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Abstract

Protein function annotation is one of the most important research topics for revealing the essence of life at molecular level in the post-
genome era. Current research shows that integrating multisource data can effectively improve the performance of protein function
prediction models. However, the heavy reliance on complex feature engineering and model integration methods limits the development
of existing methods. Besides, models based on deep learning only use labeled data in a certain dataset to extract sequence features, thus
ignoring a large amount of existing unlabeled sequence data. Here, we propose an end-to-end protein function annotation model named
HNetGO, which innovatively uses heterogeneous network to integrate protein sequence similarity and protein–protein interaction
network information and combines the pretraining model to extract the semantic features of the protein sequence. In addition,
we design an attention-based graph neural network model, which can effectively extract node-level features from heterogeneous
networks and predict protein function by measuring the similarity between protein nodes and gene ontology term nodes. Comparative
experiments on the human dataset show that HNetGO achieves state-of-the-art performance on cellular component and molecular
function branches.
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INTRODUCTION
As the expression product of genes, protein forms the main mate-
rial basis of life and plays a key role in life activity and function
execution. Functional annotation of proteins is crucial to under-
standing life activity from the molecular level. Gene ontology (GO)
[1] is a systematic method of annotating the properties of genes
and gene products, which divides the function of proteins into
three different sub-ontology: biological process (BP), cellular com-
ponent (CC) and molecular function (MF). As shown in Figure 1,
for each branch, GO is a direct acyclic graph, where each node
has a unique label and refers to a specific term. The nodes with
deeper hierarchies refer to a more detailed description of protein
function. That means, when a protein is labeled with a specific
term, it is also annotated by all ancestor nodes of the term, which
is known as true path rule [2–4].

Automatic protein function annotation aims to predict protein
function through computational methods, which is more flexible
and convenient than experimental methods and has important
application prospects. In recent years, shallow machine learn-
ing and deep learning have been widely used in the field of
bioinformatics, such as biological sequence analysis [5], protein
structure prediction [6, 7] and medical image processing [8]. From
the perspective of machine learning, protein function prediction is
usually regarded as a multi-label classification problem. Methods
based on shallow machine learning usually integrate the fea-
tures extracted from multisource data to measure the similarity
between proteins and functional terms and annotate similar

functions for similar proteins. The most representative methods
are GeneMANIA [9], MS-kNN [10] and NetGO [11]. GeneMANIA [9]
is a semi-supervised algorithm based on network label propaga-
tion, which fuses heterogeneous networks into a network through
linear regression and then makes functional predictions through
Gauss label propagation algorithms. The MS-kNN [10] algorithm
combines a variety of similarity measures to extract features from
sequence similarity, protein–protein interaction (PPI) network and
gene expression profile data, which is used by the kNN algorithm
to predict protein function. Similarly, the NetGO [11] model pre-
dicts protein functions through a ranking framework based on
ensemble learning, which comprehensively measures the simi-
larity between proteins and GO terms and uses multiple sub-
models to extract features from sequence and PPI network. Com-
pared with MS-kNN only using sequence similarity, NetGO can
effectively extract multiple features from the sequence through
the sub-model, such as protein family and structural domain
information, and thus achieves better performance. However, the
reliance on complex feature engineering and model integration
methods limits the development of such methods.

Deep learning methods can extract features from large-scale
data in an end-to-end manner, leading to their increasing pop-
ularity in the field of automatic protein function annotation
[12, 13]. Such models usually focus on extracting the features
of protein sequence through deep learning networks such as
convolution neural network (CNN) and recurrent neural network
(RNN), and then integrate sequence similarity, PPI network and
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Figure 1. A subgraph of GO. GO is a direct acyclic graph for each branch, where each node has a unique label and refers to a specific term.

other data to improve model performance [14, 15]. In recent
years, researchers have made a lot of efforts to develop deep
learning models to predict protein function, among which the
most representative methods are DeepGO [16] and DeepGOPlus
[17], deepNF [18] and DeepMNE-CNN [19], as well as GONET [20]
and DeepGOA [21, 22]. DeepGO [16] is one of the earliest models
to annotate protein based on deep learning, which combines the
sequence and PPI network features to predict protein function and
achieve good results. DeepGOPlus [17] model is an improved ver-
sion of the DeepGO, which does not rely on PPI network data and
instead improves prediction performance by integrating sequence
similarity information. DeepNF [18] extracts the high-order fea-
tures of PPI network based on multimodal deep autoencoders,
and then predicts protein function via support vector machine.
DeepMNE-CNN [19] is an embedding-based function prediction
method, which combines semi-supervised autoencoder and CNN
to extract complex topological features of multi-networks. GONET
[20] predicts protein function by integrating protein sequence and
PPI network, which can effectively extract long-range features of
protein sequences using RNN and achieves good performance in
human and mouse datasets. DeepGOA [21] innovatively utilizes
graph convolutional network to model the hierarchy structure of
GO term network and annotate proteins by calculating the simi-
larity between protein nodes and term nodes, which achieves good
results in corn and human datasets. Based on deep learning algo-
rithms, existing models can effectively extract features from pro-
tein sequences, while they still rely on artificially designed model
integration or feature integration methods to process sequence
similarity information [17, 23] and PPI data [16, 20], which are
relatively shallow and inevitably cause information loss, and thus
hinders the development of such methods [24].

Besides, even from the perspective of sequence feature extrac-
tion, these algorithms must train complex models on specific
labeled datasets, resulting in their inability to use large-scale
unlabeled sequence data [25–28]. Large-scale pretraining mod-
els can effectively alleviate this problem, such as the popular
Bert [29] and XLNet [30] in the natural language field, which
can train deep learning models through unsupervised learning
on large amounts of unlabeled data, and then learn effective

semantic representations of sentences. Inspired by such methods,
researchers have proposed many pretrained methods [25, 31–34]
to model protein sequences, among which the most represen-
tative models are ProtVec [31] and SeqVec [25] algorithm. The
ProtVec model uses a method similar to the Subword-Embedding
in fasttext [35] to obtain the representation of the sequence, which
divides the full amino acid sequence into fixed-length substrings
and represents each substring as a fixed dimensional vector
through the word2vec [36] algorithm. Although the ProtVec model
can effectively capture the local features of protein sequence, it
ignores the context information of the amino acid sequence due to
the context-independence of the word2vec model, and therefore
cannot effectively extract the long-range relationship of protein
sequence. To tackle this problem, the SeqVec model utilizes the
bidirectional LSTM sequence model to capture the long-range
association of protein sequence and generates an amino-acid-
level embedding vector, which not only contains the semantic
information of the amino acid itself, but also the information of
its corresponding context [37–41].

In this paper, we propose an end-to-end protein function
prediction model HNetGO to solve the problems mentioned
above. Firstly, we utilize heterogeneous networks to integrate
multisource data in an intuitive and effective way, which
avoids the information loss caused by manual designed feature
extraction methods to the greatest extent. Secondly, we use a
pretraining model to extract protein-level sequence features,
which can effectively capture functional-related semantic
information within a single protein sequence. In the end, we
design a link prediction model based on the attention mechanism
to predict protein function. And comparative experiments on
the human dataset show that HNetGO achieves state-of-the-art
performance on CC and MF branches.

MATERIALS AND METHODS
Datasets acquisition and preprocessing
For our experiment, we downloaded human and mouse protein
sequences and their corresponding experimentally verified GO
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Table 1. Dataset statistics

Datasets Terms (before filter) Terms (after filter)

BP MF CC BP MF CC

Human 15 658 4803 1995 752 295 293
Mouse 15 838 4772 1985 666 262 291

BP, biological process; CC cellular component; MF molecular function.

annotation data from the UniProt [42] database, which contained
20 395 human protein sequences and 17 073 mouse protein
sequences, respectively. And the PPI network data were down-
loaded from STRING [43] database (version 11). In addition, we
downloaded the latest released GO data (releases/ 01 February
2021) from the official website. After that, we constructed a
network of GO terms based on the information extracted from the
file. It should be noted that each sub-ontology contains thousands
of functional terms, while most of which have not appeared in our
dataset. Therefore, we filter out terms with annotated proteins
<300 in the BP branch, and the threshold for CC and MF branch is
100, which in turn resulted in unannotated proteins in the dataset.
For these proteins, we keep them in the heterogeneous network to
improve the connectivity of the network, but do not use them as
part of the training set or test set. Table 1 shows some statistics
of the dataset.

Extract protein-level sequence features through
pretrained model
The primary structure of protein refers to a one-dimensional
sequence composed of 20 kinds of amino acids [44, 45], which
can determine the secondary and tertiary structure of the protein,
and thus can affect the protein functions [46]. Existing protein
function prediction methods usually use one-hot encoding to
represent amino acid sequences as a matrix or tensor, which
can be used to extract protein-level semantic features through
deep learning models. However, due to the inability to use large
amount of existing unlabeled sequence data and the semantic
independence of one-hot encoding, such methods cannot capture
sufficient semantic features of protein sequences, resulting in
their poor performance in predicting protein functions.

In this paper, we use the SeqVec, which is inspired by embed-
dings from language models (ELMO) model [47], to extract protein-
level sequence features. ELMO, a powerful pretraining model for
natural language sequence processing, can capture the contex-
tual features of words and can generate different embedding
vectors of the same word according to different contexts. Simi-
larly, as shown in Figure 2, the SeqVec captures the long-range
association of protein sequence and generates an amino-acid-
level embedding vector, and then directly obtains an effective
protein-level semantic representation through average aggrega-
tion. Experiments at the protein level [25, 48, 49] show that
methods based on SeqVec features achieve similar results to the
state-of-the-art model and have obvious superiority compared
with embedding methods such as one-hot and ProtVec.

At the amino acid residue level, experiments [25] show that the
performance of this model has some disadvantages compared
with models that use protein evolutionary information. In fact,
evolutionary information reflects the relationship between
proteins, rather than the semantic information within a single
protein sequence, so it is no wonder that such model designed
to extract single sequence-level features cannot capture this
information. To solve this problem, we explicitly integrate the
sequence similarity information obtained from the multiple

sequence alignments (MSAs) algorithm and the detailed approach
is explained in the next section.

In terms of implementation, we use the SeqVec model deployed
based on ELMO, which is about 360 MB in size and uses about
33 M sequence data in the UniRef50 [50] database for pretraining.
In experiments, with a Tesla P40 graphics card, we can complete
the training of 20 395 sequences with an average length of 555.53
in 40 min, which means that, on average, we can get sequence
features of a protein in 0.11 s. For each sequence, we get a 1 × 1024-
dimensional protein-level feature, and for the input protein that
does not contain sequence data, we use a randomly generated
vector as its sequence feature.

Modeling evolutionary relationships with MSA
A pretrained model can effectively extract the semantic informa-
tion contained in a single protein sequence, but theoretically it
cannot capture the relationship between proteins. The evolution-
ary relationships of proteins are exactly a kind of relationship
between proteins, which mainly refer to the homology of proteins
and encode the information of biodiversity in the process of
protein evolution. The amino acids in the protein sequence may
mutate during the evolution process, causing the evolutionary
tree to split. However, the protein sequence does not directly
determine the function of protein, but indirectly affects the pro-
tein function through the protein structure, which means that
the mutation of many amino acids may not cause the protein
function to change [51]. Therefore, homologous proteins with
different sequences tend to share similar structures and func-
tions. Considering the significant sequence similarity between
homologous proteins, protein sequence similarity, which can be
easily obtained through MSAs, is suitable for inferring protein
homolog. For example, some classic methods [52, 53] filter the
results of MSAs according to a certain threshold and use these
data to construct a protein similarity network, which is used by a
subsequent clustering algorithm to infer protein homology.

Inspired by such methods, the HNetGO model uses diamond
[54, 55], a fast and accurate MSA algorithm, to calculate
sequence similarity between proteins, and selects the output
with an e-value higher than 0.001 as the final alignment
result, which is used to construct protein sequence similarity
network. Compared with the manual integration approach used
by the DeepGOPlus [17] model, our method can capture a
wider range of local features through multi-layer aggregation
operations between nodes on the sequence similarity network,
whereas the manual integration method only considers the direct
similarity between proteins.

PPI network
Existing studies [6, 56] have shown that deep learning models can
predict the tertiary structure of proteins through sequences, so
it is no wonder that pretraining models can extract structure-
related local and global features contained in a single protein
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Figure 2. Heterogeneous network construction process in HNetGO model. For protein sequence data, we first utilize the results of MSAs to construct a
sequence similarity network, and then the pretrained model SeqVec is used to extract amino-acid-level features, which can be used to obtain protein-
level features through average aggregation or principal component analysis. Next, a PPI network is built based on the interaction relationship, and a
heterogeneous network is used to integrate all the information extracted from the original dataset.

Figure 3. Framework of HNetGO model. In general, HNetGO model consists of three parts: a node-level mutual attention layer to learn the attention
weights of all direct neighbors of the current node; a multi-head messaging layer enables different types of neighbors to deliver messages to the current
node based on attention weights and a link prediction layer to predict protein function. In addition, HNetGO uses the cross-entropy loss function to
optimize the model.
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Table 2. PPI network statistics

Datasets Nodes Edges Average degree Network density

Human 18 560 11 098 152 597 0.064
Mouse 16 420 9 730 128 593 0.072

sequence. However, proteins usually do not perform their func-
tions alone, but achieve specific functions through protein com-
plexes formed by interacting with different proteins. This com-
plex is the quaternary structure of proteins and reflects the
association between proteins, which means that the semantic
representation of a single protein sequence cannot express such
type of relationship. PPI network is an undirected graph with
proteins as nodes and protein interactions as edges, which can
model the compound relationship between proteins, and thus can
reflect the functional connection between proteins.

It should be noted that the protein ID used in the PPI data
downloaded from the STRING database is not the same as the
protein ID used in the sequence data. Therefore, we use the
mapping file obtained from the Uniprot database to perform field
alignment and data filtering on the PPI data. Table 2 shows some
statistical information of the PPI network after processing.

Heterogeneous information network
To avoid the use of manual design methods to converge the
network, HNetGO uses a heterogeneous information network
to model all the information extracted from the original data.
The heterogeneous information network allows different types of
edges and nodes to appear in the same network, and thus can
model complex entity relationships. As shown in Figure 2, the
heterogeneous network constructed in this paper consists of two
types of nodes, namely protein and GO terms, and four types of
edges between them, which can encode the hierarchical structure
between terms, interactions and sequence similarity between
proteins, and functional associations between proteins and terms.
Formally speaking, we can define the heterogeneous graph as:

G = (V, E, TV, TE) (1)

and the corresponding node type mapping relationship is:

fv : V → TV (2)

fe : E → Te (3)

where V represents the collection of nodes, E represents the
collection of edges and each node v ∈ V and each edge e ∈ E.
TV is the collection of all node types, including protein and
term, TE is a collection of all edge types, including four types
of meta-relation, where interact_with and similar_withreflect the
connection between proteins, is_a reflects the hierarchy structure
between terms and annotate reflects the association between
proteins and terms. Therefore, we can predict protein function
by predicting the annotation relationship between protein nodes
and term nodes in this heterogeneous network.

Model and implementation
Using heterogeneous network can greatly simplify data prepro-
cessing and preserve more information extracted from original
data, while at the same time it inevitably presents a great
challenge to the design of prediction model. Inspired by the

transformer-based deep learning model [57–59], we utilize a graph
neural network based on attention mechanisms to learn embed-
ding vector of nodes in heterogeneous networks, which are fed
into a subsequent model for link prediction. As shown in Figure 3,
our model is composed of three parts: a node-level mutual atten-
tion layer to learn the attention weights of all direct neighbors of
the current node; a multi-head messaging layer enables different
types of neighbors to deliver messages to the current node based
on attention weights; a link prediction layer to predict protein
function.

Node-level mutual attention
Similar to the Transformer model, for a given triplet (s, e, t), we
map the source node s to a key vector, and the target node t
to a query vector, and then calculate the contribution weight of
the different source nodes to the target node through attention
mechanism. If the input feature vector of the target node t is
ht and the vector of the source node s is hs, the corresponding
projected vector can be calculated as follows:

h′
t = Kfv(t)· ht (4)

h′
s = Qfv(s)· hs (5)

where h′
t and h′

sare the projected vectors of target node and source
node, respectively. And, fv(t) and fv(s) represent the type of node t
and s. K and Q are type-specific transformation matrices related
to node type which map different dimensions or different types
of features into the same hidden semantic space and enable the
model to calculate similarity score between any node pair. Then,
the similarity score is calculated as follows:

sim
(
h′

s, h′
t, e

) = ke
st = h′

sWfe (e)h′T
t√

d
(6)

where d is the dimension of hidden space and W is a weight
matrix associated with the type of edge e. They capture different
semantic relationships formed by the same nodes over different
type of edges. For example, two proteins with similar sequences
may also interact with each other. By learning different weight
matrices based on edge type, HNetGO model is able to extract
different features between the same protein pairs. After calculat-
ing the similarity score of all neighbors of the target nodet, the
final attention weight can be obtained by normalizing the score
through softmax function:

att (s, t, e) = softmax
(
ke

st

) = exp(ke
st)∑

si∈N (t) k
ei
si t

(7)

where N (t) contains all neighbor nodes of the target node. If there
is a node which is connected to the target node through different
edges, we treat it as different neighbors during the calculation
of attention weight. At the same time, for the same triple, the
attention weight is not symmetrical for the source and target
nodes, which means that their contributions to each other are
different.
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Multi-head attention and message passing
There are large differences between different types of nodes in
heterogeneous networks, and even for the same type of nodes,
their network characteristics, such as degree distribution, are
usually extremely imbalance. To tackle this problem, we design
a multi-head attention and message passing layer, which can
extract the structure of heterogeneous network from different
aspects. In particular, suppose we useH attention heads, then for a
given triplet (s, e, t), the attention weight vector can be calculated
by using:

Att (s, t, e) =‖h∈[1,H]atth (s, t, e) (8)

Correspondingly, we design a multi-head message approach:

Msg (s, t, e) =∥∥
h∈[1,H]msgh (s, t, e) (9)

msgh (s, t, e) = Vh
fv(s)· hs· Mfe(e) (10)

where H represents the number of attention heads, hs is the
input feature of source node and V is a transformation matrix
related to node type which can project hs into a hidden space.
M is an edge-type-specific matrix that allows the source node
to deliver different messages to the destination node based
on the edge type. Next, the embedding vector of target node
t can be obtained by aggregating information from all of its
neighbor nodes according to the corresponding attention weight
vector:

z̃t = ∑
si∈N (t)

(
Att (s, t, e) · Msg (s, t, e)

)
(11)

Finally, we map the embedding vector back to the target node
space and add residual connection to prevent network degrada-
tion:

zt = σ
(
z̃t

) · ∼
Wfe(t) + ht (12)

where
∼
Wis the parameter matrix of linear projection, ht is the

original feature vector of node t, and zt is the output embedding
vector of the target node, σ refers to sigmoid function.

Protein-term link prediction
For any given protein node p, as well as corresponding term node
t, we use the embedding vector obtained above to calculate a
similarity score for this pair of nodes:

ŷpt = σ
(
zpWzzT

t

)
(13)

where zp is the embedding vector of protein node, zt is the embed-
ding vector of term node and Wz is a parameter matrix for training
which maps embedding vector of protein node to the term space.
σ is the sigmoid function and converts the output value of the
decoder into a probability value ŷpt, which is between (0,1) and is
regarded as the confidence value of the protein function predic-
tion. Specifically, HNetGO regards node pairs with a ŷpt value >0.4
as positive examples of function prediction.

Finally, we use the cross-entropy loss function to optimize the
model:

L = −∑
p,t∈Vypt· logŷpt + (

1 − ypt
) · log

(
1 − ŷpt

)
(14)

here ypt refers to the real annotation relationship between node p
and t.

For any protein with unknown function, we use the following
three steps to predict its function. First, extract sequence fea-
tures of the protein through the SeqVec model. Then, use the
Diamond algorithm to find the homologous protein node and
add the new node to heterogeneous network according to the
sequence similarity relationship. Finally, in the prediction stage,
the HNetGO model only relies on the neighborhood information
of the node, so the subgraph containing this protein node can
be extracted through neighborhood sampling to perform function
prediction.

Experiment and evaluation criterion
Evaluation criterion
As what was done in other works [20, 21, 60–63], we select area
under the ROC curve (AUC), area under the precision-recall curve
(AUPR) and Fmax to evaluate the performance of the model from
different aspects [64, 65].

AUC reflects the tradeoff between true positive rate (TPR)
and false positive rate (FPR) of a model, whereas AUPR pays
more attention to the tradeoff between TPR and positive predic-
tive value. Fmax is an official evaluation criterion of the critical
assessment of functional annotation [66], which measures the
average accuracy and recall rate of the model. For a given thresh-
old τ , the average precision (pr), average recall rate (rc) and Fmax
on the test set are defined as follows:

pr (τ ) = 1
m(τ )

∑m(τ )

i=1 pri (τ ) (15)

rc (τ ) = 1
n

∑n
i=1 rci (τ ) (16)

Fmax (τ ) = max
τ∈[0,1]

{
2·pr(τ )·rc(τ )

pr(τ )+rc(τ )

}
(17)

where n is the total number of proteins in the dataset and m(τ ) is
the number of proteins that annotated with at least one term with
the threshold τ . pri(τ ) and rci(τ ) refer to the precision and recall
rate of the i-th protein with the threshold τ and can be defined by
the following formula:

pri (τ ) = |Ti∩Pi(τ )|
|Pi(τ )| (18)

rci (τ ) = |Ti∩Pi(τ )|
|Ti | (19)

where Ti is the ground truth of protein i and Pi(τ ) refers to the
predicted label under specific threshold τ .

Experiments
To validate the rationality of data integration method and model
design, we design different submodels and conduct experiments
on mouse and human datasets. In total, we design three variants
of HNetGO: HNetGO-PPI removes sequence similarity link from
heterogeneous network, whereas HNetGO-SIM removes PPI link
and HNetGO-RAN replace features extracted from the pretrained
model with randomly generated vectors. In implementation, we
take 5-fold cross-validation to reduce the experimental error and
make full use of the dataset, which means that in each exper-
iment, the training dataset contains 80% of the data, and the
remaining 20% of the data is used as the test set. Specifically, the
mouse dataset contains 16 420 protein nodes, of which 13 136
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Table 3. Results of ablation experiment

Models Human Mouse

Fmax AUC AUPR Fmax AUC AUPR

BP HNetGO 0.561 0.909 0.625 0.543 0.890 0.579
HNetGO-PPI 0.448 0.879 0.450 0.422 0.838 0.419
HNetGO-SIM 0.328 0.764 0.285 0.331 0.751 0.297
HNetGO-RAN 0.404 0.819 0.389 0.393 0.806 0.371

CC HNetGO 0.748 0.971 0.812 0.742 0.969 0.808
HNetGO-PPI 0.498 0.891 0.494 0.537 0.893 0.531
HNetGO-SIM 0.474 0.878 0.458 0.500 0.886 0.492
HNetGO-RAN 0.441 0.854 0.425 0.432 0.867 0.414

MF HNetGO 0.697 0.959 0.771 0.674 0.953 0.743
HNetGO-PPI 0.566 0.892 0.584 0.551 0.888 0.563
HNetGO-SIM 0.548 0.891 0.567 0.549 0.883 0.556
HNetGO-RAN 0.589 0.911 0.615 0.573 0.904 0.579

BP, biological process; CC, cellular component; MF, molecular function.

Table 4. Evaluation on human dataset with other models

Meth-
ods

BP CC MF

Fmax AUC AUPR Fmax AUC AUPR Fmax AUC AUPR

Naïve 0.344 0.500 0.566 0.551 0.487 0.377 0.326 0.499 0.528
BLAST 0.339 0.577 0.489 0.441 0.563 0.269 0.411 0.623 0.461
GONET 0.612 0.934 0.581 0.718 0.972 0.780 0.646 0.973 0.709
DeepGO 0.327 0.639 0.571 0.589 0.695 0.448 0.404 0.760 0.625
DeepGOPlus 0.362 0.687 0.608 0.628 0.652 0.487 0.468 0.819 0.694
DeepGOA 0.385 0.698 0.622 0.629 0.757 0.500 0.477 0.820 0.710
HNetGO 0.561 0.909 0.625 0.748 0.971 0.812 0.697 0.959 0.771

BP, biological process; CC cellular component; MF molecular function.

nodes are used as the training set, and the human dataset con-
tains 18 560 protein nodes, of which 14 848 nodes are treated as
training set.

As shown in Table 3, removing any part of a heterogeneous
network will result in a performance degradation of the model,
which precisely indicates that different types of relationships in
the network contribute different information and also suggests
that our model can effectively extract information encoded by
different types of links. In particular, we can easily find that the
removal of the PPI network has the greatest impact on the BP
branch, which reflects the fact that both BP and PPI network
focus on the functional interaction relationship between proteins.
Besides, when replacing features extracted by pretrained model
with randomly generated vectors, we observe not only a perfor-
mance loss in the experiment, but also a decrease in convergence
speed and stability, which indicates that pretrained models can
effectively extract semantic information from a single protein
sequence.

To further verify the performance of the model, we compared
our model with several prevailing methods on the human protein
dataset, including Naïve and BLAST [67], DeepGO [16] and Deep-
GOPlus [17], as well as GONET [20] and DeepGOA [21]. The results
of comparative experiment are shown in Table 4.

Naïve and BLAST are rule-based methods, which can directly
annotate protein functions. Naïve is an intuitive method that
annotates proteins according to the frequency of GO terms, and
thus the algorithm predicts same annotations for all samples
in the dataset. BLAST is a classic method based on protein
sequence similarity, and as mentioned above, here we use
Diamond to calculate sequence similarity between proteins.

For other models, we explained in detail in the Introduction
section, and it should be noted that GONET actually combines
Prot2Vec and a well-designed deep learning model to extract
protein sequence features. In detail, GONET first splices the
amino acid-level vectors output by Prot2Vec into a matrix (which
is a protein-level feature),then reduces the dimensionality of
the matrix through a convolutional neural network and finally
uses a RNN to extract the long-range connection of protein
sequence. Besides, for DeepGO and DeepGOPlus, we predict the
function of the protein based on the tools provided by the original
author and calculate the prediction performance based on this
result.

From Table 3, it is obvious that HNetGO achieves better perfor-
mance on several evaluation metrics than other models, which
indicates that the data integration method and model design
of this paper are reasonable. However, despite the state-of-the-
art performance achieved in AUPR, HNetGO performs relatively
poorly on the AUC criterion, which means that the FPR of the
predicted results of our model is slightly higher. This may be partly
caused by the incompleteness of protein annotation dataset,
which means that there may be some new functions added to
a protein in the future dataset, whereas such functions in the
prediction results will be regarded as negative examples under
the current dataset. Therefore, we cannot determine whether the
small decrease in the AUC reflects a decrease in the model’s
predictive performance or a better generalization ability. In con-
clusion, compared with GONET, HNetGO obtains considerable
performance, which suggests that it is feasible to replace com-
plex models based on biological prior knowledge with pretrained
models.
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CONCLUSION AND DISCUSSION
In this paper, we propose an end-to-end, attention-based link
prediction model named HNetGO to predict protein function,
which can efficiently integrate protein sequence and interac-
tion data through heterogeneous information networks. In par-
ticular, HNetGO innovatively utilizes heterogeneous information
networks to model the complex relationship between proteins
and GO terms and extract distributed embedding features of
protein sequences based on the pretrained model. In addition, we
introduced a powerful attention-based graph neural network to
learn node embedding in heterogeneous networks.

At the same time, in general, amino acids only indirectly
affect protein function through the structure of proteins,
which determines that protein function prediction is a protein-
level task, not an amino acid-level task. Therefore, it is an
intuitive and effective choice to build functional prediction
models based on protein-level pretrained features. And in this
paper, we demonstrate that it is reasonable to replace complex
models based on biological prior knowledge with pretrained
models.

Finally, it should be noted that the GO database contains a large
amount of information about genes and gene products, which
means that the relationship between GO terms is very complex
and each term has specific functional semantics and is dataset
independent. However, due to the limitations of model complexity,
we use only part of the association between GO terms, and the
input feature of the term nodes is also randomly generated. In
future work, we will try to design more complex models to fully
mining the information in GO and explore the possibility of using
pretrained language models to extract text semantic features of
GO terms.

Additional Files
All additional files are available at: https://github.com/BIOGOHITSZ/
HNetGO.
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