a low-dimensional embedding.
Due to the presence of the negatively weighted CL links, the en-
tries of𝑾𝑖 might be negative and, therefore, we increase the small
constant used in Mashup to avoid taking the log of negative entries
𝑾

𝑖 . In our experiments, we set this smoothing constant to be the
reciprocal of the number of genes plus |min𝑢,𝑣 𝑾𝑢𝑣 |. Finally, the
low-dimensional embedding of MELISSA is constructed the same
as the Embedding step of Mashup.

2.5 MELISSA
Our proposed MELISSA procedure consists of five core steps as fol-
lows, where steps 3-5 duplicate Mashup with augmented networks.

(1) Biclustering. Bicluster the annotation matrix 𝑩 to obtain
coarse groupings of the nodes. The number of biclusters is
the parameter 𝑁𝑐 .

(2) GraphAugmentationAdd new auxiliary nodes correspond-
ing to the biclusters. We create two types of new edges in-
volving these auxiliary nodes. First, we add "must-link" edges
of weight𝑤+ that connect each original node to the bicluster
to which it belongs. Then, we add "cannot link" edges of
weight −1 between all pairs of the auxiliary nodes.

(3) Diffusion. On each augemented graph 𝐺𝑖 a diffusion pro-
cess (2) is run which creates a matrix representation𝑾

𝑖 of
the augmented network.

(4) Embedding A shared low-dimensional embedding is cre-
ated using the matrix representations𝑾𝑖 . This is achieved
via a singular value decomposition or dictionary learning
techniques. Ultimately this results in a 𝑑-dimensional vector
representation of every node in the dataset.

(5) Learning.Once every node in the dataset is represented by a
vector, existing function prediction methods can be applied.
For example, an SVM approach, like Mashup or DeepNF
uses, or a (weighted) majority voting classifier by 𝑘-nearest
neighbors (𝑘NN) (similar to [6]) can be trained using the
embedding and the available annotations.

Figure 3: A subset of the augmented STRING network with
the two new artificial bicluster nodes from the Figure 2 ex-
ample added. In particular, B1 represents the bicluster con-
taining ARNT1, BAAT, and CYTH4, and B2 represents the
bicluster containing the other four nodes in the Figure 2 ex-
ample. Solid lines represent the added must-link constraints
with positive weight, and the dashed line represents the "can-
not link" constraint that attempts to pull the biclusters apart.
These constraints help tighten the clustering for the labeled
data, but simultaneously pull the labeled data away from
unlabeled data in the embedding, making the strength of
the edges to the artificial nodes crucial to determining the
success of the approach.

3 EXPERIMENTAL SETUP
3.1 Datasets
Our experimental setup matches the setup in the original Mashup
paper as much as possible. The set of networks we consider in
this paper are the ones used in the original Mashup paper. These
are from the STRING database v9.1 [11], excluding links derived
from text-mining. In particular, we consider six heterogeneous
networks over 6, 400 genes with the number of edges varying from
1, 361 to 314, 013 for yeast, and 18, 362 genes with the number of
edges varying from 3, 717 to 1, 544, 348 for human. MELISSA, like
Mashup, incorporates STRING confidence weights on the edges
when computing the diffusion matrix.

The original Mashup paper used GO annotations for human
networks and the now-depreciated MIPS annotations for yeast
networks. To compare to the original Mashup, we used the same
human annotations. For yeast, however, we decided not to use
MIPS and instead also consider the GO, so our results are not di-
rectly comparable to the results reported in the original Mashup
paper for yeast. (Our yeast GO annotations are from the Gene On-
tology Consortium [22] (downloaded from FuncAssociate3.0 [4]
on 02/12/19)). The GO functional labels are grouped into three
distinct functional hierarchies: Biological Process(BP), Molecular

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.552672doi: bioRxiv preprint

https://doi.org/10.1101/2023.08.09.552672

Function(MF), and Cellular Component(CC), where we again mimic
Mashup to filter the GO terms to only retain those of intermedi-
ate specificity, labeling more than 10 and fewer than 301 genes
among the nodes. This label set can be further divided into levels
of varying specificity, each containing labels that annotate 11-30,
31-100, and 101-300 genes, respectively [21], filtering on Jaccard
index to remove too similar GO labels, paralleling the experiments
in the original Mashup paper on human (see below). We consider
9 different functional annotation experiments, parameterized by
one of the 3 hierarchies (BP, MF, and CC) times one of the three
levels of specificity of GO terms (11-30, 31-100, and 101-300), and
construct MELISSA embeddings for each, see below.

3.2 Evaluation
We compare the performance of the original Mashup and deepNF
embeddings with MELISSA in predicting GO functional labels in
each of the three hierarchies (BP, MF, and CC) on both the human
and yeast multi-network collections in 5-fold cross-validation. In
the human network, we chose the same set of GO terms as was
chosen by MASHUP, and evaluated on the same sets of GO term
range specificities (note that some of the GO terms are obsolete in
the current version of the GO). In the yeast network, we switched
to the GO (the original MASHUP paper used MIPS), but used a
similar procedure as MASHUP used in the human network, to
remove highly overlapping GO terms. Because our focus is on the
embedding part, where Mashup and MELISSA vary, we decided
to use the computationally less expensive learning method, 𝑘NN,
for function prediction as in [6]. We note that it is possible to
achieve better performance than 𝑘NN with a more sophisticated
SVM method [7, 14] (see Discussion section, below).

After obtaining the low dimensional representation of the data,
for each node in the test set, we find its 𝑘 nearest neighbors and
then cast a majority vote weighted by the reciprocal of the pairwise
distance. If none of the 𝑘 nearest neighboring genes has a label,
we find the single most closely labeled gene and have it vote. The
label with the most votes is assigned to the gene as its predicted
function, and this is considered correct if it matches at least one of
its known annotations. The percentage accuracy is the percentage
of nodes given correct annotations. We measure this, F1 score, and
area under the precision-recall curve (AUPRC) broken down by
both hierarchy (Molecular Function (MF), Biological Process (BP)
or Cellular component (CC)) and specificity of GO terms (GO terms
that label 11-30, 31-100 and 101-300 nodes in the dataset), for both
the yeast and human dataset, matching the experimental setup in
[7].

4 RESULTS
We need to set several parameters for the Melissa framework. They
are the number of biclusters, embedding dimension, the strength of
the ML and CL constraints, and the number of nearest neighbors
for majority voting. We set these parameters by comparing Melissa
to the original Mashup. We fixed the number of neighbors for the
majority voting at 10, as recommended by [6], but tested different
numbers of biclusters (in powers of 2) and embedding dimensions
(ranging from 25 to 1000 for yeast and 25 to 1200 for human).
We primarily looked at weighting ML and CL constraints equally

but also considered a version where only ML constraints were
considered (and CL constraints were given zero weights. See the
Supplement.). Complete results of 5-fold cross-validation across all
the parameters we tested between Mashup and MELISSA can be
found in the Supplement. For the human trials, we includedMashup
trials with the same setup as presented in the experiments in [7],
namely concatenating the diffusion state matrices vertically in the
Embedding step. For the yeast trials, we included both versions of
Mashup, i.e., concatenating the diffusion state matrices vertically
(denoted as Mashup𝑊 ′𝑊) and horizontally (denoted as Mashup
𝑊𝑊 ′), and observed that vertical concatenation always performed
better than the horizontal one.

In [7] the suggested embedding dimension is 500 for yeast and
800 for human, and we tested a range of embedding dimensions at
an increment of 25 for both yeast and human in MELISSA trials.
Similar to the Mashup case, the performance of MELISSA initially
increases as we increase the embedding dimension. After that, the
prediction accuracy stops increasing or even decreases as we in-
clude the higher embedding dimension, which is possibly affected
by noise (see the Supplement). In Table 1 and Table 2, we set the
embedding dimension to be 400 for both human and yeast. We note
that while setting the MELISSA embedding dimension between
300 − 500 is usually robust enough, the ideal embedding dimen-
sion of MELISSA seems to vary for different species and function
labels (see the Supplement for additional comparison of function
prediction performance where the best embedding dimension is
learned for Mashup and MELISSA in each trial). When we look at
the performance in terms of the number of biclusters, in most cases,
a smaller number of biclusters (8 or fewer) usually seems to perform
better. We also find that for a small number of biclusters, including
CL constraints generally improves performance, whereas when the
number of biclusters becomes very large, including CL constraints
starts to hurt performance seriously. Figure 4 and Figure 5, give two
examples of how the function prediction performance of MELISSA
with different numbers of biclusters and including CL or not varies
for Yeast trials with MF 11 − 30 functional label and Human trials
with BP 101 − 300 functional labels, respectively. Similar results for
other parameter choices appear in the Supplement.

For deepNF embedding training, we adopted the suggested pa-
rameters in [14]. The MDA architectures are [6 × 𝑛, 6 × 2000, 600,
6 × 2000,6 ×𝑛], and [6 ×𝑛, 6 × 2500, 9000, 1200,9000,6 × 2500,6 ×𝑛]
for yeast and human networks respectively. The stochastic gradient
descent optimizer uses batch size of 128 for yeast networks and
256 for human networks, with momentum of 0.95 and learning rate
of 0.2 for both yeast and human. The middle layers of the MDA
are extracted as embeddings and are then fed into the 𝑘NN func-
tion prediction classifier described above. We ran deepNF with its
recommended parameters.

In our experimental setup, where we chose to mimic the exper-
iments run in the original Mashup paper as closely as possible,
creating 2 biclusters (and allowing both ML and CL constraints)
seems to do quite well across the different hierarchies, GO-term
ranges, and yeast and human species. Results with these parameters
appear in Table 1 and Table 2. Interestingly, this version of MELISSA
consistently outperforms both Mashup and deepNF when measured
in accuracy, F1 score, or AUPRC score, with the only exception of

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.552672doi: bioRxiv preprint

https://doi.org/10.1101/2023.08.09.552672

Yeast CC 101 − 300 trials. However, we note that this experimen-
tal setting is not the best to get insight into different choices of
biclustering parameters, because Mashup filtered GO terms at each
level, removing terms that had Jaccard similarity greater than 0.1
with another category in the same level in order to avoid statistical
artifacts arising from overlapping functional categories (See the
Supplement for the number and percentage of GO labels that got
removed in this step). Thus we are already looking at a sparser
subset of GO terms that are too distinct to form good biclusterings.

Additionally, we observe that in this setting, MELISSA is more
robust to parameter choices on Yeast networks than on Human
networks (see the Supplement). We suspect this is due to the more
abundant availability of functional label information for yeast. As
noted above, we observe that using a smaller number of clusters,
2 or 4, usually leads to better MELISSA embedding and function
prediction results. The optimal set of parameters varies for different
GO hierarchies and functional specificity. In the future, we would
like to investigate how the functional label specificity or network
structure affects the choice of these parameters. Note that we can
apply any function prediction method besides weighted majority
voting, and a more sophisticated predictor will get more out of the
embedding, which at the same time comes with a more expensive
computational cost. We noticed that some of the advantages of
MELISSA disappear when we use the SVM predictor instead, but
again, an SVM predictor will be advantaged in an experimental set-
ting where substantially overlapping GO labels have been removed
from the test set.

5 DISCUSSION
The results in section 3 demonstrate that incorporating annotation
information at an earlier stage can lead to more informative net-
work embeddings. Augmenting the networks with cluster nodes
and introducingML and CL constraints in the embedding procedure
introduces significant structures that are otherwise missed. This cre-
ates a more valuable and information-rich node embedding which
yields performance gains in the functional enrichment of the local
neighborhoods, as evidenced by the improvements in 𝑘NN-based
functional classification. However, we note that Mashup improves
performance by using more sophisticated downstream learning:
namely, learning SVMs to discriminate functional classes. The SVM
is expressive enough to overcome the generic embedding and per-
forms better on our function prediction task than the Mashup or
the Melissa embedding paired with 𝑘𝑁𝑁 . However, the story is far
from complete, and there is much room for exploring new tech-
niques, especially given the wealth of work in semi-supervised
methods.

One future direction is to push the annotations into the diffusion
process for complete end-to-end utilization of all the information
provided from the start. Many methods could be explored by mod-
ifying the topology of the networks using constraints. For exam-
ple, changing the diffusion process to avoid transitioning directly
between pairs of proteins with different functional labels. Other
methods that could sparsify the networks or introduce new edges
could also be investigated.

Figure 4: Function prediction comparison with Mashup and
MELISSA for Yeast data. The functional labels used are GO
labels in theMolecular Function(MF) hierarchy that annotate
10 − 30 genes in the biological networks. The x-axis is the
embedding dimension.

ACKNOWLEDGEMENTS
Thanks to the T-Tripods graduate fellows and the T-Tripods summer
reading group on graphs and networks members at Tufts. Thanks

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.552672doi: bioRxiv preprint

https://doi.org/10.1101/2023.08.09.552672

GO Term Accuracy F1 AUPRC
HR. Range

Mashup deepNF MELISSA Mashup deepNF MELISSA Mashup deepNF MELISSA
BP 11-30 46.60% 37.52% 46.76% 33.48% 28.82% 34.48% 34.47% 26.09% 35.43%
BP 31-100 54.13% 46.58% 55.41% 37.93% 34.12% 39.05% 45.31% 37.58% 47.04%
BP 101-300 65.08% 59.00% 67.34% 45.81% 43.70% 46.47% 64.60% 59.67% 65.76%
MF 11-30 47.99% 42.10% 48.94% 34.39% 30.15% 35.26% 44.31% 37.02% 45.58%
MF 31-100 48.93% 43.04% 50.96% 35.85% 32.67% 37.17% 45.08% 37.58% 46.58%
MF 101-300 57.98% 51.38% 61.13% 42.73% 39.64% 43.94% 58.55% 52.23% 61.57%
CC 11-30 70.47% 64.16% 70.94% 42.29% 41.07% 42.75% 73.74% 66.74% 74.68%
CC 31-100 71.73% 65.45% 72.25% 44.61% 42.84% 45.28% 71.18% 65.74% 72.13%
CC 101-300 78.02% 75.70% 76.27% 48.00% 47.98% 47.83% 83.40% 81.90% 81.29%

Table 1: Function prediction performance on yeast PPI network with GO functional labels from the BP, MF, and CC hierarchies
based on MELISSA, Mashup, and deepNF data features by majority voting with 10 nearest neighbors in 5-folds cross-validation.
The embedding dimension is 400 for Mashup and MELISSA and the MELISSA parameters are:𝑤+ = 1,𝑤− = −1, and 2 biclusters.
The deepNF embedding dimension is 600.

GO Term Accuracy F1 AUPRC
HR. Range

Mashup deepNF MELISSA Mashup deepNF MELISSA Mashup deepNF MELISSA
BP 11-30 29.84% 21.78% 30.44% 20.76% 16.45% 21.55% 15.64% 10.12% 16.19%
BP 31-100 33.47% 26.07% 34.37% 23.40% 19.18% 23.91% 19.03% 13.32% 20.00%
BP 101-300 41.86% 34.72% 43.81% 31.36% 26.28% 32.27% 32.09% 25.64% 34.23%
MF 11-30 36.78% 29.97% 37.67% 26.60% 22.29% 27.53% 28.06% 20.10% 28.42%
MF 31-100 38.33% 29.60% 38.77% 28.69% 23.66% 29.11% 27.70% 19.39% 28.40%
MF 101-300 46.51% 33.52% 48.75% 35.89% 29.05% 37.60% 40.76% 28.10% 43.31%
CC 11-30 50.45% 44.32% 50.70% 32.02% 29.58% 32.48% 46.72% 39.67% 48.41%
CC 31-100 49.22% 44.96% 52.32% 33.17% 29.69% 35.10% 45.41% 40.14% 47.52%
CC 101-300 51.91% 45.69% 52.82% 35.94% 32.48% 36.24% 47.90% 40.74% 47.93%

Table 2: Function prediction performance on human PPI networkwith GO functional labels from the BP, MF, and CC hierarchies
based on MELISSA, Mashup, and deepNF data features by majority voting with 10 nearest neighbors in 5-fold cross-validation.
The embedding dimension is 400 and the MELISSA parameters are:𝑤+ = 1, CL𝑤− = 1, and 2 biclusters. The deepNF embedding
dimension is 1200.

especially to T-Tripods graduate fellow Matthew Werenski who
made important suggestions in the early stages of this project. This
research was supported by NSF grants DMS-1812503 (to L.C. and
X.H.) and the Tufts T-Tripods Institute (NSF grant CCF-1934553)
and NSF CC* grant 2018149.

REFERENCES
[1] E. Bair. Semi-supervised clustering methods. Wiley Interdisciplinary Reviews:

Computational Statistics, 5(5):349–361, 2013.
[2] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric

framework for learning from labeled and unlabeled examples. Journal of machine
learning research, 7(11), 2006.

[3] A. Ben-Hur, C. S. Ong, S. Sonnenburg, B. Schölkopf, and G. Rätsch. Support
vector machines and kernels for computational biology. PLoS computational
biology, 4(10):e1000173, 2008.

[4] G. Berriz, O. King, B. Bryant, C. Sander, and F. Roth. Characterizing gene sets
with FuncAssociate. Bioinformatics, 19(18):2502–2504, 2003.

[5] M. Cao, C. M. Pietras, et al. New directions for diffusion-based prediction of pro-
tein function: incorporating pathways with confidence. Bioinformatics, 30:i219–
i227, 2014.

[6] M. Cao, H. Zhang, J. Park, N.M. Daniels, M. E. Crovella, L. J. Cowen, and B. Hescott.
Going the distance for protein function prediction: a new distance metric for

protein interaction networks. PloS one, 8(10):e76339, 2013.
[7] H. Cho, B. Berger, and J. Peng. Compact integration of multi-network topology

for functional analysis of genes. Cell systems, 3(6):540–548, 2016.
[8] G. O. Consortium. The gene ontology resource: 20 years and still GOing strong.

Nucleic acids research, 47(D1):D330–D338, 2019.
[9] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering.

In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’03, page 89–98, New York, NY, USA, 2003.
Association for Computing Machinery.

[10] A. M. Edwards, B. Kus, R. Jansen, D. Greenbaum, J. Greenblatt, and M. Gerstein.
Bridging structural biology and genomics: assessing protein interaction data
with known complexes. TRENDS in Genetics, 18(10):529–536, 2002.

[11] A. Franceschini, D. Szklarczyk, S. Frankild, M. Kuhn, M. Simonovic, A. Roth, J. Lin,
P. Minguez, P. Bork, C. vonMering, and L. Jensen. STRING v9.1: protein-protein
interaction networks, with increased coverage and integration. Nucleic Acids
Res., 41:D808–815, 2013.

[12] G. Fu, J. Wang, B. Yang, and G. Yu. NegGOA: negative GO annotations selection
using ontology structure. Bioinformatics, 32(19):2996–3004, 2016.

[13] J. Gallier. Spectral theory of unsigned and signed graphs. applications to graph
clustering: a survey. arXiv preprint arXiv:1601.04692, 2016.

[14] V. Gligorijević, M. Barot, and R. Bonneau. deepnf: deep network fusion for protein
function prediction. Bioinformatics, 34(22):3873–3881, 2018.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.552672doi: bioRxiv preprint

https://doi.org/10.1101/2023.08.09.552672

Figure 5: Function prediction comparison with Mashup and
MELISSA for Human data. The functional labels used are GO
labels in the Biological Process(BP) hierarchy that annotate
101 − 300 genes in the biological networks. The x-axis is the
embedding dimension.

[15] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In
Proc. 22nd ACM SIGKDD, pages 855–864. ACM, 2016.

[16] Y. P. Hou. Bounds for the least Laplacian eigenvalue of a signed graph. Acta
Mathematica Sinica, 21(4):955–960, 2005.

[17] S. Kohler, S. Bauer, D. Horn, and P. N. Robinson. Walking the interactome for
prioritization of candidate disease genes. Am J Hum Genet., 82:949–958, 2008.

[18] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. De Luca, and S. Albayrak.
Spectral analysis of signed graphs for clustering, prediction and visualization.
In Proceedings of the 2010 SIAM International Conference on Data Mining, pages
559–570. SIAM, 2010.

[19] C.-S. Liao, K. Lu, M. Baym, R. Singh, and B. Berger. IsoRankN: spectral methods for
global alignment of multiple protein networks. Bioinformatics, 25(12):i253–i258,
2009.

[20] V. A. Padilha and R. J. Campello. A systematic comparative evaluation of biclus-
tering techniques. BMC bioinformatics, 18(1):1–25, 2017.

[21] A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko,
U. Guldener, G. Mannhaupt, M. Munsterkotter, and H. W. Mewes. The FunCat,
a functional annotation scheme for systematic classification of proteins from
whole genomes. Nucleic Acids Res, 32:5529–5545, 2004.

[22] the Gene Ontology Consortium. Gene Ontology: tool for the unification of
biology. Nature Genetics, 25(1):25–29, 2000. http://www.geneontology.org.

[23] H. Tong, C. Faloutsos, and J. Pan. Fast random walk with restart and its applica-
tions. In Sixth International Conference on Data Mining (ICDM’06), pages 613–622,
2006.

[24] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and L. Bottou.
Stacked denoising autoencoders: Learning useful representations in a deep net-
work with a local denoising criterion. Journal of machine learning research, 11(12),
2010.

[25] A. Warwick Vesztrocy and C. Dessimoz. Benchmarking gene ontology function
predictions using negative annotations. Bioinformatics, 36(Supplement_1):i210–
i218, 2020.

[26] J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embed-
ding. In Proceedings of the 25th international conference on Machine learning,
pages 1168–1175, 2008.

[27] D. Zhang, Z.-H. Zhou, and S. Chen. Semi-supervised dimensionality reduction.
In Proceedings of the 2007 SIAM International Conference on Data Mining, pages
629–634. SIAM, 2007.

[28] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. In Proceedings of the 20th International
conference on Machine learning (ICML-03), pages 912–919, 2003.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.552672doi: bioRxiv preprint

https://doi.org/10.1101/2023.08.09.552672

	Abstract
	1 Introduction
	2 Methods
	2.1 Preliminaries and Notation
	2.2 Review of the Mashup Embedding
	2.3 Review of the deepNF Embedding
	2.4 Semi-Supervised Embedding via Graph Augmentation
	2.5 MELISSA

	3 Experimental Setup
	3.1 Datasets
	3.2 Evaluation

	4 Results
	5 Discussion
	References

