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Abstract
Motivation: In recent years, high-throughput sequencing technologies have made large-scale protein sequences accessible. However, their
functional annotations usually rely on low-throughput and pricey experimental studies. Computational prediction models offer a promising
alternative to accelerate this process. Graph neural networks have shown significant progress in protein research, but capturing long-distance
structural correlations and identifying key residues in protein graphs remains challenging.

Results: In the present study, we propose a novel deep learning model named Hierarchical graph transformEr with contrAstive Learning (HEAL)
for protein function prediction. The core feature of HEAL is its ability to capture structural semantics using a hierarchical graph Transformer,
which introduces a range of super-nodes mimicking functional motifs to interact with nodes in the protein graph. These semantic-aware super-
node embeddings are then aggregated with varying emphasis to produce a graph representation. To optimize the network, we utilized graph con-
trastive learning as a regularization technique to maximize the similarity between different views of the graph representation. Evaluation of the
PDBch test set shows that HEAL-PDB, trained on fewer data, achieves comparable performance to the recent state-of-the-art methods, such as
DeepFRI. Moreover, HEAL, with the added benefit of unresolved protein structures predicted by AlphaFold2, outperforms DeepFRI by a signifi-
cant margin on Fmax, AUPR, and Smin metrics on PDBch test set. Additionally, when there are no experimentally resolved structures available
for the proteins of interest, HEAL can still achieve better performance on AFch test set than DeepFRI and DeepGOPlus by taking advantage of
AlphaFold2 predicted structures. Finally, HEAL is capable of finding functional sites through class activation mapping.

Availability and implementation: Implementations of our HEAL can be found at https://github.com/ZhonghuiGu/HEAL.

1 Introduction

Recent development in high-throughput sequencing has
resulted in a great increase in the number of protein sequences
in benchmark databases such as (Apweiler et al. 2004,
UniProt Consortium 2019). However, the bulk of protein
sequences lack functional annotation owing to the exorbitant
expense and low-throughput experimental studies (Radivojac
et al. 2013, Zhou et al. 2019). Therefore, computational
approaches that can automatically and precisely deduce pro-
tein functions are much wanted. Commonly used methods for
inferring functions for a new protein sequence include
sequence-alignment that identify similar domains (FunFam)
(Das et al. 2015) or local alignments (Blast) (Altschul et al.
1990, Buchfink et al. 2015), to transfer the functions of pro-
teins that have been experimentally confirmed before. With
the advance of machine learning, a variety of computational
approaches for protein function prediction have been devel-
oped (Yang et al. 2015, Fa et al. 2018, Kulmanov et al. 2018,
Gelman et al. 2021). In the Critical Assessment of Functional

Annotation (CAFA), a blind prediction challenge, machine
learning methods have demonstrated superior performance
compared to traditional sequence alignment-based methods
(Radivojac et al. 2013). These machine learning methods can
be broadly categorized into knowledge-based, sequence-
based, and structure-based approaches. Knowledge-based
approaches typically incorporate information from external
sources such as protein–protein interaction (PPI) networks
(Mostafavi et al. 2008, Cho et al. 2016, You et al. 2021).
However, the absence of prior knowledge may limit their
practical analysis of newly discovered protein sequences
(Gligorijevi�c et al. 2021). Sequence-based approaches often
use primary sequence as well as some other hand-crafted fea-
tures to predict protein functions (Fa et al. 2018, Kulmanov
et al. 2018, Zhang et al. 2019, Cao and Shen 2021,
Kulmanov and Hoehndorf 2021, Yao et al. 2021, Zhu et al.
2022). Additionally, since structural information has a direct
connection with protein functions, structure-based methods
have become increasingly popular (Gligorijevi�c et al. 2021,
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Lai and Xu 2022, Zhao et al. 2022). These methods utilize
both protein structural and sequential information for func-
tion prediction.

Recent advances in deep learning have led to the develop-
ment of various effective techniques for protein function pre-
diction. Sequence-based approaches (Fa et al. 2018,
Kulmanov et al. 2018, Zhang et al. 2019, Cao and Shen
2021, Wang et al. 2023) relied solely on one-dimensional
(1D) convolutional neural networks (CNNs) or Transformer
models to create discriminative protein sequence representa-
tions. Later, methods combining both query sequence and ho-
mology information showed significant improvements
(Kulmanov and Hoehndorf 2021, Zhu et al. 2022). Another
approach involves integrating literature information with se-
quence information extracted by recurrent neural networks
(Yao et al. 2021). As three-dimensional (3D) structures have a
direct relationship with functions and structural homologs
can have highly diverse sequences, relying solely on sequence-
based methods can become a major bottleneck. With the re-
cent development in protein structure prediction research, it
has become easier to get protein contact maps or even 3D
structures (Baek et al. 2021b, Jumper et al. 2021).
Furthermore, deep learning techniques for structured data
have seen significant improvements, leading to the emergence
of structure-based methods that can fully utilize protein struc-
tural data through deep learning (Gligorijevi�c et al. 2021, Lai
and Xu 2022, Zhao et al. 2022). These methods typically
model 3D structures using graphs and then employ the struc-
tural information using graph neural networks (GNNs) (Kipf
and Welling 2016) following the message passing paradigm
(Gilmer et al. 2020). Specifically, each residue receives signals
from its geometric neighborhood, which are aggregated to up-
date its representation at each layer. Finally, a graph pooling
layer is used to summarize all the residue representations into
a protein representation for downstream classification.
Among structure-based methods, DeepFRI (Gligorijevi�c et al.
2021) was the first to leverage protein structures built by ho-
mology modeling for reinforcement, achieving state-of-the-art
performance with good interpretability. Subsequently, GAT-
GO (Lai and Xu 2022) was the first to utilize contact maps
predicted by a structure prediction neural network to learn
protein functions.

In spite of recent advances in protein function prediction
using GNN-based approaches, the following limitations re-
main to be solved: (i) Long-distance structural correlations
are difficult to be included. Due to the major oversmoothing
problem, existing methods usually adopt shallow GNNs. The
restriction on network depths makes it hard to explore long-
distance spatial patterns in 3D protein structures. (ii) It is
hard to capture residues that are crucial for protein function.
Protein representations are often generated using a simple
graph pooling procedure that takes the average or maximum
of all residue representations, treating all residues equally de-
spite the fact that protein functionality often depends on spe-
cific residues. Therefore, an effective procedure needs to be
envisaged to generate protein representations in an adaptive
manner.

To tackle the aforementioned limitations, we propose a
novel method, Hierarchical graph transformEr with
contrAstive Learning (HEAL) for protein function prediction
in this study. Our approach involves constructing a graph in-
put based on both sequential features and the contact map,
followed by the collection of short-distance information using

message passing neural networks. We then introduce a hierar-
chical graph Transformer to explore long-distance correla-
tions and aggregate the node representation in a self-adaptive
manner. To learn topological semantics, we first introduce a
set of super-nodes that interact with nodes in the protein
graph. We then use the self-attention mechanism to aggregate
the semantic super-node representations into a graph repre-
sentation. Additionally, we incorporate graph contrastive
learning (Kumar et al. 2022) by smoothly perturbing node
features and increasing the similarity score between the repre-
sentations of different views. This objective is applied as a reg-
ularized term to optimize the model along with supervised
learning.

We conduct extensive experiments to compare HEAL with
baseline methods including Blast (Altschul et al. 1990),
FunFam (Das et al. 2015), DeepGO (Kulmanov et al. 2018),
DeepGOPlus (Kulmanov and Hoehndorf 2021), and
DeepFRI (Gligorijevi�c et al. 2021), in various settings. To
evaluate our proposed method, we first trained the model us-
ing proteins from the Protein Data Bank (PDB) (Berman et al.
2000), and the resulting model, HEAL-PDB, exhibited perfor-
mance comparable to DeepFRI. We then enhanced the model
by incorporating AlphaFold2 (AF2)-predicted protein struc-
tures, and HEAL outperforms DeepGO and DeepFRI on
PDBch test set. On the test set of AF2 predicted structures
(AFch test set), HEAL is very robust and performs better than
other state-of-art methods, DeepGOPlus and DeepFRI. Our
model also demonstrates outstanding generalizability and ex-
cellent interpretability, allowing for the identification of func-
tionally significant residues.

2 Materials and methods
2.1 An overview of HEAL

We first construct graph input for each protein. The main ar-
chitecture of HEAL consists of two parts, message passing
neural network and hierarchical graph Transformer. We then
optimize the network using both supervised learning and con-
trastive learning. More information can be found in Fig. 1.

2.2 Graph input

To explore geometric information, we characterize each pro-
tein using a graph G ¼ ðV; EÞ where V and E are node and
edge sets, respectively. We first extract feature embeddings
and then infer the graph structure from its contact map
(Fig. 1A).

Feature Extractor. In HEAL, node features is obtained
from two aspects as follows: (i) One-hot residue encoder:
each sequence is encoded by one of amino acid symbols. (ii)
ESM-1b protein language model (Rives et al. 2021): a large-
scale protein language model, which produces the residue
embeddings to capture intrinsic protein knowledge. We con-
catenate the above embeddings xv 2 R

F for each node v, pro-
ducing an informative node feature matrix X 2 R

L�F for each
protein graph G with L residues.

Structural Mining. After extracting node features, we infer
the structural information from the contact map. In detail, we
first obtain 3D atomic coordinates of each protein from PDB
(Berman et al. 2000). Then we add an edge between two
nodes if the distance between their Ca atoms is less than 10 Å.
In summary, the Ca � Ca contact map serves as the adjacent
matrix A 2 R

L�L for each protein graph G.
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2.3 Message passing neural network

To collect local information in the protein graph, we first adopt
a message passing neural network (Fig. 1C GCN encoder),
where neighborhood information of each node are aggregated
for updating central node representations (Kipf and Welling
2016). In particular, let H0 ¼ X denote the initial hidden em-
bedding matrix and we update the hidden embeddings as in:

Hnþ1 ¼ ReLU
�

~D
�0:5 ~A ~D

�0:5
HðnÞW ðnÞ

�
(1)

in which ~A ¼ Aþ I denotes the adjacent matrix with self-
loops added and ~D is the diagonal degree matrix for normali-
zation. After N message passing layers, we generate the hid-
den embedding matrix H 2 R

L�D where D denotes the
hidden dimension by H ¼ HN ¼MPNNðX ;AÞ with sufficient
local geometric information embedded.

2.4 Hierarchical graph transformer

Previous methods usually directly adopt a global pooling layer
such as averaging or sum to summarize these node embeddings
in H (Gligorijevi�c et al. 2021, Lai and Xu 2022, Zhao et al.
2022). However, this strategy is incapable of recognizing im-
portant nodes. Even worse, they cannot infer long-distance
structural relationships in protein graphs. To tackle this, moti-
vated by recent Transformer models (Baek et al. 2021a), we in-
troduce a hierarchical graph Transformer, which contains
learnable super-nodes to explore long-distance correlations,
followed by a attention module (Vaswani et al. 2017) to gener-
ate graph-level representations (Fig. 1B).

Super-node Generation. We introduce K super-nodes with
learnable features, q1; . . . ; qK. These super-nodes are expected
to interact with node embeddings in the specific protein graph

for the exploration of global structural information.
Motivated by the recent Transformer models (Vaswani et al.
2017), we regard super-nodes as query vectors, whereas the
key and value vectors are both from hidden embeddings with
additional message passing neural networks. In formulation,
we calculate the similarity between each query vector and key
vectors, which serves as weights to summarize all the value
vectors. Concatenating all super-node query representations
into Q 2 R

K�D, we can aggregate all the nodes into K super-
node representations C 2 R

K�D with topological semantics. In
formulation, the updated super-node embedding matrix is:

C ¼ softmax
Q � K>ffiffiffiffi

D
p

 !
� V; (2)

K ¼ GCN1ðH;AÞ; V ¼ GCN2ðH;AÞ (3)

where GCN1 and GCN2 denote other encoders to further ag-
gregate the hidden features to get the key matrix K 2 R

L�D

and value matrix V 2 R
L�D. To maximize the model capacity,

we construct multihead super-node embedding matrices with
distinct network parameters, i.e. C1; . . . ;CH . Then, we concat-
enate all these matrices and utilize a fully connected layer to
generate semantics-aware super-node representations. In for-
mulation, we generate semantics-aware super-node embed-
ding matrix U 2 R

K�D as:

U ¼ FC1ð½C1; . . . ;CH �Þ (4)

where FC1ð�Þ is a multilayer perceptron (MLP) to transform
the embeddings for each super-node.

Figure 1. Overview of the proposed HEAL. (A) The flowchart for building a protein graph. The residue embeddings are derived from a combination of one-

hot embeddings and ESM-1b language embeddings (Rives et al. 2021). The edge information is obtained from the distance map to connect the residues.

(B) The overview of the hierarchical graph Transformer (HGT) module. We utilize GCN layers to get the topological key and value vectors of the graphs.

Subsequently, following the attention paradigm, the learnable super-node query vectors interact with the key and value vectors, aggregating the original

nodes into super-node representations (U). Similar to the super-node generation process described earlier, we use 1D learnable pooling query vectors to

help pool the super-node representations into graph-level representations (z). (C) The overview of HEAL. We feed a batch of protein graphs into the GCN

encoder, and the node embeddings are perturbed to provide a different view. These resulting node embeddings are then pooled into graph-level

representations by the HGT module. The functions are predicted by an MLP, and the model is optimized using both binary cross-entropy loss for function

classification and InfoNCE loss for different views of graph-level representations (z and z0).
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Attention Pooling. Note that these semantics-aware super-
node representations are obtained in an independent manner,
which imply structural semantics in the graph. Previous meth-
ods usually leverage a mean- or sum-pooling to aggregate
these local representations, which could not capture the im-
portance of local functional motifs in the protein graph. To
tackle this, we adopt an attention module, which summarizes
these semantics-aware super-node representations into graph
representations in an adaptive fashion.

In detail, we utilize only one query vector QP 2 R
1�D. In

formulation, we define two transformation matrices KP and
VP 2 R

D�D and have:

z ¼ softmax
QP � ðU � KPÞ>ffiffiffiffi

D
p

 !
� U � VP; (5)

In the last, we utilize an MLP to map each graph represen-
tation z 2 R

D to a predictive vector ŷ 2 R
C with a sigmoid ac-

tivation function where C is the number of GO terms. Each
element of ŷ indicates the positive probability of each GO
term.

2.5 Optimization with contrastive learning

In this part, we utilize graph contrastive learning to enhance
the graph representation as a regularization and supervised
loss is also involved.

Graph Contrastive Learning. Recently, graph contrastive
learning has achieved superior results in unsupervised learn-
ing and pretraining for graph data (Zeng and Xie 2021, Yu
et al. 2022). Inspired by this, we seek to utilize it for regulari-
zation in our model. To achieve this, we add random noise to
the node vectors in the hidden embeddings which provide dif-
ferent views for each protein view without deleting significant
residues and interactions (Yu et al. 2022). Then, we increase
the similarity score between graph representations of two
views compared with other graphs.

In detail, for each graph G, we inject noise to every node v
in the graph to provide a different view. Formally, we first
randomly sample the noise vector �v with jj�vjj ¼ �, and have:

h0v ¼ hv þ j�vj � signðhvÞ; (6)

in which � denotes the element-wise product of two vectors. In
Equation (6), we perturb node features in the same direction,
which retains the key semantics in a smooth fashion. After
perturbation, we can leverage h0v to produce another view of
the protein graph z0.

Then we offer an objective to maximize the similarity be-
tween graph representations of different views compared with
those of other graphs. In detail, we randomly select a mini-
batch of M graphs, each of which produces two views of
graph representations. After reannotating z and z0 as zm and
z0m for the m-th protein in the minibatch, we adopt the
InfoNCE loss function (He et al. 2020) for graph contrastive
learning as follows:

Lreg ¼ �
1

M

XM
m¼1

log
ezm?z0m=sPM

m0¼1 ezm?z0m0=s
; (7)

where s denotes a temperature parameter set to 0.5 following
(You et al. 2020) and ? calculates the cosine similarity

between two vectors. This term serves as regularization for
discriminative graph representations, which has been proven
to benefit downstream classification.

Supervised Loss. Finally, we adopt a binary cross-entropy
(BCE) loss objective for downstream multilabel classification
as follows:

Lsup ¼ �
1

M � C
XC

l¼1

XM
m¼1

ðyml logðŷmlÞ þ ð1� ymlÞ logð1� ŷmlÞÞ;

(8)

where yml and ŷml denote the ground truth and predicted pos-
itive probability for the l-th function of the m-th sample, re-
spectively. The final loss function is derived by combining
both supervised loss and regularization loss as:

L ¼ Lsup þ Lreg: (9)

2.6 Model training

Overall, our models comprise of four graph convolutional
layers, one hierarchical graph Transformer layer and one
MLP module. We train the proposed HEAL using the Adam
optimizer (Kingma and Ba 2014) with a learning rate of
0.0001 and a batch size of 64 for 100 epochs. All models are
implemented by Pytorch and Pytorch geometric library (Fey
and Lenssen 2019, Paszke et al. 2019). In order to prevent
overfitting, we adopt an early-stopping criterion with patience
of five epochs based on the validation set. All models are
trained utilizing a single Tesla V100-SXM2 32GB graphics
processing unit (GPU), with training times of approximately
four hours using a batch size of 64.

3 Dataset

We first used the same dataset of DeepFRI (Gligorijevi�c et al.
2021), which can be downloaded from https://github.com/fla
tironinstitute/DeepFRI. The dataset comprises of 36 641 pro-
tein structures from PDB database and 244 775 protein struc-
tures from SWISS-MODEL repository (Waterhouse et al.
2018), and we rename them as PDBch dataset and SMch
dataset, respectively. All protein chains in the PDB database
for which contact maps can be retrieved were downloaded,
and the sequences were clustered at 95% sequence identity.
Then, a representative PDB chain that has at least one func-
tional annotation and high-resolution structure is selected
into PDBch dataset. This dataset was partitioned into train-
ing, validation, and test sets at an 8:1:1 ratio. The experimen-
tally solved structures of each sequence were fetched from
PDB to construct the protein graph. The GO-term annota-
tions were retrieved from SIFTS (Dana et al. 2019) and
UniProtKB. A PDB model needs to share at least 90% se-
quence identity and cover at least 70% of the UniProtKB se-
quence to transfer the annotations. Each sequence was
labeled with 489 Molecular Function (MF) terms, 1943
Biological Process (BP) terms, and 320 Cellular Component
(CC) terms.

According to the frequency of each GO term appears in the
PDBch training set (Supplementary Fig. S1), we computed in-
formation content (IC) of each GO term in the PDBch training
set. The more specialized a GO term is, the higher IC it has.

4 Gu et al.
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ICðGOiÞ ¼ � log 2ðPðGOiÞÞ: (10)

The SMch dataset was constructed by obtaining homology
models of the PDBch dataset with at least one annotation
from the SWISS-MODEL repository. The similar SWISS-
MODEL sequences were removed at 95% sequence identity.
This dataset was partitioned into training and validation sets
at a 9:1 ratio. According to the clustering result, the sequences
in the PDBch test set can be divided into various homologous
groups compared to the PDBch and SMch training set (se-
quence identity of 30%, 40%, 50%, 70%, and 95%).

We further tested whether recent development in protein
structure prediction improves data augmentation. We selected
44 137 proteins with low-frequency GO terms (proteins with
IC>10 in the PDBch training set) and retrieved their struc-
tures predicted by AlphaFold2 (AF2) from AlphaFold Protein
Structure Database (Varadi et al. 2022). These protein chains
constitute the AFch dataset. To partition the AFch dataset, we
utilized MMseqs (Steinegger and Söding 2018) to cluster
sequences at a sequence identity of 25%, resulting in an AFch
training set with 43 072 sequences and an AFch test set with
567 sequences. We then removed any sequences in the AFch
test set that had a sequence identity greater than 25% with
any sequences in both the AFch training set and the PDBch
training set. Finally, we randomly selected 10% of the sequen-
ces in the AFch training set to make up a validation set. The
IC of each GO term in the combination of the AFch and
PDBch training set can be found from Supplementary Fig. S2.
More details about the datasets can be found from
Supplementary Table S1.

4 Baseline methods

Blast (Altschul et al. 1990). We first remove all sequences sim-
ilar to the test sequences from the training set using an E-value
threshold of 1e-3. Next, we use the blastp program to identify
the sequence with the highest score from the PDBch training
set, and the predicted annotations of this sequence are scaled
by the sequence identity to the query sequence to obtain the
predicted annotations.

FunFam (Das et al. 2015). We search against CATH
FunFams based on domain information. The annotations of
the highest-scoring match are then transferred as the predicted
result for the test sequence.

DeepGO (Kulmanov et al. 2018). DeepGO is a deep learn-
ing method that relies solely on the protein sequences. The
sequences are represented as 1D sequential features, and 21
1D convolution layers are applied to predict protein func-
tions. For our evaluation, the DeepGO model was trained on
PDBch and SMch training sets from the DeepFRI study.

DeepFRI (Gligorijevi�c et al. 2021). DeepFRI is a recently
published GCN-based approach, which takes both sequences
and structures as input to better capture spatial relations
among residues. This method trains a protein language model
to embed protein sequence, and a GCN model to learn the
function prediction. For our evaluation, the DeepFRI model
was trained on PDBch and SMch training sets from the
DeepFRI study.

DeepGOPlus (Kulmanov and Hoehndorf 2021).
DeepGOPlus is a hybrid method that combines the sequence
homology-based method DIAMOND Blast (Buchfink et al.
2015) with a 1D convolutional neural network, similar to
DeepGO. For our evaluation, we retrained DeepGOPlus using

the PDBch and AFch training sets, and tuned the weight that
combines the Diamond Blast score with the neural network
score based on PDBch and AFch validation sets.

Considering that GAT-GO (Lai and Xu 2022) resplit the
PDBch dataset and have not open source their code and data-
set, so we cannot do the comparison with it.

5 Evaluation metrics

To evaluate these performance of different methods on
PDBch test set, we use these main metrics: CAFA (Radivojac
et al. 2013) evaluation metrics (i) protein-centric Fmax, (ii)
Smin, and (iii) function-centric area under precision–recall
(AUPR) curve. Protein-centric Fmax is the maximum F1 score
over all prediction thresholds t 2 ½0;1� with a step size of
0.01. Smin represents the semantic distance between predicted
and real annotations considering information content of each
function. Function-centric AUPR is a reasonable measurement
commmonly used for high-class-imbalance situation.
Additional details on how to compute these metrics can be
found in Supplementary Section 2.

6 Results
6.1 HEAL improves protein function prediction

We evaluate the performance of our model on the PDBch test
set by comparing it with Blast, Fumfams, DeepGO, and
DeepFRI. While DeepGO and DeepFRI were trained on both
the PDBch and SMch training sets, our model (HEAL-PDB) is
trained solely on the PDBch training set. We assess the perfor-
mance of the models on three gene ontology domains (MF,
BP, CC) separately. The results, as presented in Table 1, show
that HEAL-PDB achieves Fmax scores of 0.691, 0.565,
0.655, Smin scores of 0.401, 0.540, 0.501, and AUPR scores
of 0.571, 0.259, 0.342 on the MF, BP, and CC tasks, respec-
tively. HEAL-PDB outperforms Blast, FunFams, and DeepGO
across all three gene ontology domains. Compared to
DeepFRI, HEAL-PDB performs significantly better on the MF
and CC tasks, and shows comparable results on the BP task.
Despite being trained on much less data, the architecture of
our model demonstrates advantages in learning protein
functions.

When the SMch dataset was included for training, the
resulting model HEAL-SW performs better than both HEAL-
PDB and DeepFRI. As recently developed deep learning-based
methods for protein structure prediction have become more
reliable, we improved our model further by incorporating the
AFch training set and the resulting model is referred as
HEAL. HEAL achieves Fmax of 0.747, 0.595, 0.687, Smin of
0.342, 0.509, 0.458, and AUPR of 0.691, 0.337, 0.467 on
MF, BP, CC tasks, which surpasses the state-of-the-art open-
source GCN method DeepFRI by a significant margin, and
even goes beyond HEAL-SW despite using much fewer pro-
teins for training. These results indicate that HEAL leads the
way in protein function prediction.

6.2 Ablation study

To investigate how different components of HEAL contribute
to its performance, we conduct the ablation experiments on
the PDBch test set. We introduce three variants as below: (i)
HEAL w/o CL: it removes the contrastive learning objective.
(ii) HEAL w MP: it utilizes the max pooling to replace HGT
(iii) HEAL w/o EE: it removes ESM-1b embeddings from the
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node attributes. The results are summarized in Table 2.
Removing contrastive learning module causes a moderate
drop over all three gene ontology domains, because contras-
tive learning as a regularization trick, the noise it brings into
GCN network can make HEAL more robust, and InfoNCE
loss function can increase the variability of each graph embed-
dings. When we substitute the Hierarchical Graph
Transformer module with the commonly used max pooling,
the performance decreases significantly, which indicates our
topological pooling manner is superior to the traditional
node-equal-treatment pooling, and introduction of super-
node representations is better at capturing key functional sub-
structures. ESM-1b, as a widely applied protein language
model, is capable of guiding protein engineering tasks, remov-
ing which leads to a drastic decrease at the efficiency of
HEAL. AUPR and Fmax metrics of three tasks demonstrate
that ESM-1b embeddings bring tremendous improvement to
our model.

6.3 Generalizability of HEAL

In order to evaluate the generalizability of HEAL, we evaluate
its performance on PDBch test sequences with varying homol-
ogy to the combined PDBch and SMch training sets, which
are the training set for DeepFRI and DeepGO models. The
five sequence identity thresholds are 30%, 40%, 50%, 70%,
and 95%. Given that both HEAL and HEAL-PDB were
trained on subsets of the PDBch and SMch training sets, this
comparison is valid. Notably, deep learning methods signifi-
cantly outperform sequence alignment-based methods.
Therefore, DeepFRI, DeepGO, and HEAL-PDB are also in-
cluded in the comparison. Fmax, AUPR, and Smin are com-
puted using 10 bootstrap iterations across all test proteins. As
is depicted in Fig. 2A–C, compared to sequence-only based
method DeepGO, HEAL-PDB and DeepFRI exhibit enhanced
efficiency when incorporating spatial relationships between
residues. HEAL-PDB outperforms DeepFRI and DeepGO

over all homology thresholds at MF and CC task, while at BP
task, DeepFRI surpasses HEAL-PDB over all five homology
thresholds at BP task. With the augmentation of the AFch
dataset, HEAL demonstrates the best performance across all
five thresholds for the three gene ontology categories, even
maintaining a significant lead over other methods
(Supplementary Tables S3.1–S3.3). As homology decreases,
the performance of HEAL declines more gradually, suggesting
that the integration of a protein language model and addi-
tional high-quality structures facilitates HEALs ability to
learn the relationship between structural and functional
properties.

6.4 Performance of HEAL on GO terms with different

specificity

We spilt proteins in the PDBch test set into three groups based
on the IC of each term belonging to MF, BP, and CC tasks
(IC>5, 5< IC<10, and IC>10). Among all the three ranges,
as depicted from Supplementary Fig. S3, HEAL-PDB outper-
forms DeepGO and achieves similar results with DeepFRI.
Apparently, HEAL shows the best performance at countering
specificity (Supplementary Table S3.4). On commonly occur-
ring terms (IC<5), HEAL, HEAL-PDB, DeepFRI, and
DeepGO have average AUPR of 0.790, 0.752, 0.732, and
0.673, respectively. On GO terms of medium IC (5< IC<10),
HEAL, HEAL-PDB, DeepFRI, and DeepGO have average
AUPR of 0.506, 0.436, 0.404, and 0.313, respectively. Even
on highly specific annotations as GO terms of IC>10, HEAL
(0.321) performs significantly better than HEAL-PDB
(0.214), DeepFRI (0.204), and DeepGO (0.137).

6.5 Performance of HEAL on AlphaFold2 predicted

structures

A more realistic usage scenario for our methods is to predict
biological functions for proteins with neither experimentally
resolved structure nor annotated similar sequences. In this

Table 1. AUPR, Fmax, and Smin of different methods on PDBch test set.a

Method Training set AUPR (") Fmax (") Smin (#)

MF BP CC MF BP CC MF BP CC

Blast – 0.136 0.067 0.097 0.328 0.336 0.448 0.632 0.651 0.628
FunFams – 0.367 0.260 0.288 0.572 0.500 0.627 0.531 0.579 0.503
DeepGO PDBchþSMch training set 0.391 0.182 0.263 0.577 0.493 0.594 0.472 0.577 0.550
DeepFRI PDBchþSMch training set 0.495 0.261 0.274 0.625 0.540 0.613 0.437 0.543 0.527
HEAL-PDB PDBch training set 0.571 0.259 0.342 0.691 0.565 0.655 0.401 0.540 0.501
HEAL-SW PDBchþSMch training set 0.653 0.308 0.432 0.711 0.581 0.654 0.366 0.509 0.489
HEAL PDBchþAFch training set 0.691 0.337 0.467 0.747 0.595 0.687 0.342 0.509 0.458

a Best performance in bold. Fmax and AUPR, highest; Smin, lowest.

Table 2. Ablation study of HEAL on PDBch test set.a

Method AUPR (") Fmax (") Smin (#)

MF BP CC MF BP CC MF BP CC

HEAL 0.691 0.337 0.467 0.747 0.595 0.687 0.342 0.509 0.458
HEAL w/o CL 0.635 0.304 0.410 0.708 0.586 0.672 0.375 0.521 0.478
HEAL w/o MP 0.588 0.252 0.378 0.666 0.552 0.665 0.416 0.547 0.486
HEAL w/o EE 0.284 0.130 0.222 0.478 0.447 0.579 0.554 0.607 0.553

a Best performance in bold. Fmax and AUPR, highest; Smin, lowest. The three variants of HEAL are: (i) HEAL w/o CL (contrastive learning): it removes
the contrastive learning objective. (ii) HEAL w MP (max pooling): it utilizes the max pooling to replace HGT (iii) HEAL w/o EE (ESM-1b embeddings): it
removes ESM-1b embeddings from the node attributes.
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scenario, it is more appropriate to compare our methods with
robust methods that rely on both sequence and homology in-
formation. To accomplish this, we retrained DeepGOPlus
(Kulmanov and Hoehndorf 2021) on the same training set of
HEAL. Then, we test the performance of our methods on
AFch test set, as well as two other competing methods:
DeepFRI and DeepGOPlus.

As is shown from Fig. 3, although structures predicted by
homology modeling of the sequences in AFch test set exist in
the training set of DeepFRI, HEAL-PDB trained solely on
PDB structures achieves similar performance with DeepFRI.
Diamond Blast provides DeepGOPlus with a strong ability to
transfer GO-term annotation from similar sequences. By com-
bining the scores predicted by 1D CNN, DeepGOPlus outper-
forms both DeepFRI and HEAL-PDB. Our model HEAL not
only gets obviously higher Fmax score (0.491, 0.475, 0.614)
at all MF, BP, CC tasks than DeepGOPlus (0.450, 0.430,
0.567), but also achieves higher AUPR score, except that its
AUPR score (0.200) for BP task is very slightly lower than
DeepGOPlus (0.203) (Supplementary Table S3.5). The results
indicate that HEAL can play a greater role in more realistic
application scenarios.

6.6 Analysis of key residues in HEAL models

To localize the prediction result into each residue, we apply
the gradient-weighted Class Activation Map (grad-CAM;
Selvaraju et al. 2017). Grad-CAM was first proposed to pro-
vide visual explanations for CNN classifiers. It can highlight
on which part of a picture the model makes the decision.

In our scenario, grad-CAM can be used to find out which resi-
dues make more contributions for the concerned function. In
grad-CAM, we choose the output of the last graph convolu-
tional layer as the feature map, F 2 R

L�D, L denotes the
length of the protein and D denotes the hidden dimension.
Then we take the derivative of the protein function yl with re-
spect to F as the gradient weight W l

i;j:

W l
i;j ¼

@yl

@Fi;j
(11)

The contribution score of each residue CAMl
i can be obtained

by doing the weighted sum with W
l

i;j and Fi;j.

CAMl
i ¼ ReLU

PD
j¼1 W l

i;j � Fi;j

D

 !
(12)

The function-specific heatmap will be normalized for each
CAMl

i.
For MF-GO terms, we provide two cases where their heat-

maps are consistent with the experimentally confirmed bind-
ing sites. The first example is 4RQ2, a single-chain DNA
polymerase with the function of DNA-binding
(GO:0003677). As is shown in Fig. 4A, we projected the heat-
map onto the protein structure and observed strong signals in
regions where DNA binds. The second example is 5H1C,
a DNA repair protein RAD51 homolog that functions as a
homotrimer. “High-temperature” regions also concentrated

Figure 2. AUPR (A), Fmax (B), and Smin (C) of different methods on PDBch test set over different sequence identity thresholds.
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surrounding the DNA in spite of some strong signals away
from DNA (Fig. 4B).

For BP-GO terms, we offer two examples. The first exam-
ple is 4TMK, a thymidylate kinase involved in the nucleoside
triphosphate metabolic process (GO:0009141). As shown in
Fig. 4C, the residues around the inhibitor TP5A contribute
significantly to the heatmap. The second example is 3GDT, a
phosphate decarboxylase that plays an important role in
nucleobase metabolic process (GO:0009112). Its UP6-binding
site corresponds to the heatmap signal (Fig. 4D).

We extracted the binding sites of the four proteins from the
BioLiP database (Yang et al. 2013). We then scale the contri-
bution score from grad-CAM into 0–100 (Supplementary Fig.
S4), and use receiver operating characteristic (ROC) curves to
compare the high-contribution residues by grad-CAM to
those involved in the experimentally verified binding sites. As
is shown in Fig. 4E, area under the ROC curve (AUC-ROC)
illustrates that our model has excellent capability to capture
binding residues.

As the HEAL models were trained on both experimentally
solved and AF2 predicted structures, it can also predict the
key binding sites from AF2 predicted protein structures.
A0A3P7DWR6 is another DNA repair protein RAD51

homolog, and its structures are unavailable from PDB. Our
model can recall functions of A0A3P7DWR6 confidently
with its AF2 predicted structures as input. The conservative-
ness of DNA binding sites between A0A3P7DWR6 and
5H1C suggests that they share the same binding mode
(Supplementary Fig. S5), and the grad-CAM heatmap can still
identify the core binding sites (Supplementary Fig. S6).

7 Discussion

In this study, we have proposed the contrastive learning
assisting GCN model HEAL, and introduced the hierarchical
graph Transformer to conduct node aggregation and graph
pooling. By integrating protein structure and sequence lan-
guage embeddings, HEAL provides a powerful tool for pro-
tein function prediction, which significantly outperformed the
state-of-art model DeepFRI. In addition, HEAL demonstrates
better generalizability to sequences that are dissimilar from
those in the training set, as well as superior specificity-
resistance for infrequent function prediction. Owing to the
close relationship between structures and functions, address-
ing the issue from a structural perspective circumvents the
complex challenge of discerning long-term correlations in

Figure 4. Four examples of the grad-CAM heat map mapped onto the experimentally solved structures. All the residues are colored according to

contribution score computed through grad-CAM. More salient residues are emphasized, while less salient residues are de-emphasized. (A) and (B)

Examples of DNA-binding proteins (PDB Id: 4RQ2, 5H1C). (C) An example of the protein engaged in nucleoside triphosphate metabolic process (PDB Id:

4TMK), the small molecule is a triphosphate analog. (D) An example of the protein engaged in nucleobase metabolic process (PDB Id: 3GDT), the small

molecule is UP6. (E) ROC curves indicate that contribution scores computed by grad-CAM overlap with binding sites retrieved from the BioLiP database.

Figure 3. AUPR and Fmax of different methods on AFch test set.

8 Gu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/7/btad410/7208864 by N
ational Science & Technology Library user on 11 Septem

ber 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad410#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad410#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad410#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad410#supplementary-data


sequence data. Furthermore, protein language models inher-
ently acquire evolutionary information through self-
supervised learning. This intrinsic characteristic significantly
enhances the capacity of neural network models to effectively
capture and comprehend the evolutionary patterns underlying
functional motifs (Lai and Xu 2022, Zhu et al. 2022, Wang
et al. 2023). When integrated with an extensive collection of
high-quality protein structures, as predicted by AlphaFold2,
our model acquires a more comprehensive understanding of
structural patterns corresponding to their functions.
Consequently, our model HEAL demonstrates enhanced gen-
eralization capabilities.

On the AFch test set, which includes AF2 predicted struc-
tures with low sequence similarity to the training set and no
experimentally resolved structures, HEAL exhibits remark-
able robustness and outperforms other state-of-the-art meth-
ods. This result suggests that HEAL has great potential for
application in real-world scenarios.

By introducing the grad-CAM method, we find that our
model can identify functional residues that correspond well
with experimentally confirmed residues. When the AF2 pre-
dicted protein structures are utilized, our model still exhibits
good interpretability.

To infer protein functions using HEAL, either experimen-
tally solved structures or AF2 predicted structures are re-
quired as input, which adds an additional step compared to
sequence-based methods. However, the recent breakthrough
in protein structure prediction using large protein language
models (Lin et al. 2023) suggests that it may be possible to ac-
curately predict protein functions based solely on primary
sequences. Additionally, there are a vast number of annotated
sequences whose structures have yet to be resolved, which
could provide ample training data to further enhance the pre-
diction models. In the future, we aim to modify single se-
quence structure prediction models so that the learned
evolutionary and structural information can be leveraged to
annotate more sequences in larger datasets such as CAFA.
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