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ABSTRACT

Identifying protein functions can be useful for numer-
ous applications in biology. The prediction of gene
ontology (GO) functional terms from sequence re-
mains however a challenging task, as shown by the
recent CAFA experiments. Here we present INGA,
a web server developed to predict protein func-
tion from a combination of three orthogonal ap-
proaches. Sequence similarity and domain architec-
ture searches are combined with protein-protein in-
teraction network data to derive consensus predic-
tions for GO terms using functional enrichment. The
INGA server can be queried both programmatically
through RESTful services and through a web inter-
face designed for usability. The latter provides output
supporting the GO term predictions with the annotat-
ing sequences. INGA is validated on the CAFA-1 data
set and was recently shown to perform consistently
well in the CAFA-2 blind test. The INGA web server is
available from URL: http://protein.bio.unipd.it/inga.

INTRODUCTION

Although the biological role of a protein is encoded in its
sequence, a simple function to map a protein sequence into
its biological activity is unknown. Moreover, experimen-
tal techniques to determine protein function are costly and
time consuming. Filling the gap between the number of
available sequences and their functional characterization re-
quires computational methods (1). The most widely used
ontology to describe protein function is the Gene Ontology
(GO) (2). GO defines three sub-ontologies (molecular func-
tion, biological process and cellular component) describing
different aspects of function. GO terms are grouped in a

hierarchical way as a directed acyclic graph, where deeper
nodes correspond to more specialized functions.

Recently, the Critical Assessment of protein Function
Annotation (CAFA) challenge has started to provide an ob-
jective overview of the state of the art in the field of au-
tomatic protein function prediction (3). The CAFA exper-
iment was also responsible for defining some new criteria
for evaluation, like the validation data set used for the blind
test, the definition of function space through GO terms
and scoring metrics for comparing different methods. Most
available algorithms exploit homology inference to assign
function (4–7). This is based on the logic that evolutionar-
ily related proteins share a common ancestor from whom
the function was inherited. However, it is very difficult to
infer homology for highly divergent proteins, in particular
when it is impossible to build a reliable phylogenetic tree
(8). Sequence similarity alone is also not a sufficient condi-
tion to infer functional similarity, as the function of iden-
tical sequences may change depending on different in vivo
environments such as organism, tissue or sub-cellular local-
ization. Other methods exploit domain organization in the
sequence to predict function (9–12). By definition, a pro-
tein domain corresponds to a functional unit and the com-
bination of different units provides the cell with a way to
develop new functions in a modular fashion (13). Anno-
tation can then be transferred among proteins sharing the
same domain architecture. The performance of these kinds
of predictors relies on the ability to find domains in a given
sequence as well as the quality of the functional annotation
for the domains themselves. Other approaches involve the
use of information available in protein–protein interaction
(PPI) networks (14,15). The assumption is that whenever a
protein physically interacts with other proteins, it is part of
the same biological process and located in the same cellular
compartment. Of course, this is not always true. For exam-
ple, in the case of chaperones or ubiquitin interacting with
a broad set of functionally unrelated protein partners. This
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assumption, however, holds in the majority of cases, as pro-
teins belonging to the same pathway have been shown to be
strongly interconnected (16). The main problem of methods
based on PPI data is coverage, as it is impossible to make
predictions whenever the interacting partners of a protein
are not known. Thanks to the huge amount of data gener-
ated by new experimental techniques (17,18), information
available in PPI networks has become more relevant. The
coverage problem has become a minor issue and methods
based on PPI data are promising. According to the results
of the CAFA experiment (3), the best methods rely on con-
sensus predictions and are in general able to exploit differ-
ent sources of information (19,20).

Here we introduce INGA, Interaction Network GO An-
notator, a tool that predicts protein function exploiting PPI
networks, sequence similarity measures and domain assign-
ments. INGA combines the three different component pre-
dictors to generate a consensus that outperforms them. It
was recently evaluated at the second CAFA experiment
(2014; URL: http://biofunctionprediction.org/) and ranked
among the ten best methods both for molecular function
and biological process prediction.

MATERIALS AND METHODS

INGA is a method that generates a consensus combining
three different predictors. The different information sources
are PPI networks, sequence similarity and domain assign-
ments. In the web server, these components are identified
as CONSENSUS, BLAST, PFAM and STRING to recall
the information source. The consensus prediction provided
by INGA has been evaluated in the CAFA-2 assessment re-
sulting among the top ten methods. The accuracy of INGA
arises from several implementation details. The most impor-
tant factors are: choice of the network, strategy adopted to
transfer annotation, approach to identify domains and the
way homology is inferred. A description of the implemented
predictors and the strategies adopted to maximize the ac-
curacy of the combined consensus prediction follows. Of
course, like all predictors, INGA is susceptible to system-
atic annotation errors in the source databases and the user
should evaluate predictions carefully. To this end, INGA
provides an interface to track all information sources and
help the user estimate their reliability.

Protein interaction networks (STRING)

Proteins in a living cell have many physical interactors.
Each group of interacting proteins is expected to partici-
pate in the same biological process and to operate in the
same sub-cellular compartment. Proteins involved in the
same pathway are indeed shown to be more interconnected
(16). Thanks to an increasing amount of available interac-
tion data, it is sensible to exploit this information to predict
protein function, at least for Cellular Component and Bi-
ological Process terms. Given a protein target, INGA col-
lects the set of directly interacting nodes from the STRING
(21) database (v9.1). When the target sequence is not exactly
present as STRING entry, INGA tries to find a similar en-
try with at least 90% sequence identity and 90% coverage.
When the mapping is not one-to-one, INGA merges the set

Table 1. Contingency table for enrichment calculation. Subset indicates
the set of directly interacting nodes in STRING and the set with the same
architecture in Pfam. Rest represents the remaining nodes in STRING and
proteins in UniProt with GO terms associated with Pfam domains

Data set

Subset Rest

Categories GOi a b
Not GOi c d

of interacting nodes of all mapped entries in a single group.
UniProt (22) (release 2014 08) is then queried to retrieve all
associated GO (2) terms from the set of interaction partners.
For each GO term, its enrichment in the group of interact-
ing proteins (sub network) compared to the rest of anno-
tated nodes in the entire STRING network, considering all
organisms together, is calculated. Enrichment is measured
by calculating a P-value with Fisher’s exact test and used
to rank GO terms. The P-value represents the probability
that a GO term is associated with a group of interactors by
chance (null hypothesis) and is calculated with the formula
below applied to a contingency table (see Table 1):

P−value (G Oi ) =

(
a + b

a

)(
c + d

c

)
(

n
a + c

) (1)

Domain assignments (PFAM)

Protein domains are independent folding units and repre-
sent the basic modules for protein function (13). It has been
postulated that the evolution of proteins can explain the
complexity of the cell through rearrangement of fragment
units and different combinations of a relatively small num-
ber of domains (23). The basic idea in INGA is to exploit
the domain architecture and transfer annotation from pro-
teins sharing the same domain pattern. Given a protein se-
quence, INGA identifies putative Pfam (24) domains using
HMMER (25). All proteins with the same set of domains
are retrieved from UniProt and the associated GO annota-
tion is transferred to the target. GO terms are ranked with
the same approach adopted for the protein interaction net-
work (see previous paragraph). The enrichment of each GO
term in the group of proteins with the same domain archi-
tecture is compared to the distribution of GO terms in the
rest of the database (see Table 1). The P-value associated to
a GO term represents the null hypothesis that the GO term
is associated with the group by chance and is calculated with
the same formula used for STRING enrichment.

Sequence similarity (BLAST)

According to the CAFA evaluation, the best predictors used
sequence similarity to infer homology and predict func-
tion (6,19,20). All use either Blast (26) or PsiBlast (27) to
find similar proteins. The BLAST predictor implemented
in INGA, exploits the ‘transfer by homology’ principle, and
transfers GO terms from sequences that are considered evo-
lutionarily related on the basis of their sequence similarity.
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In particular, INGA considers it safe to transfer function
only when BLAST matches proteins that share more than
40% sequence identity with a coverage (alignment overlap)
greater than 80%. The search is performed against the entire
UniProt sequence database (release 2014 08). Sequences
with an e-value higher than 10−3 were excluded. The cov-
erage constraint guarantees to exclude sequence pairs that
align well locally for a fragment that may correspond to a
single domain while the rest of the sequence remains un-
aligned. The list of retrieved hits is then filtered a second
time, removing hits lacking either any GO annotation or
experimental annotation according to the user choice. Valid
hits were sorted by the Blast bit-score and GO terms were
sorted accordingly. It has been shown that the bit-score pro-
vides a better sorting compared to sequence identity when
evaluating the function of retrieved hits (3,19).

Consensus and training

Consensus methods result particularly effective when com-
bining predictors that exploit orthogonal information
sources which provide coherent results. Our case fits this sit-
uation well, since interaction data can be considered inde-
pendent from homology inference based on sequence simi-
larity and domain assignments. The consensus is calculated
to maximize the F-score (or F-measure) as used in CAFA
(3). The F-score represents the quality of a given predic-
tion and is the harmonic mean between precision and re-
call. It can be used as a probability, with higher probabil-
ities corresponding to better predictions. If Pm represents
the probability (confidence score) of the term GOi given by
the method m, the consensus score is calculated as a joint
probability with the following formula:

Pconsensus (G Oi ) = 1 −
∏

m∈Methods
(1 − Pm(G Oi )) (2)

Pconsensus is higher when a term is predicted by multiple pre-
dictors. For each method and each GO term, we generate
Pm with the following formula:

Pm(G Oi ) = ea+b·r (3)

Where e is Euler’s number, a and b are two parameters and
r represents the ranking, i.e. the position of GOi in the out-
put list for method m. Rank 1, for BLAST, corresponds to
all GO terms (plus ancestors) associated with the first hit

(i.e. best bit-score), while in STRING and PFAM rank 1
identifies the terms with the lowest P-value. We decided to
generate probabilities with the ranking instead of raw scores
(P-value and bit-score) as they correlate much better with
the F-score (data not shown). Moreover, equation 3 is very
simple and requires only the a and b parameters to be es-
timated. Training has been performed by simply fitting the
parameters of the ranking position to maximize the F-score
in the training set. A total of 36 models were generated re-
flecting different predictors (BLAST, PFAM, four versions
of STRING based on different edge confidence), different
annotation sources (experimental and all annotations) and
different sub-ontologies (Molecular Function, Biological
Process and Cellular Component). Parameters for all mod-
els were optimized on a training set of 10 000 experimentally
annotated SwissProt proteins (release 2013 07), as defined
in CAFA, with GO terms associated with trusted evidence
codes: inferred from Experiment (EXP), inferred from Di-
rect Assay (IDA), inferred from Physical Interaction (IMP),
inferred from Genetic Interaction (IGI), inferred from Ex-
pression Pattern (IEP), Traceable Author Statement (TAS)
and Inferred by Curator (IC).

Evaluation

In the past, the evaluation of a function prediction method
was usually carried out by comparing the annotation of
model organisms like Yeast on specific ad hoc ontologies
which were much smaller than the current GO. Moreover,
it is very difficult to fairly evaluate the state of the art.
Most methods predict annotation by transferring infor-
mation from public annotation databases and by this are
very sensitive to the ability of exploiting updated data. The
CAFA experiment solves these problems by introducing a
fair blind test. All participants are asked to predict GO
terms for a set of sequences (validation set). After usu-
ally six months, CAFA closes the submission phase and
starts to collect experimental annotation for another six
months. The evaluation is then performed on the sequence
subset that gained GO terms in the annotation phase. The
CAFA evaluation is mainly based on precision-recall curves
and other metrics described here (3). INGA, identified as
Tosatto-UniPD, has been ranked among the ten best pre-
dictors both for Molecular Function and Biological Process
sub ontologies in the second CAFA edition (2014; URL:

Table 2. CAFA-1 validation set performance. Precision, recall and F-score values are shown at the confidence threshold maximizing the F-score for each
method. In each column the highest value is highlighted in bold. The confidence values are sequence identity for BLAST, term frequency in the experimental
annotation database for NAIVE and CONSENSUS score for INGA. Coverage represents the fraction of target proteins for which a method predicts at
least one GO term. For NAIVE the coverage is always 1 by definition and not reported

Confidence threshold Coverage Precision Recall F-score

Molecular Function BLAST 0.25 0.64 0.37 0.47 0.42
NAIVE 0.19 0.29 0.23 0.26
INGA 0.80 0.91 0.53 0.63 0.58

Biological Process BLAST 0.25 0.76 0.18 0.42 0.25
NAIVE 0.20 0.28 0.21 0.24
INGA 0.78 0.80 0.37 0.33 0.35

Cellular Component BLAST 0.27 0.81 0.35 0.61 0.45
NAIVE 0.27 0.41 0.48 0.44
INGA 0.65 0.96 0.42 0.58 0.49
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http://biofunctionprediction.org/). The official assessment
paper has not yet been published at the time of writing.
Therefore, here we provide an evaluation based on the test
set of the first CAFA edition. We simulated the same blind
test by generating INGA predictions using the data and
ontology available before the submission deadline (18 Jan-
uary 2011). The parameters of equation 3, a and b, were
trained by extracting a subset of 10 000 experimentally an-
notated proteins randomly selected from SwissProt (release
2010 12). Table 2 shows the INGA performance in terms of
F-score compared with the BLAST and NAIVE methods
implemented as described in CAFA. INGA predictions are
always better both for precision and F-score. Comparing
our table with the CAFA results, INGA is ranked among
the top five methods. It should be noted that, compared to
the official CAFA-1 evaluation, the BLAST and NAIVE
F-scores are slightly different. This is probably due to dif-
ferences in the implementation as some details are miss-
ing in the published paper (e.g. release of the annotation
database, ontology version and some BLAST parameters).
To generate predictions we used UniProt 2011 01, the gene
ontology of the 1st January 2011 and BLAST with the fol-
lowing parameters: -num alignments 250 and -evalue 0.01.
All INGA predictions for the CAFA-1 set are available
for download from URL http://protein.bio.unipd.it/inga/
INGA-evaluation.tar.gz.

Implementation

The INGA web server is implemented using the REST
(Representational State Transfer) architecture. The INGA
services can be accessed both from a web interface and a
Python API implemented ad hoc. The submitted job can be
retrieved at a later time by providing the session identifier or
the URL to the result page. INGA guarantees to maintain
job sessions for at least two weeks. Predictions are stored
permanently in a database where entries are indexed by their
sequence in order to speed up the service when requesting
a cached protein. Moreover INGA takes advantage of an
implementation that allows to run the three different pre-
dictors in parallel, with results appearing independently as
soon as a predictor finishes.

SERVER DESCRIPTION

Input

The INGA user interface is straightforward to use. The
main page features a search box, which accepts any valid
UniProt accession code (i.e. Q9XYF4) or, alternatively,
Fasta sequence. Up to 10 input sequences or identifiers
can be provided for each job. An optional title can be set
to help the user distinguish between different prediction
runs. Only two parameters need to be set for function pre-
diction, the annotation database and the STRING edge
confidence. The annotation database parameter refers to
the way GO terms are filtered. Selecting the ‘Experimen-
tal’ button, only GO terms associated with trusted evidence
codes will be selected, otherwise all GO terms from UniProt
will be included without any filter (i.e. including electroni-
cally inferred). For the STRING edge confidence parame-
ter, four confidence levels for interaction partner prediction

can be selected. A high confidence score reduces the num-
ber of interacting partners, implying fewer sources for GO
terms transfer and presumably fewer false positives. The de-
fault settings are ‘experimental’ annotations and ‘medium’
STRING edge confidence. This works well in most cases.
For function prediction of proteins with very poor anno-
tation, we recommend to use all database sources and low
level of confidence on STRING interactors.

Output

INGA provides output for all the three implemented pre-
dictors and the consensus on the same page (see Figure 1).
Each column lists predictions from one method and the GO
terms are grouped by sub-ontology (molecular function;
biological process; cellular component) to facilitate com-
parison between different predictors. By default, the tool
displays only the first three predicted terms for each sub-
ontology, but it is possible to expand the list and visualize all
predicted annotations by clicking on the ‘Expand’ button.
GO terms in the expanded list are grouped by score (rank)
and sorted by term specificity. The block of terms with the
same score is highlighted by a colored line on the left. The
background color of each box reflects the informativeness
of each term. More specific terms (i.e. farther away from
the GO root) have darker background color and are always
on the top of a score block. For each block, except consen-
sus, the annotation source (UniProt accession codes) is also
reported. For Pfam it is also possible to see the set of do-
mains identified in the input sequence and matched against
UniProt proteins. The list of GO terms associated with each
sub-ontology and the prediction sources can be saved in an
output file for download by clicking on the ‘download’ but-
ton on the top right corner.

Usage example

Protocadherin-19 (PCDH19) is a member of the protocad-
herin (pcdhs) subfamily within the large cadherin superfam-
ily, which were first discovered as calcium dependent cell-
cell adhesion molecules involved in early vertebrate embryo
development (28). Mutations in the PCDH19 gene are re-
sponsible for X linked, female-limited epilepsy and men-
tal retardation (29,30). PCDH19 is highly expressed in the
central nervous system but its cellular role is poorly under-
stood. In public protein sequence databases, PCDH19 is
simply described as a calcium binding molecule which me-
diates homophilic cell-cell adhesion. We used INGA to re-
trieve further information on PCDH19 protein function us-
ing the UniProt accession code (Q8TAB3) as input and only
experimental sources for GO terms selection (Figure 1).
Medium confidence interaction partner prediction has been
chosen as starting condition for the analysis. The results
page reports the four lists of predictions for each method.
The first three GO terms with highest score obtained from
the consensus method correctly predicted PCDH19 as a
membrane protein binding calcium ions which is involved
in cell-cell adhesion. The prediction is inferred from both
homologous sequences and proteins sharing the same cad-
herin domain. Expanding the lists we can find other in-
teresting GO terms associated with PCDH19. In particu-
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Figure 1. INGA results page for the human PCDH19 protein. The output contains a short header, with the session identifier, optional job title, download
button as well as the UniProt accession code or title of the Fasta file used as input. The following three sections cover the GO sub-ontologies for molecular
function, biological process and cellular component. Inside each section, the first column represents the consensus and is followed by BLAST, PFAM and
STRING results. Each component result lists the GO term identifier, score and GO term description inside a box of variable background color. Darker
background colors correspond to more informative (i.e. deeper) GO levels. Scores are in the range 0.0 (low) to 1.0 (high), with 1.0 reserved for curated
GO terms for the query protein retrieved from UniProt. Where possible, UniProt and Pfam buttons open pop-up windows listing the UniProt accession
numbers supporting the predicted GO term. An alternating gray or light blue stripe on the left side of the results box indicates whether consecutive entries
belong to the same prediction or not. This is important, as multiple GO tracing the way from the prediction back to the ontology root can be shown. By
default, only the top three results are shown for each GO sub-ontology and method. Clicking on ‘Expand’ below the GO sub-ontology name will expand
the results section to cover all informative predictions for each method. Clicking on ‘Expand all’ will increase the number of visualized predictions further
by listing all parent nodes of each prediction.
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lar, from the consensus prediction this protein is specifi-
cally predicted to be localized in neuron parts. The source
of this prediction can be found searching for GO terms re-
lated to ‘neuron’ in the PFAM and STRING lists. Inter-
estingly, the GO term refers to experimental data on pro-
teins belonging to different pcdhs subfamilies. Recently, it
has been show that pcdhs have an active role in neural cir-
cuit formation, recruiting regulators of cytoskeletal dynam-
ics to the cell surface at interaxonal contact sites to induce
persistent cell motility (31). Cellular component movement
is also predicted as biological process in which PCDH19 is
involved. This is also reported in literature where Biswas
and colleagues demonstrated that PCDH19 interacts with
NCAD to regulate cell adhesion and movement during an-
terior neurulation in zebra fish (32).

CONCLUSIONS

We have presented INGA, a novel method to predict pro-
tein function from sequence. It was optimized to combine
three orthogonal sources of information, PPI networks, do-
main architecture and sequence similarity, into a consensus
prediction for each of the three GO sub-ontologies. INGA
performed consistently well at the most recent CAFA ex-
periment. The web server was carefully designed to provide
users with the necessary information to evaluate the biologi-
cal meaning of the predicted functional terms. We anticipate
that it will be useful both for large-scale annotation efforts,
through its RESTful web services, and experimental biolo-
gists interested in designing experiments to test the function
of a specific protein.

ACKNOWLEDGEMENTS

The authors are grateful to Emilio Potenza for initial help
with the web server and to members of the BioComputing
UP group for insightful discussions.

FUNDING

FIRB Futuro in Ricerca [RBFR08ZSXY]; University of
Padua [CPDR123473]; AIRC [MFAG12740 to S.T.]; Ital-
ian Ministry of Health [GR-2011-02346845 to S.T. and GR-
2011-02347754 to E.L.]; FIRC Fondazione Italiana per la
Ricerca sul Cancro [Project No. 16621 to D.P.]. Funding for
open access charge: FIRB Futuro in Ricerca.
Conflict of interest statement. None declared.

REFERENCES
1. Friedberg,I. (2006) Automated protein function prediction–the

genomic challenge. Brief. Bioinform., 7, 225–242.
2. Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H.,

Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T. et al.
(2000) Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat. Genet., 25, 25–29.

3. Radivojac,P., Clark,W.T., Oron,T.R., Schnoes,A.M., Wittkop,T.,
Sokolov,A., Graim,K., Funk,C., Verspoor,K., Ben-Hur,A. et al.
(2013) A large-scale evaluation of computational protein function
prediction. Nat. Methods, 10, 221–227.

4. Loewenstein,Y., Raimondo,D., Redfern,O.C., Watson,J.,
Frishman,D., Linial,M., Orengo,C., Thornton,J. and Tramontano,A.
(2009) Protein function annotation by homology-based inference.
Genome Biol., 10, 207.

5. Piovesan,D., Luigi Martelli,P., Fariselli,P., Zauli,A., Rossi,I. and
Casadio,R. (2011) BAR-PLUS: the Bologna Annotation Resource
Plus for functional and structural annotation of protein sequences.
Nucleic Acids Res., 39, W197–W202.

6. Piovesan,D., Martelli,P.L., Fariselli,P., Profiti,G., Zauli,A., Rossi,I.
and Casadio,R. (2013) How to inherit statistically validated
annotation within BAR+ protein clusters. BMC Bioinformatics,
14(Suppl. 3), S4.

7. Chitale,M., Hawkins,T., Park,C. and Kihara,D. (2009) ESG:
extended similarity group method for automated protein function
prediction. Bioinformatics, 25, 1739–1745.

8. Engelhardt,B.E., Jordan,M.I., Srouji,J.R. and Brenner,S.E. (2011)
Genome-scale phylogenetic function annotation of large and diverse
protein families. Genome Res., 21, 1969–1980.

9. Hunter,S., Apweiler,R., Attwood,T.K., Bairoch,A., Bateman,A.,
Binns,D., Bork,P., Das,U., Daugherty,L., Duquenne,L. et al. (2009)
InterPro: the integrative protein signature database. Nucleic Acids
Res., 37, D211–D215.

10. Dessailly,B.H., Redfern,O.C., Cuff,A. and Orengo,C.A. (2009)
Exploiting structural classifications for function prediction: towards a
domain grammar for protein function. Curr. Opin. Struct. Biol., 19,
349–356.

11. De Lima Morais,D.A., Fang,H., Rackham,O.J.L., Wilson,D.,
Pethica,R., Chothia,C. and Gough,J. (2011) SUPERFAMILY 1.75
including a domain-centric gene ontology method. Nucleic Acids
Res., 39, D427–D434.

12. Rentzsch,R. and Orengo,C.A. (2013) Protein function prediction
using domain families. BMC Bioinformatics, 14 (Suppl. 3), S5.

13. Hartwell,L.H., Hopfield,J.J., Leibler,S. and Murray,A.W. (1999)
From molecular to modular cell biology. Nature, 402, C47–C52.

14. Brun,C., Chevenet,F., Martin,D., Wojcik,J., Guénoche,A. and Jacq,B.
(2003) Functional classification of proteins for the prediction of
cellular function from a protein-protein interaction network. Genome
Biol., 5, R6.

15. Chua,H.N., Sung,W.-K. and Wong,L. (2007) Using indirect protein
interactions for the prediction of Gene Ontology functions. BMC
Bioinformatics, 8(Suppl. 4), S8.

16. Barabási,A.-L., Gulbahce,N. and Loscalzo,J. (2011) Network
medicine: a network-based approach to human disease. Nat. Rev.
Genet., 12, 56–68.

17. Ho,Y., Gruhler,A., Heilbut,A., Bader,G.D., Moore,L., Adams,S.-L.,
Millar,A., Taylor,P., Bennett,K., Boutilier,K. et al. (2002) Systematic
identification of protein complexes in Saccharomyces cerevisiae by
mass spectrometry. Nature, 415, 180–183.

18. Johnson,D.S., Mortazavi,A., Myers,R.M. and Wold,B. (2007)
Genome-wide mapping of in vivo protein-DNA interactions. Science,
316, 1497–1502.

19. Cozzetto,D., Buchan,D.W.A., Bryson,K. and Jones,D.T. (2013)
Protein function prediction by massive integration of evolutionary
analyses and multiple data sources. BMC Bioinformatics, 14(Suppl.
3), S1.

20. Fontana,P., Cestaro,A., Velasco,R., Formentin,E. and Toppo,S.
(2009) Rapid annotation of anonymous sequences from genome
projects using semantic similarities and a weighting scheme in gene
ontology. PLoS One, 4, e4619.

21. Franceschini,A., Szklarczyk,D., Frankild,S., Kuhn,M.,
Simonovic,M., Roth,A., Lin,J., Minguez,P., Bork,P., von Mering,C.
et al. (2013) STRING v9.1: protein-protein interaction networks,
with increased coverage and integration. Nucleic Acids Res., 41,
D808–D815.

22. The UniProt Consortium. (2014) Activities at the Universal Protein
Resource (UniProt). Nucleic Acids Res., 42, D191–D198.

23. Moore,A.D., Björklund,A.K., Ekman,D., Bornberg-Bauer,E. and
Elofsson,A. (2008) Arrangements in the modular evolution of
proteins. Trends Biochem. Sci., 33, 444–451.

24. Punta,M., Coggill,P.C., Eberhardt,R.Y., Mistry,J., Tate,J.,
Boursnell,C., Pang,N., Forslund,K., Ceric,G., Clements,J. et al.
(2012) The Pfam protein families database. Nucleic Acids Res., 40,
D290–D301.

25. Finn,R.D., Clements,J. and Eddy,S.R. (2011) HMMER web server:
interactive sequence similarity searching. Nucleic Acids Res., 39,
W29–W37.

26. Altschul,S. (1990) Basic Local Alignment Search Tool. J. Mol. Biol.,
215, 403–410.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/43/W

1/W
134/2467958 by guest on 08 January 2024



W140 Nucleic Acids Research, 2015, Vol. 43, Web Server issue

27. Altschul,S. (1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res.,
25, 3389–3402.

28. Miyatani,S., Shimamura,K., Hatta,M., Nagafuchi,A., Nose,A.,
Matsunaga,M., Hatta,K. and Takeichi,M. (1989) Neural cadherin:
role in selective cell-cell adhesion. Science, 245, 631–635.

29. Dibbens,L.M., Tarpey,P.S., Hynes,K., Bayly,M.A., Scheffer,I.E.,
Smith,R., Bomar,J., Sutton,E., Vandeleur,L., Shoubridge,C. et al.
(2008) X-linked protocadherin 19 mutations cause female-limited
epilepsy and cognitive impairment. Nat. Genet., 40, 776–781.

30. Leonardi,E., Sartori,S., Vecchi,M., Bettella,E., Polli,R., Palma,L.D.,
Boniver,C. and Murgia,A. (2014) Identification of Four Novel

PCDH19 Mutations and Prediction of Their Functional Impact.
Ann. Hum. Genet., 78, 389–398.

31. Hayashi,S., Inoue,Y., Kiyonari,H., Abe,T., Misaki,K., Moriguchi,H.,
Tanaka,Y. and Takeichi,M. (2014) Protocadherin-17 mediates
collective axon extension by recruiting actin regulator complexes to
interaxonal contacts. Dev. Cell, 30, 673–687.

32. Biswas,S., Emond,M.R. and Jontes,J.D. (2010) Protocadherin-19 and
N-cadherin interact to control cell movements during anterior
neurulation. J. Cell Biol., 191, 1029–1041.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/43/W

1/W
134/2467958 by guest on 08 January 2024


