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Abstract

Protein function prediction based on amino acid sequence alone is an extremely challenging but important task, especially in
metagenomics/metatranscriptomics field, in which novel proteins have been uncovered exponentially from new microorganisms. Many
of them are extremely low homology to known proteins and cannot be annotated with homology-based or information integrative
methods. To overcome this problem, we proposed a Homology Independent protein Function annotation method (HiFun) based on
a unified deep-learning model by reassembling the sequence as protein language. The robustness of HiFun was evaluated using the
benchmark datasets and metrics in the CAFA3 challenge. To navigate the utility of HiFun, we annotated 2 212 663 unknown proteins
and discovered novel motifs in the UHGP-50 catalog. We proved that HiFun can extract latent function related structure features
which empowers it ability to achieve function annotation for non-homology proteins. HiFun can substantially improve newly proteins
annotation and expand our understanding of microorganisms’ adaptation in various ecological niches. Moreover, we provided a free
and accessible webservice at http://www.unimd.org/HiFun, requiring only protein sequences as input, offering researchers an efficient
and practical platform for predicting protein functions.
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INTRODUCTION
Proteins play an essential role in a large variety of biological
processes, thus elucidating their function is always the major task
in the post-genomic era, which can help us better understand the
role of proteins in disease pathobiology, novel biomolecular tools
discovering and even drug targets finding [1–6]. With the advent
of next-generation sequencing techniques, an enormous amount
of sequences have been produced, which exponentially expanded
the protein sequences databases, but their functional annotation
is lagging far behind and the gap between unannotated and
annotated proteins is widening [7, 8]. In the Uniprot database [9],
there are >1% of the available proteins are reliable annotated
[7, 10]. Consequently, there is an urgent need to develop high-
efficiency and accurate computational methods to predict protein
function to shrink the gap.

The commonly used methods (e.g. BLAST/PSI-BLAST [11, 12]
and Diamond [13]) to predict the protein functions are achieved by
aligning the query protein to the proteins with known functions
and assigning the functions based on the sequence similarity.
However, there are numerous proteins with similar functions
while their sequences are distinct. To address this problem par-
tially, the domain- and motif-based methods [14–17] have been
developed based on the similarity of conserved sequence domains
or motifs, which are obtained by performing multiple sequence
alignment of proteins belonging to the same protein family with
known function. These methods fall into two major limitations,
one of which is that high-quality sequence alignments are hard-
won especially when the sequences with low homology, and
the other one is that high quality of the functional annota-
tion of domain/motifs is challenged. Besides the sequence fea-
tures, additional functional experimental evidences (e.g. protein–
protein interaction, gene expression, gene neighborhood and gene
co-occurrence) can be also supplied to improve the ability the
protein function prediction. The Critical Assessment of Functional
Annotation Challenge (CAFA) has showed that combing multiple
sources of information using integrative machine learning and
statistical methods outperform traditional sequence alignment-
based methods, such as deepGOplus [2, 18], deepFunc [7] and S2F
[10]. However, these methods also suffered the weakness of low
homology protein function prediction.

From another perspective, the 3D structure of a protein is
believed to be more involved in its biological function, and can be
considered as an important attribution for the protein function
annotation, such as FFPred [19], COFACTOR [20] and DeepFRI
[21]. Maranga et al. [22] developed a novel metagenome analy-
sis pipeline which includes the deep learning-based functional
annotation from DeepFRI, and performed the functional annota-
tions for the >1000 infant metagenomes from the DIABIMMUNE
cohort. However, very few experimentally verified 3D structures
information is available for the proteins with known functions.
Although several high-accuracy theoretical methods have been
developed to predict the protein structures, such as AlphaFold2
[23, 24], RoseTTAFold [25] and ProFold [26], the accuracy still
need to be improved, especially when no homologs structure is
available [27]. Even so, the success of AlphaFold2 et al. revealed
that the sequence of protein indeed implies its structure related
information.

Most recently, inspired by approaches proposed for natural
language processing, the proteins could be represented as pro-
tein languages. Several methods have been proposed that could
resemble the protein or DNA sequences as protein language and
declared that the complex sequence-structure–function relation-
ships can be extracted [28, 29]. Inspired by these, in this study, we

introduced a novel deep-learning model HiFun to achieve the pro-
tein function prediction directly from the protein sequences. Our
main idea is to extract function related latent features directly
from the protein sequence using a pretrained embedding model
as well as a unified deep neural network architecture. The evalu-
ation results showed that our method outperformed other state-
of-the art general-purpose protein function prediction methods
with respect to most of the evaluation metrics. Using the pro-
posed method, we annotated the unknown proteins in the Unified
Human Gastrointestinal Protein (UHGP) database and performed
de novo motifs discovery and structure-related analysis.

MATERIAL AND METHODS
Sequence embedding based on BLOSUM62 matrix. BLOcks SUb-
stitution Matrix (BLOSUM) matrix is one of the most common
substitution matrices used for protein sequence alignment [30]
and contains the evolutionary information of protein sequence.
According to the identity of the sequences used for the BLO-
SUM matrix construction, several sets of BLOSUM matrices exist
and named with numbers, such as BLOSUM45, BLOSUM62 and
BLOSUM80. In this work, we used BLOSUM62 matrix, which was
experimentally proven to be among the best for detecting most
weak protein similarities, to encode protein sequences, and each
amino acid was represented as the corresponding row of the
BLOSUM62 matrix. For each protein sequence, we trimmed or
padded the protein sequences into a fix-length of 1000 AAs (amino
acids). Hence, for each protein sequence can be converted into
a matrix with a dimension of 1000-length numeric vector × 25
amino acids (‘A’, ‘R’, ‘N’, ‘D’, ‘C’, ‘Q’, ‘E’, ‘G’, ‘H’, ‘I’, ‘L’, ‘K’, ‘M’, ‘F’,
‘P’, ‘S’, ‘T’, ‘W’, ‘Y’, ‘V’, ‘B’, ‘J’, ‘Z’, ‘X’, ‘∗’).

Sequence embedding with FastText. To capture the nature
of protein sequence beyond homology, we further assimilated
protein sequence as a type of comprehensive yet straightforward
language and employed a FastText word embedding model [30]
to train all the publicly available bacterial protein sequence and
then digitalize each protein sequence. Briefly, we first downloaded
all 335 066 reviewed bacterial protein sequences from the UniProt
database (https://www.uniprot.org/, release date: 12 July 2021),
and then the sequences were trimmed or padded into a fix-length
of 1200 AAs. After that, the FastText sequence embedding model
was trained with an n-gram of character of 3 and the output
embedding was set as 200. Consequently, the pretrained FastText
sequence embedding model could translate the sequence into a
matrix with a dimension of 200-length numeric vector × 400-
mers.

HiFun model architecture. Two types of embedding methods
described above were used to transfer the protein sequences
into numeric vectors/matrices, and we named the outputs
for these two embedding layers as BLOSUM62-based vectors
and FastText-based matrices for convenience, respectively. The
BLOSUM62-based vectors were further fed into the convolutional
layers to extract the evolutionary features of the input proteins.
Simultaneously, the FastText-based matrices went through
a sub-architecture constituted by connecting Convolutional
Neural Network (CNN) and Bidirectional Long Short-Term
Memory (BiLSTM) with a self-attention mechanism in series. The
convolutional layers were designed to extract n-gram features
from vector embeddings of input sequences, while the BiLSTM
layers access both the preceding and succeeding contextual
features by combining a forward hidden layer and a backward
hidden layer. The attention mechanism for the single amino acid
(i.e. 3 k-mer combinations) representation pays more attention
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Figure 1. The architecture of HiFun. The protein sequences were embedding with both the BLOSUM matrix and the pretrained word2vec model. Two
parallel sub-architectures were designed to extract the latent features and then go through a dense layer to generate the output.

to the amino acids related to the sentiment of the sequence. The
outputs of the two parts were concatenated and then fed into a
dense layer for protein function prediction (Figure 1).

The detail of the architecture was described as
below
Input unit
Two input units (BLOSUM62-based and FastText-based) were used
in our study, which were described as above.

CNN unit for BLOSUM62-based input
The BLOSUM62 embedding matrix of each sequence was fed into
three parallel subnetworks and each subnetwork consisting of
three convolutional layers with different sizes of filters to extract
the latent features, which are processed by the subsequent max-
pooling layer. Rectified Linear Units activation is used after each
convolutional layer. The size of all the max-pooling layers is set 2.

CNN unit for FastText-based input
The CNN unit is used to extract both local and global features
from the sequence represented by the embedding matrix. The
embedding matrix of each sequence was fed into the three-
layered 1-D convolutional layers with two max-pooling layers
inspected between 1-D convolutional layers. Specifically, three 1-
D convolutional layers consist of 32, 16 and 8 filters and window
size 10, 10 and 5 to move across the embedding matrix for the
feature extraction. The size of two max-pooling layers is set 2.
Furthermore, the reshaping process is required before giving the
output of CNN as an input to the BiLSTM, which accepts 1D in its
input.

BiLSTM unit
The extracted feature vectors of sequences from the CNN unit are
further passed to the two BiLSTM layers, which access the preced-
ing and succeeding contextual features by different controlling
gates (like input gate, output gate and forget gate) [31]. The 32,
16 units were used in the two BiLSTM layers. A dropout rate of 0.5
is applied to the Bi-LSTM layers. Throughout the BiLSTM unit, the

query matrix, key matrix and value matrix are generated as the
input of the following self-attention unit.

Self-attention unit
To overcome the problem of long-distance dependency in the
protein sequence and differentiate the association of individual
amino acid to ARG and its category classification, we introduced
the self-attention unit to estimate the importance of each amino
acid. The self-attention mechanism is performed on the output
of the BiLSTM unit to execute the importance estimation of each
amino acid in the sequence. Technically, the attention process
is implemented by calculating a context vector for a decoder
containing the most useful information from all hidden states
of the encoders, with an averaging of weights done on. Attention
width of 15 and a kernel regularizer is used in the self-attention
mechanism.

Output unit
The outputs of the CNN units for BLOSUM62-based input and Self-
Attention unit were concatenated to 9032 feature maps, which
were further processed by two fully connected layers. As our task
is multi-label classification, the sigmoid layer is used to deter-
mine the GO terms of the proteins. Considering the imbalance
of proteins respected to different GO terms, we applied focal loss
function as the loss function [32] and the alpha and gamma of
focal loss are set as default.

GO annotation propagation. We first separated each class by
their sub-ontology. According to the hierarchical structure of the
GO (release date: 10 September 2020), we computed the parent
and child classes locally within the sub-ontology, and then the
GO annotation was propagated. For example, if a protein P is
annotated with a class C which has a ‘part-of’ relation to a class
D, then we annotate P with the class D. This procedure is repeated
until no further annotation can be propagated.

Performance metrics
In this study, we applied the same strategy used in the CAFA3 chal-
lenge [33] to evaluate the performance of our model. Briefly, the
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individual classes are first separated by their sub-ontology (MFO,
BPO and CCO) and then parent and child classes are computed
locally within the sub-ontology. After that, we used the metrics
Fmaxbased on the precision-recall (PR) curve and Sminbased on the
remaining uncertainty-misinformation curve [34] to measure the
performance. Fmax, which is a maximum F-measure computed
over all prediction thresholds, is calculated using the following
equations:

pr (τ ) = 1
m (τ )

∑m(τ )

i=1

∑
f I

(
f ∈ Pi (τ )

∧
f ∈ Ti

)
∑

f I
(
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Fmax = max
τ

{
2 × pr (τ ) × rc (τ )

pr (τ ) + rc (τ )

}
,

where f is a GO term, Pi (τ ) is a set of predicted annotation of a
protein i with threshold τ , Ti is the corresponding ground-truth
set of terms for the protein, m (τ ) is the number of proteins with at
least on predicted annotation with threshold τ , I (•) is an indicator
function and n is the total number of proteins. Fmax was computed
for prediction thresholds τ ∈ [0, 1] with step size of 0.01. The high
Fmax indicated the higher performance.

Smin is the minimum semantic distance between real and
predicted annotations and is calculated as follow:

Smin = min
τ

{√
ru(τ )2 + mi(τ )2

}
,

where ru (τ ) and mi (τ ) are the average remaining uncertainty
and misinformation [34], respectively. The low Smin indicated the
higher performance.

Preprocessing of Uniprot bacterial proteins for HiFun
building
In total, 335 066 bacterial proteins with MFO annotation were
downloaded from the Swiss-Prot database which is a high qual-
ity manually annotated protein sequence database of UniPro-
tKB (release date: 12 July 2021). The duplicated proteins were
removed by clustering all their sequences with CD-Hit, discarding
all except with 100% identity and the same length. The MFOs
for each protein were propagated with the strategy mentioned
above. Statistically, 3848 MFOs were retained (261 level 3 MFOs,
644 level 4 MFOs, 1806 level 5 MFOs, 734 level 6 MFOs and 403
level 7 MFOs), and >92.62% and 93.86% of the proteins harbored
level 3 and level 4 MFO, respectively. To build the deep-learning
model, we only considered the MFOs with >50 protein sequences.
For each protein, only the level 3 and level 4 MFOs were used as
the labels. Proteins without level 3 or level 4 MFOs were removed.
MFOs with <50 protein sequences were also excluded for model
training. Finally, 223 991 proteins along with 120 level 3 and 204
level 4 MFOs were retained for model construction.

Motif discovery and comparison
Mafft (version 7.487) was used to perform the multiple sequence
alignment and the Fasttree (version 2.1.11) was applied to con-
struct the phylogenetic tree. The de novo motif discovery is per-
formed using MEME tool [35] with the classic mode and default

parameters. The similarity between motifs was achieved by using
the TOMTOM tools In the MEME suite [36] with the default param-
eters.

Protein Structure alignment
The structures of UHGP proteins were predicted using RoseTTAFold
[25] and structure of Swiss-Prot proteins were downloaded from
the Swiss-Prot database. Structure alignment was achieved using
TM-align [37] and the protein structure was visualized using
Mol∗Viewer [38] in the PDB webserver.

RESULTS
Evaluation and comparison
We first evaluated HiFun using the latest CAFA3 benchmarking
dataset [39], which contain both the training sequences and exper-
imental annotation, based on the metrics (Fmax, Smin and AUPR)
used in the CAFA3 challenge (see Methods and Materials). Using
the GO ontology released on 10 September 2020, we propagated
the GO annotation in the CAFA3 dataset (see Methods and Mate-
rials), and the final details about our updated CAFA3 annotation
are shown in Table 1.

We compared our method against the top 10 methods that were
evaluated in CAFA3 [33] as well as the state-of-the-art method
deepGOplus. We also included two baseline methods, Naïve and
sequence-based (BLAST) baseline methods [39, 40], which were
used in the CAFA evaluation in our comparison. According to the
CAFA3 evaluation metrices, HiFun achieves Fmax of 0.608, 0.462
and 0.644 for the molecular function (MFO), biological process
(BPO) and cellular component (CCO) evaluations, respectively
(Figure 2). For the Fmax metric, HiFun performed best in both the
BP and CCO and it was the second-best performing method in
the MFO evaluation. For the MFO, HiFun achieved the second-best
performance respect to Smin. While HiFun did not perform so well
for the Smin metric for BPO and CCO, it did considerably better than
DeepGOPlus.

To further validate homology independence of HiFun, we
divided the protein in the CAFA3 test dataset into seven groups
according to the levels of sequence identity with the proteins in
training dataset and inspected the performance of HiFun as well
as the competing deepGOplus for each protein group. The results
showed that the performance of HiFun was stable across different
protein groups while deepGOplus gave a low performance for test
proteins with low percentage identity with the proteins in the
training dataset (Figure 3).

Establishing HiFun model for bacterial protein function
prediction
The reliability and high performance of our method were proved
using the CAFA datasets through comparing with the state-of-the-
art methods. In this part, we aimed to build the ultimate model for
the bacterial protein function prediction and only the MFO was
considered. We first downloaded all the bacterial proteins with
MFO annotation from the Swiss-Prot database. After removing
the duplicated proteins and propagating the MFOs (see Materials
and Methods), 223 991 proteins along with 334 MFO terms were
remained for the model construction. These proteins were then
divided into training set, validation set and independent test set
with the percentage of 80, 18 and 2%, respectively (Figure 4A).
According to the results for the test dataset, we can see that HiFun
achieves Smin of 1.34, AUPR of 0.65 and AUC of 0.98. While the
threshold was set as 0.24, the F-score can reach its maximum
Fmax = 0.69 (Figure 4B).
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Table 1. The updated CAFA3 dataset for each sub-ontology

Dataset Statistic #MFO #BPO #CCO #All

CAFA3 Training size 36 110 53 500 50 596 66 841
CAFA3 Testing size 1137 2392 1265 3328
CAFA3 Number of classes 556 3358 296 4210

Figure 2. Comparison of HiFun with CAFA3 top 10 methods as well as deepGOplus in three sub-ontologies based on the Fmax and Smin metrics. (A-C) bar
plots showing the Fmax of the 14 methods. Coverage of methods was labeled inside the bars. (D-F) bar plots showing the Smin of the 14 methods. Coverage
of methods was labeled inside the bars. Coverage is defined as the percentage of proteins in the benchmark which are predicted by the methods.

Considering a practical issue that massive unknown organisms
and proteins have been uncovered with the rapid application
of metagenomic/metatranscriptomic sequencing, the functional
annotation for the proteins of newly uncovered organisms is in
high demand. The network-based methods, which rely heavily on
the interaction transferring of known proteins (e.g. deepFunc [7],
deepGO [18] and S2F [10]), usually favor the well-characterized
organisms. To investigate the performance bias of HiFun between
the organisms with and without well-characterization, we applied
HiFun on the proteins of three model bacteria (Streptomyces coeli-
color, Bacillus subtilis and Escherichia coli) and three non-model
bacteria (Pseudomonas, Lactococcus and Klebsiella) [41]. The results
showed that HiFun achieves high and stable performance for both
the model and non-model bacteria, which also indicated that
HiFun is particularly suitable for the metagenome data which
contain mounts of unchartered species and proteins (Figure 4C).

Annotating unknown proteins in the UHGP
database
With the extensive application of metagenomic sequencing
technology in the human gut studies [42–45], large amounts
of unknown species and proteins have been uncovered, which
also spur the annotation of novel species and proteins. To
establish nonredundant dataset of human gut genomes, Almeida

et al. present the Gastrointestinal Genome (UHGG) collection,
which consists of 204 938 non-redundant genomes encoding
>170 million proteins. However, about 40% of these proteins
lack functional annotations, which put off our comprehensively
functional characterization of the human gut microbiota. In this
part, we aimed to annotate these unknown proteins with our
method.

We first retrieved the proteins without MF annotations (here-
after referred to as unknown proteins) from the UHGP-50 cat-
alog, which was generated by clustering all coding sequences
with >50% protein identity. Considering there were lots of partial
proteins in the UHGP-50 catalog, we further removed the redun-
dant protein fragments. We first performed pairwise alignment
between the UHGP-50 proteins using DIMAOND [13], and then
the proteins with E-value < 1E-4 were clustered. For each cluster,
we inspected the overlap region between each protein pair and
the proteins covered by any other proteins were removed. Finally,
2 218 032 non-redundant unknown proteins were remained for
further analysis. With threshold leading the maximum F-score
in the independent test dataset mentioned above, HiFun can
annotate 99.76% (2 212 663) of these unknown proteins, involving
176 MFOs (including 80 level 3 MFOs and 96 level 4 MFOs). More
than half of these proteins harbored more than four MFOs of
level 3, and more than half harbored more than two MFOs of
level 4 (Figure. 5A and B). The top three most common MFO at the
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Figure 3. Performance of HiFun for the proteins with different sequence identity to the reference proteins. Bar plots showing the Fmax, AUPR and Sminof
HiFun and deepGOPlus respect to BPO (A-C), CCO (D-F) and MFO (G-I). The high values of Fmax and AUPR indicated good performance, while low Smin
means good performance.

third level are GO: 0043169 (cation binding), GO: 0003676 (nucleic
acid binding) and GO: 0016788 (hydrolase activity, acting on ester
bonds), while the top three most common MFOs at the fourth level
are GO:0046872 (metal ion binding), GO:0003677 (DNA binding)
and GO:0004518 (nuclease activity) (Figure 5C and D).

De novo motif discovery for novel protein
families
Protein sequence motifs are one of the most important signatures
of protein families and can often be used as tools for the
protein function prediction. From the above, we have uncovered
mounts of proteins that cannot be annotated with the HMM-
based eggnog-mapper tool [46, 47], which indicated that it could
contain many novel motifs for the protein families. To address
it, we took GO:0016628 (oxidoreductase activity, acting on the
CH-CH group of donors, NAD or NADP as acceptor, which was
reported to be associated with the toxicity of antiviral drug
sorivudine [48, 49]) for example and tended to uncover novel
motifs associated with GO:0016628. We randomly selected one
novel protein (GUT_GENOME201382_01770), which was annotated
as GO:0016628 by HiFun, from the UHGP-50 dataset and search
its analogous with sequence identity >62% (referring to the
criterion used to construct the BLOSUM62 matrix) from the UHGP-

100 dataset, and finally 46 analogous proteins were retrieved.
Additionally, we extracted 1524 the proteins annotated as
GO:0016628 from Swiss-Prot database and grouped them into 166
blocks in which the proteins are at least 62% identical (referring
to the criterion used to construct the BLOSUM62 matrix). After
that, we selected one block with 49 Swiss proteins as well as the
47 UHGP proteins (GUT_GENOME201382_01770 and 46 analogous
proteins in the UHGP-100 dataset) to perform the phylogenetic
analysis and de novo motif discovery.

The phylogenetic analysis results showed that the 46 novel
UHGP proteins and 49 Swiss proteins are clearly divided into two
families, indicating that these 46 novel UHGP proteins formed
a novel protein family related to GO:0016628 (Figure 6A). Using
MEME tool [35], 12 motifs were detected from the 46 novel UGHP
proteins and 13 motifs were detected from the 49 Swiss proteins
(Figure 6B, see Materials and Methods). Through comparison, we
found that two motifs detected in the novel protein family were
significantly similar to the motifs detected in the Swiss-Prot pro-
teins (E-value <0.05, Figure 6C, see Materials and Methods). We
also compared the motifs detected in the novel proteins against
all the available motifs in the PROSITE database [50], and three
motifs were observed to be significantly similar to the PROSITE
motifs (E-value <0.05, Figure 6D) and the other seven motifs could
be novel motifs.
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Figure 4. Build HiFun using Swiss-Prot bacterial proteins. (A) Removing duplicated proteins and GO propagating. (B) Precision-Recall curve of HiFun on
the independent test data. The point marker indicated when set the threshold of HiFun as 0.35 can lead the HiFun with 80% precision. The pentagram
marker indicated when set the threshold as 0.24 the F-score can reach the maximum. (C) Performance of HiFun between model and non-model bacteria
respect to MFO. The bacteria with asterisk next to they names are non-model.

Figure 5. Functions of unknown proteins in the UHGP-50 catalog. (A-B) Top 15 MFOs of unknown proteins predicted by HiFun at level 3 and level 4,
respectively. (C-D) The number of level 3 and level 4 MFOs harbored by each unknown protein.
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Figure 6. De novo motifs discovery for proteins annotated as GO:0016628. (A) Phylogenetic tree of 45 novel proteins (colored with red) as well as 49
Swiss-Prot proteins (colored with blue). (B) Twelve motifs detected from the 45 novel UHGP proteins. (C) Comparison of the motifs between novel protein
family and Swiss-Prot protein family. (D) Comparison of the motifs between novel protein family and motifs in the PROSITE database.

Latent structure nature can be extracted by
HiFun
Many proteins harbor the same function while their amino acid
sequences were highly dissimilar, which limit the application
of commonly used homology-based protein function prediction
methods. Protein structure dictating biological function of protein
is a highly reliable feature for protein function prediction [21].
Recently, deep learning-based approaches for protein structure
prediction, exemplified by AlphaFold2 and RoseTTAfold, have
generated shock waves in the structural biology community. How-
ever, these methods usually yield very low confidence for the
proteins without available similar local patterns (in the absence
of homologs) or well-defined structural packing [51, 52].

To further demonstrate the utility of HiFun, we took the
unknown proteins annotated as GO:0046872 for example. Con-
sidering the median length of the Swiss-prot proteins annotated
as GO:0046872 was 342 AAs, we randomly selected 200 unknown
UHGP proteins ranged in length between 300 and 400 AAs
and annotated as GO:0046872 by HiFun with probability larger
than 0.2, 0.4, 0.6 and 0.8, respectively. The pair-wise sequence
alignment with BLASTP showed that, only 2.43% of these protein
pairs (483 in C2

200) showed E-value <10, which means that these
proteins were extremely dissimilar to each other respect to the
sequence. It should be emphasized that these 200 proteins cannot
be annotated with the traditional HMM-based method, indicating
that these proteins do not have detectable motifs and homolog
to known proteins, which may lead the low confidence of the
structure prediction.

The structures of these 200 proteins were predicted by Robetta
server with RoseTTAFold method, and the results showed that
only 18% of these unknown UHGP proteins (36 in 200) can be
given a structure with confidence >0.7 (Figure 7A). Even so, the
pair-wise structure alignment among these proteins showed that
TM-scores of 89.38% protein pairs were >0.2 (scores below 0.2

correspond to randomly chosen unrelated proteins [37]), which
indicated that there may be similarities appearances among these
unknown proteins to a certain extent.

To further explore the association between the structural
similarity and sequence similarity, we focused on the protein
structures with moderate confidence (≥0.5) and 2145 protein
pairs were selected. We divided the protein-pairs into two groups
and the protein-pairs with BLASTP E-value < 10 (default setting)
were regarded as matched, otherwise were unmatched. From
the matched protein-pairs, we observed that that structural
similarity (TM-score) showing significantly positive correlation
to the sequence similarity (R = 0.7, P-value = 6.13E-11, Figure 7B),
and the TM-score of matched protein pairs were significantly
higher than that of unmatched protein pairs (Wilcoxon test P-
value = 0.0025).

We further aligned these predicted structures to the X-ray
structures of 1394 Swiss-Prot proteins annotated as GO:0046872
in the RCSB PDB database to validate its ability of function
prediction. We only consider the RCSB structures with protein
lengths larger 80 AAs as they typically have relatively simple
topologies [53]. For each structure pair, the TM-score normalized
by the smaller protein size are used. As the TM-score of two
proteins > 0.5 assume generally the same fold in SCOP/CATH,
we regarded two proteins with TM-score >0.5 as matched. The
results showed that, without considering the confidence of
Rosetta result, 51% of these unknown proteins were structurally
related to at least one of the Swiss-prot protein annotated as
GO:0046872, and two UHPG proteins were related with >75
Swiss-prot protein (Figure 7C). From the results, we observed
two UHGP unknown proteins (GUT_GENOME189133_01419,
GUT_GENOME283701_01607) with high-confidence (RoseTTAFold
confidence ≥ 0.79) predicted structures harbored the most
similar Swiss-prot proteins in term of structure, and the most
structural similar proteins of these two unknown proteins were
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Figure 7. Structural alignment of UHGP unknown proteins. (A) Confidence distribution of structures predicted by Rosetta. The 200 proteins were selected
according to the probability of HiFun. (B) Correlation between the TM-score and BLASTP bit score. Proteins with BLSTP E-value < 10 were regarded as
matched and R is the Pearson correlation coefficient calculated according to the matched protein pairs. The Wilcoxon test method was used to measure
the significance of difference between the TM-score of matched and unmatched protein pairs. (C) Structure alignment between the UHGP unknown
proteins and the Swiss-prot proteins. The structure of UHGP unknown proteins were predicted with Rosetta and the Swiss-prot proteins’ structures
were downloaded from the RCSB PDB database. The orange nodes were the UHGP unknown proteins annotated as GO:0046872 by HiFun and the green
nodes were the Swiss-prot proteins annotated as the same function. Proteins with TM-score > 0.5 were linked. (D) Structure alignment between two
proteins with high confidence predicted structures and the matched Swiss-prot proteins with the highest TM-score.

Ribulose-phosphate 3-epimerase (Swiss-prot id: P74061, RCSB
PDB id: 1TQJ, TM-score = 0.747) and Lipoyl synthase 2 (Swiss-prot
id: Q8DLC2, RCSB PDB id: 4U0O, TM-score = 0.697), respectively
(Figure 7D).

DISCUSSION
With the rapid development of metagenomic/metatranscriptomic
sequencing technologies, a massive amount of new microorgan-
isms and proteins have been uncovered in various ecological
environments which make them evolve specific features to adapt
those unique niches. It was reported that up to 80% of these
proteins in a microorganism show no similarity to proteins with
known functions [45, 54, 55]. Although these unknown proteins
vary significantly in their amino acid sequence, given that bac-
teria exist in a high variety of ecological niches, they naturally
differ widely in their exact ecophysiology, but it can be anticipated
that they would still carry out the similar general biological
processes by using very similar molecular machinery. Therefore,
deciphering the function of those novel proteins with computa-
tional approaches by simply inspecting their amino acid sequence

is one of the major challenges in the post-genomic era, espe-
cially when no homology information, genomic context or exper-
imental resource available. Many of the classical protein func-
tion prediction methods have been developed to overcome the
challenge but with limited success, because those methods nor-
mally extract the amino acid features or homology information
based on proteins of known function, which cannot be applied to
those unknown proteins with extremely low homology to known
proteins.

Most recently, the success of several protein structure predic-
tion models (e.g. AlphaFold2, RoseTTAFold and ProFold) indicates
that the complex sequence-structure–function relationship can
be extracted using deep learning model. Inspired by these, in this
study, we developed a novel protein function prediction method
HiFun, which is independent of homology information (sequence
alignment free), by reassembling the protein sequences as protein
language. The performance of HiFun was validated through
comparing with the state-of-art methods using the CAFA3
benchmark data. The structure alignment results also revealed
that the proposed method can extract latent structure features
from the protein sequence which empowers its ability to achieve
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function annotation for non-homology proteins. Using HiFun,
we further annotated 2 212 663 unknown proteins collected in
the UHGP-50 database and showcased the utility of the HiFun
framework in the expansion of novel protein family discovery,
suggesting its great potential in real-world application. Through
structure alignment analysis, we demonstrated that our method
can acquire the relationship between protein function and infor-
mative internal representations extracted from protein sequence
by learning the latent sequence features and the potential
association between amino acids, which can overcome the limi-
tations of homology-based approaches due to the lack of similar
sequences with known function, or to misleading alignment
results.

In our study, we observed that nearly half of the level 3 and
level 4 MFOs had > 50 proteins, while only <30% MFOs of their
child levels (5–7 levels) had > 50 proteins. In addition, as the task
of protein function prediction is a multi-label classification, the
number of labels to be predicted can highly affect the complexity
and robustness of the model. Generally, the more classes to be
predicted, the lower performance the model can achieve, which
has also been observed in the results of CAFA3 challenge (e.g. the
models always achieve lower performance for the BPOs prediction
with greater number labels than predicting MFOs or CCOs) [33].
Therefore, taking the coverage of the proteins in training set,
model complexity and the coverage of MFOs into account, in
this study, we only focus on the molecular function of level 3
and level 4. Although it seems to be generic, our model can still
provide important information for the experimental function val-
idation. Moreover, our approach provided a complementary way
to structure-based methods, such as DeepFRI, since the protein
structures were usually hard to obtain (e.g. experimentally veri-
fied structure is limited and structure prediction models always
take huge computational resource and is not applicable in normal
laboratory). To facilitate the user’s application, we also developed
a user-friendly web server (http://www.unimd.org/HiFun).

Although HiFun could give us a sizable performance boost for
the protein function prediction especially for the non-homology
proteins, it is still worth considering additional investigations to
further improve the model performance of HiFun and confirm the
findings from this study: (i) In our study, we only constructed a
model for Molecular Function prediction, the Biological Process
and Cellular Component prediction can also be achieved in the
future. (ii) The recent method mainly focused on the levels 3 and
4 of GO tree. In the future, we will expand the method to not
focus on fixed level, but rather for each ‘GO path’ find specific and
most informative depth. (iii) The number of proteins respected to
different functions was highly imbalanced, and this could result
in the degradation of performance for the functions with fewer
protein sequences. Hence, a proper loss function or preprocessing
strategy to balance the unbalance prevalence should be consid-
ered. (iv) In the current study, we showed a great potential to uti-
lize AI-powered language models for protein function prediction.
Besides the proposed model architecture in the HiFun framework
(i.e. CNN + BiLSTM with self-attention mechanism), transformer-
based language models such as Bidirectional Encoder Representa-
tions from Transformers and its derivates may have a great poten-
tial for further improvement [56]. (v) Moreover, nearly half of the
MFOs were excluded in our analysis as lacking sufficient protein
sequences in those labels for training, these orphan MFOs could
be involved in some environmental specific functions. Hence,
uncovering proteins with these orphan MFOs could be one of the
further important tasks.

Key Points

• The architecture of HiFun mainly consists of two parts.
The first part is a BLUSOM62-based embedding unit fol-
lowed by a convolutional neural network (CNN) module,
which was used to learning the evolutionary features of
the queried proteins. For the second part, we pretrained a
protein language model to convert the protein sequences
into numerical matrices to capture the nature of pro-
tein sequence beyond homology, and then the embed-
ding results were fed into a sub-architecture constituted
by connecting CNN and Bidirectional Long Short-Term
Memory (BiLSTM) with a Self-Attention mechanism in
series. The outputs of these two parts were concatenated
and then passed through a softmax layer to generate the
final prediction.

• The performance of HiFun was evaluated using the
benchmark datasets and metrics in the CAFA3 challenge,
and the results revealed great improvement over state-
of-the-art methods. And most specially, for the proteins
with extremely low identity to the proteins in reference
dataset, HiFun can provide more robust performance
than the homology-based method - deepGOplus.

• We established a HiFun model for the bacterial pro-
tein function prediction with 223 991 non-redundant
Swiss-Prot bacterial proteins involving 334 MFOs and
demonstrated the utility of HiFun by expanding the
annotation of 2 218 032 non-redundant proteins that
cannot be annotated with traditional methods in the
UHGP-50 catalogue. About 99.76% of these unknown
proteins can be annotated with HiFun.

• To demonstrate the ability of capturing latent structure
nature, we applied RoseTTAFold to predict the 3D struc-
ture of 200 randomly selected unknown UHGP proteins.
As these unknown proteins with no clear homolog to
current annotated proteins, only 18% of these unknown
UHGP proteins (36 in 200) can be built a structure with
confidence >0.7. Through comparing these predicted
structures with the X-ray structures of 1394 Swiss-Prot
proteins with the same molecular function annotation
in the RCSB PDB database, we found that 51% of these
unknown proteins were structurally related to at least
one of the Swiss-prot proteins.
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