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In this study, we developed a method named GoFDR for predicting Gene Ontology (GO)-based protein
functions. The input for GoFDR is simply a query sequence-based multiple sequence alignment (MSA)
produced by PSI-BLAST. For each GO term annotated to the sequences in the MSA, GoFDR identifies a
number of functionally discriminating residues (FDRs) specific to the GO term, and scores the query
sequence using a position specific scoring matrix (PSSM) constructed for the FDRs. The raw score is then
converted into a probability score according to a score-to-probability table prepared from training
sequences. GoFDR outperformed three sequence-based methods for predicting GO functions in a bench-
mark of 18,520 sequences. In addition, GoFDR was ranked one of the top methods according to the pre-
liminary evaluation report released by the 2nd Critical Assessment of Function Annotation (CAFA2)
project. Finally, we applied GoFDR to the complete human proteome sequences, and showed that the
predictions made by GoFDR with high confidence significantly expanded current annotations of human
proteome. As such, GoFDR is of great value not only for annotating protein functions in newly sequenced
genomes, but also for characterizing the function of proteins of interest.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Understanding the function of every protein in the genome is
one of the central goals in biology. However, currently the speed
to generate sequence data has far exceeded the speed to character-
ize protein functions. Computational algorithms for predicting
protein functions from protein sequences can greatly accelerate
the process to characterize protein functions. On the other hand,
although high-throughput functional genomics tools are now
available to generate diverse types of functional data at the
genome level, new tools are in dire need to mine and integrate
the functional genomics data in order to infer the functions of
individual genes or proteins. Hence, development of algorithms
for accurate prediction of protein function has become one of the
most important goals in computational biology.

Algorithms for predicting protein functions can be generally
classified into two categories according to the type of data they
use, which are sequence-based algorithms that require only the
sequence of a protein [1–12], and omics data-based algorithms
that take input various types of functional genomics data, such
as gene expression, protein–protein interaction, transcription fac-
tor binding, phenotypes, etc [13–24]. Sequence-based algorithms
are usually based on a simple assumption, i.e., homologous
sequences tend to have similar functions. They explore different
aspects of sequence-function relationships for transferring the
function of known homologous proteins to unknown proteins,
such as sequence similarity [3], protein domains [11], sequence
patterns/motifs [25], functionally conserved residues [7], and so
on. Omics data-based algorithms typically employ the ‘‘guilt-by-a
ssociation” principle for inferring protein functions from gene–
gene relationships obtained through mining functional genomics
data [26–28], and often involve the implementation of machine
learning algorithms [29,30]. Omics data-based algorithms are cur-
rently under fast development because of the accumulation of
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enormous functional genomics data and the emergence of new
types of omics data. Though using only sequence information,
sequence-based algorithms have proven to be generally more
accurate than omics data-based algorithms for predicting protein
functions, especially for predicting proteins’ molecular functions
[13]. Therefore, in this study we focused on the development of a
sequence-based algorithm.

Given the sequence of a query protein, sequence-based algo-
rithms usually start from the detection of functionally known
homologous sequences, which is typically done by BLAST [31] or
PSI-BLAST [32]. In the easiest case, if the sequence identity of a
known sequence is above 60% to the query sequence, then the
function of the known sequence can be transferred to the query
sequence with above 90% accuracy [33,34]. However, this condi-
tion is often not met, and more sophisticated approaches have to
be developed. PFP [6], GOtcha [5], PDCN [35], BAR+ [8], etc.,
explore the E-values produced by BLAST or PSI-BLAST for inferring
protein functions. There are also methods that infer protein func-
tions based on the detection of functional domain or motifs, such
as SUPERFAMILY [36], FunFams [37], or functionally important
residues, such as EFICAz [38] and ConFunc [7]. In theory, the func-
tional domains/residues-based approaches should be more accu-
rate than sequence similarity based methods, because the
function of a protein is often determined by a functional domain
or even a small number of functionally important residues rather
than by the entire sequence [33]. However, identifying the func-
tional domain/residues associated with a given function is not a
trivial task, and often requires the construction of high quality
multiple sequence alignments (MSAs). For example, EFICAz [38],
a method developed by Tian and Skolnick that infers enzyme func-
tions by detecting the functionally discriminating residues (FDRs)
specific to a given enzyme function, requires the construction of
high-quality seed MSAs for sequences with the same enzymatic
function. However, for protein function annotations defined by
Gene Ontology (GO) consortium [39], it is not practical to prepare
a high quality MSA for each GO term. This makes these functional
domains/residues-based methods not as convenient as the PSI-
BLAST E-value based methods that use only the PSI-BLAST output
for inferring functions.

In this study, we aimed to develop an algorithm that is as
approximately accurate as the functional residue-based methods,
while in the meantime can be also as convenient as the
E-value-based methods. Here, we present GoFDR, a sequence
alignment-based algorithm that adopts the FDR approach used
by EFICAz for predicting protein function, while avoiding the com-
plicated MSA construction work required by EFICAz by using the
query sequence-based MSA directly from PSI-BLAST output. Using
the PSI-BLAST-based MSA, GoFDR identifies all GO terms associ-
ated with the sequences in the MSA, and determines the FDRs for
each GO term, from which a position specific scoring matrix
(PSSM) is constructed. It then uses the PSSM to score the query
sequence for its association with the GO term, followed by a raw
score adjustment step to convert the raw score into a probability.
The score conversion is an essential step in GoFDR. Using a
carefully designed benchmark, we showed that GoFDR
outperformed three sequence-based methods: GOtcha, PFP, the
two E-value-based methods, and ConFunc, a functional-residue
based algorithm. GoFDR’s superior performance was further vali-
dated by the 2nd Critical Assessment of Functional Annotation
(CAFA2): it was ranked one of the top methods among 56 partici-
pating teams according to the preliminary evaluation report
released by CAFA2 organizers. Finally, we applied GoFDR to the
complete human proteome, and showed that the predictions made
by GoFDR with high confidence significantly expanded current
annotations.
2. Material and methods

2.1. Data collection

GO annotations [39] was downloaded from UniProt-GOA
website (http://www.ebi.ac.uk/GOA) on 2013-7-1. Gene Ontol-
ogy file was obtained from Gene Ontology Consortium website
(http://geneontology.org/page/download-ontology) on 2013-06-25,
and was used to expand GO annotations by tracing back to parent
GO terms. The total number of GO annotations in GOA is
7.87� 108. After filtering GO annotations with evidence code of
‘‘IEA” or ‘‘RCA”, we obtained a total number of 5.56 � 106 high-
quality GO annotations.

2.2. Algorithm design of GO-FDR

There are four steps in GO-FDR: preparation of a query
sequence-based multiple sequence alignment (MSA), determina-
tion of functionally discriminating residues (FDRs) for a target
GO term and construction of a position specific scoring matrix
(PSSM) for the FDRs, scoring the query protein using the PSSM,
and adjusting the raw score into probability. Below we describe
these four steps in details.

(1) Preparation of a query sequence-based MSA by database search
BLAST (blastp version 2.2.26+) or PSI-BLAST (psiblast 2.2.27+)

(three iterations) search with default parameters was run with a
query sequence to produce the query sequence-based MSA. For
both BLAST and PSI-BLAST searches, the E-value threshold for
selecting hit sequences was 0.01 and the maximum number of
hit sequences was 20,000. The sequence database was UniRef90
[40] (released in Jul 2013) that consists of approximately
1.50 � 107 proteins.

(2) Identification of FDRs for a given GO term, and construction of the
FDR-PSSM

After mapping GO annotations to the sequences in the MSA, we
identified all relevant GO terms to be predicted. Here, only
high-quality GO annotations were used. Then, for each GO term
we adopted EFICAz’s approach with modifications to identify the
corresponding FDRs. For details about EFICAz, refer to [38]. Among
all sequences with at least one GO term in the MSA, we identified
those with the target GO term and those without, and used their
aligned sequences in the MSA to prepare the homo-functional ad
the hetero-functional MSA, respectively. Then, for each position i
in the MSA we calculated a relative entropy (RE):

REðiÞ ¼
Xn¼20

AA¼fA;C;D...;Yg
pði;AAÞ log

pði; AAÞ
qði;AAÞ

where p(i,AA) and q(i,AA) are the frequency of amino acid AA at
position i in the homo-functional and the hetero-functional MSA,
respectively, and were computed as

FreqAA;homoðiÞ ¼
nAA;homoðiÞ
Nhomo þ 1

þ FreqAA;bg

FreqAA;heteroðiÞ ¼
nAA;heteroðiÞ
Nhetero þ 1

þ FreqAA;bg

nAA,homo(i) and nAA,hetero(i) are the number of sequences in the
homo-functional and the hetero-functional MSA with amino acid
AA at position i, respectively, and Nhomo and Nhetero are the total
number of homo-functional and hetero-functional sequences,
respectively. FreqAA,bg refers to the background frequency of
amino acid AA at position i in the whole MSA. When a gap was
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encountered, each of 20 AAs would be added 1/20. After the calcu-
lation of RE at all positions, we computed the average and standard
deviation, and then the Z-scores of RE for each position. The higher
the z-score threshold, the more powerful the selected residues in
distinguishing homo-functional sequences from hetero-functional
sequences. However, higher z-score threshold would also result
in smaller number of selected FDRs. To balance the functional
discriminating power of the selected FDRs and the number of
selected FDRs, we chose a z-score threshold of 1.0. Those positions
with a Z-score greater than 1.0 were considered FDRs. The PSSM for
the FDRs were constructed by computing the log-odds of the
frequency of each of 20 AAs in the homo-functional vs. in the
hetero-functional MSA as the followings:

log oddsði;AAÞ ¼ log
pði;AAÞ
qði;AAÞ

where p(i,AA) and q(i,AA) are the frequency of amino acid AA at
position i in the homo-functional and the hetero-functional MSA,
respectively.

(3) Scoring the query protein using the FDR-PSSM
We identified the amino acid AA of the query sequence at each

of the corresponding positions of the FDRs, and then applied the
PSSM to score the query sequence by averaging the log-odds
according to the PSSM. A higher score indicates that the query
sequence is more similar to the sequences in the homo-
functional MSA that to those in the hetero-functional MSA, and is
therefore more likely to be annotated with the target GO term.

(4) Raw score adjustment
In general, predictions with higher raw scores are more likely to

be true. However, the raw scores are not probabilities, and cannot
tell us how likely the corresponding predictions are true. On the
other hand, the raw scores may also be biased by the correspond-
ing homo-functional MSA from which the FDR-PSSM is con-
structed. In order to compare different predictions, we need to
convert raw scores into probabilities. Since each prediction is asso-
ciated with a homo-functional MSA, by grouping predictions based
on the properties of their corresponding homo-functional MSA, we
can then prepare a score-to-probability table for each group of pre-
dictions. We have experimented different properties of the homo-
functional MSAs, and found three that are correlated to prediction
accuracy: the category of the target GO term associated with the
homo-functional MSA (e.g., BP or MF), the frequency of the
sequences in the homo-functional MSA among all functionally
known sequences, and the maximum sequence identity of the
sequences in the homo-functional MSA to the query sequence.
Thus, for each combination of the above three properties, we
prepared a score-to-probability table.

Specifically, we first applied GoFDR to a large number of train-
ing sequences, and computed raw scores for each of the predic-
tions. Then, we divided all predictions into groups according to
the above-mentioned three properties. For each group, we sorted
the predictions according to their raw scores, and divided them
into subgroups with pre-defined raw score ranges. For each raw
score range, we then computed the percentage of true positive pre-
dictions, and considered it as the probability corresponding to the
raw scores falling into the range. Thus, a score-to-probability table
was prepared. In real practice, given a prediction, we first located
the score-to-probability table based on the homo-functional MSA
associated with the prediction; then, we identified the score range
for the raw score, and obtained the corresponding probability.
Finally, after converting all prediction raw scores of a query
sequence into probabilities, we further adjusted the probability
for each GO term by considering the parent–child GO term
relationships, i.e., the probability for a given GO term should not
be less than that for any of its child GO term, and if such case
was found, then the probability of that GO term would be replaced
by the probability of its child GO term.

2.3. Benchmark GoFDR

2.3.1. Benchmark dataset and GoFDR application
We selected 18,520 sequences from UniRef50 [40] (released in

Jul 2013) that have been annotated with more than 3 none-IEA
GO terms in each of the three GO categories as the benchmark
dataset. For each sequence, we run a BLAST or PSI-BLAST search
against UniRef90 to prepare a query sequence-based MSA. For
most of the query sequences, database search would result in the
identification of one or more functionally known sequences that
have high sequence identity to the query sequence, making it too
easy for inferring protein functions. Thus, when benchmarking
GoFDR, all functionally known sequences with above 60% sequence
identity to query sequences were removed from the query
sequence-based MSAs. We randomly divided all sequences into
10 groups. Then, each time we prepared score-to-probability tables
using 9 groups of sequences as training sequences, and applied the
tables to convert the raw scores of the prediction made for the
remaining one group of sequences into probabilities. This process
was repeated 10 times, such that we obtained the probabilities
for the predictions made for all 18,520 sequences.

2.3.2. Algorithms to be compared with GoFDR
We compared GO-FDR with three baseline methods and three

sequence-based methods. The three baseline methods were the
simple use of maximum sequence identity (max-ID), minimum
E-value (min-E) and GO term frequency (GO-freq), respectively.
The max-ID methods uses the maximum sequence identity of the
sequences with the target GO term to the query sequence as the
prediction score for the target GO term, while the min-E method
use the maximum of �log(E-value) as the prediction score. The
GO-freq method uses the frequency of the sequences with the tar-
get GO term among all functionally known sequences in the MSA
as the prediction score.

The three sequence-based methods were PFP [6], GOtcha [5],
and ConFunc [7]. Because the source codes of these three methods
were not available, we wrote the codes for each of these methods
following the exact descriptions provided in the respective papers.
Here, we briefly describe their algorithms. For details, refer to the
original paper. PFP (2009 version [6]) records the �log(E-values)
of all annotated homologous sequences from a BLAST or PSI-
BLAST search, and uses a Function Association Matrix to score each
GO term and propagate the scores to parent GO terms. The FAM
computes co-occur frequency of two GO terms and give a probabil-
ity whether they will be associated to the same sequence in Uni-
Prot database. It is a typical sequence based prediction method
that integrates both alignment information and Naïve Bayesian
probability. GOtcha [5] also infers protein functions using the E-
values produced by database search. It combines both the E-
values of the GO terms and the GO hierarchical structure to score
a target GO term, and further uses a ‘‘training–testing” strategy to
convert the raw scores to P-scores. ConFunc [7] identifies the con-
served residues among the sequences with a given GO term, and
generates a GO specific PSSM. When scoring a query protein, it
applies the PSSM to both the query sequence and re-shuffled query
sequence to produce a p-value to indicate the association of the
query sequence with the target GO term. In the original paper, Con-
Func uses MUSCLE [41] to construct a high quality MSA in order to
identify conserved residues. Here, the input MSA for ConFunc was
simply the BLAST or PSI-BLAST-based alignment. Accordingly, the
performance of ConFunc tested here does not reflect its real
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performance. Because both PFP and Gotcha require the training
sequences to convert the final score, we followed the 10-fold cross
validation procedure described in the benchmark of GoFDR for
these two methods. For all the six methods compared here,
similar to the treatment in benchmarking GoFDR, we removed
functionally known sequences that are above 60% sequence
identity to the query sequence in the BLAST or PSI-BLAST search
output.
2.3.3. Performance evaluation measures
We used the precision–recall curve to evaluate the performance

of a method in predicting protein functions. Specifically, we sorted
the prediction scores from high to low, and then computed the pre-
cision and recall at each score threshold and plotted the precision–
recall curve. The overall performance of the precision–recall curve
was evaluated by the Fmax measure which is the maximum of the F
measure along the precision–recall curve. At each threshold, the
F-measure is computed using the corresponding precision and
recall as Fmeasure ¼ 2 � precision�recall

precisionþrecall. The higher the Fmax, the better

performance a method has.
2.4. CAFA2 experiment

The Critical Assessment of Function Annotation (CAFA) project
was a community effort to build a common standard to evaluate
the prediction performance of different function prediction meth-
ods. The 1st CAFA was launched in 2011, and the evaluation report
was published in 2013 [42]. In Aug 2013, CAFA2 was launched and
100,816 functional unknown or partially unknown protein
sequences from 27 species were released to the community. Each
participating team was asked to submit predicted functions with
a confidence score ranging from 0 to 1 before Jan 20, 2014. The
organizing committee collected the added annotations of these
sequences within a five-month period after the submission dead-
line, and used these annotations to evaluate the performance of
each participating method. We participated CAFA2 by using the
GoFDR algorithm to predict functions for the released sequences,
and our submitted predictions were under the model name of
‘‘Tian-Lab model 1”.

Our prediction procedures were as the followings. First, we
expanded high-quality GO annotations in the database by
including the ‘‘confirmed” ‘‘IEA” annotations. A ‘‘confirmed” IEA
annotation means that the sequence with the ‘‘IEA” annotation
must have a homologous sequence that has the same annotation
of non-IEA evidence code and is above 60% sequence identity to
the ‘‘IEA” annotated sequence. This results in the expansion of
GO annotation from 5.56 � 106 to 1.67 � 107. Next, a PSI-BLAST
search with each of the target sequences was conducted against
UniRef90 database to prepare query sequence-based MSAs. Then,
GoFDR was applied to compute a probability score for all GO terms
relevant to a target sequence. Here, the score-to-probability tables
were prepared by using all 18,520 sequences in the previously
mentioned benchmark dataset as the training sequences.
2.5. Application of GoFDR to human proteome sequence

We download the human proteome sequence database from
UniProt (Apr-2015 release). It consists of a total number of
20,882 protein sequences that are the representative products in
the human genome [40]. GoFDR was applied to predict the
functions of these sequences in the same way as we described in
CAFA2 experiment.
2.6. GoFDR server & source code

We have developed a webserver for GoFDR at http://gofdr.
tianlab.cn, where genome-wide function predictions for the com-
plete proteome of several model organisms can be retrieved and
downloaded. In addition, pre-predicted functions of proteins with
UniProt ID are provided in the webserver. Packaged GoFDR source
code are also available for downloading on this website.
3. Results

3.1. A brief description of GoFDR

GoFDR is a sequence-based method for predicting Gene
Ontology (GO)-based functions. The prediction pipeline by GoFDR
is shown in Fig. 1. For details about its algorithm design, refer to
the Method section. Here, we briefly describe the workflow of
GoFDR. GoFDR takes the input of a query sequence-based MSA pro-
duced directly from BLAST or PSI-BLAST search. After mapping GO
annotations to all homologous sequences in the MSA, GoFDR iden-
tifies all relevant GO terms to be predicted. For each GO term,
GoFDR basically compares the sequence conservation in the
homo-functional MSA (aligned sequences with the GO term) and
the hetero-functional MSA (aligned known sequences without
the GO term) to identify a number of functionally discriminating
residues (FDRs) for distinguishing the homo-functional sequences
from the hetero-functional sequences, similar to the approach
introduced by EFICAz [38]. Different from EFICAz that requires
exact match of the query sequence to the FDRs in order to infer
functions, GoFDR builds a PSSM for the FDRs, and then applies
the PSSM to score the query sequence for its association with the
target GO term. Finally, GoFDR converts the raw score of a
prediction into a probability according to a pre-constructed
score-to-probability table from training sequences.
3.2. The use of raw score adjustment is an essential step in GoFDR

To evaluate the performance of GoFDR in predicting protein
functions, we prepared a large benchmark dataset consisting of
18,520 sequences. These sequences were selected from UniRef50
in which sequences have less than 50% sequence identity to each
other. We required these sequences all be annotated with at least
three GO terms with non ‘‘IEA” evidence code in each of the three
GO categories (MF, BP and CC). These sequences therefore
comprise of a representative set of functionally known sequences
in the database.

We first compared the raw scores produced by GoFDR with
three baseline methods—max-ID, min-E, and GO-freq, referring to
the use of the maximum sequence identity, the minimum
E-value of the homologous sequences with the target GO term to
the query sequence, and the frequency of the target GO term
among all functionally known sequences in the query sequence-
based MSA, respectively. Note here homologous sequences with
above 60% sequence identity to the query sequence were removed
from the query sequence-based MSA, because all methods would
produce accurate predictions with the inclusion of those
sequences. The min-E method was significantly worse than the
other two baseline methods for predicting protein functions, and
its performance was further deteriorated for PSI-BLAST-based
E-values (Fig. 2). This is expected, as PSI-BLAST E-values actually
reflect the similarity of the hit sequences to the sequence profile
generated from the hit sequences produced in the previous itera-
tion rather than to the query sequence, and are less correlated to
function similarity as a consequence. However, what’s interesting
here was that the other two baseline methods were actually not
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bad predictors, and the simple use of GO term frequency even out-
performed the raw score produced by GoFDR (Fig. 2). For example,
the Fmax for BP and CC GO terms predicted by GO-freq using BLAST-
based MSA was 0.486 and 0.609, respectively, in contrast to 0.463
and 0.573 by the raw score of GoFDR, respectively. For PSI-BLAST-
based MSA, GO-freq also outperformed the raw score of GoFDR for
predicting BP and CC GO terms. Another finding was that except for
max-ID, all methods performed better with BLAST-based MSA than
with PSI-BLAST-based MSA (Fig. 2). This can be interpreted as that
the inclusion of more homologous sequences by PSI-BLAST compli-
cates the task of identifying functional relationships using these
simple methods.

The above findings confirmed the raw score of GoFDR should be
adjusted before different predictions could be compared with each
other. Given that both the GO term frequency and the maximum
sequence identity of the sequences with the GO term to the query
sequence are strongly correlated with function similarity, we cor-
rected the raw scores by considering these two types of informa-
tion. We divided the 18,520 sequences in the benchmark dataset
randomly into 10 groups, and selected 9 groups of sequences as
training sequences to prepare a score-to-probabilities table for
each combination of GO term frequency and the maximum
sequence identity of the GO term (for details, refer to the Method
section). Then we applied the tables to convert the raw scores of
the predictions made for the remaining group of sequences into
probabilities. This process was repeated 10 times to convert the
raw scores of all predictions into probabilities. The conversion of
raw scores into probabilities significantly improves the prediction
performance of GoFDR (Fig. 3). Before the adjustment, the Fmax for
the predictions of GO terms in MF, BP, and CC categories by GoFDR
using BLAST-based MSAs was 0.616, 0.463, and 0.573, respectively.
After the adjustment, it was improved to 0.679, 0.540, and 0.650,
respectively. The improvement was more significant for GoFDR
using PSI-BLAST-based MSAs: before the adjustment, the perfor-
mance of GoFDR using PSI-BLAST-based MSAs was clearly worse
than using BLAST-based MSAs; after the adjustment, it was even
slightly better than that using BLAST-based MSAs (Fig. 3). The per-
formance of GoFDR using adjusted scores also made it significantly
superior to the two baseline methods—GO-freq and max-ID
(Fig. 3).

3.3. The comparison of GoFDR with three sequence based methods

In addition to the three baseline methods, GoFDR was also com-
pared with three published sequence-based methods—PFP [6],
GOtcha [5], and ConFunc [7]. The former two are based on the inte-
gration of E-values produced by database search, while the latter
was based on the identification of conserved residues specific to
a given function in the MSA. Note that high-quality MSA construc-
tion was a necessary step in the original ConFunc method. Here, for
convenience the BLAST or PSI-BLAST-based MSA was inputted to
the ConFunc method. Thus, the performance of ConFunc here does
not reflect the performance of the original method. Using the same
benchmark, we found that GoFDR outperformed these three meth-



Fig. 2. The precision–recall curves for GoFDR’s raw score and three baseline methods in each of MF (a), BP (b) and CC (c) categories using either BLAST (solid lines) output or
PSI-BLAST output (dashed lines). Max ID: the maximum sequence identity of the sequences with the target GO term to the query sequence. Min E, the maximum �log(E-
value) of the sequences with the target GO term. GO-freq: the frequency of the target GO term in the query sequence-based MSA.
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ods with a significant margin, especially for PFP and ConFunc
(Fig. 4). For example, the Fmax score of GoFDR for GO terms in the
MF category using PSI-BLAST-based MSAs was 0.685, in contrast
to 0.567 and 0.497 for PFP and ConFunc, respectively. GOtcha’s per-
formance was closer to GoFDR’s, but was evidently worse (Fig. 4). It
is worth noting that the performance of all the three sequence-
based methods became worsened when switch the use of BLAST
output to the use of PSI-BLAST output; in contrast, GoFDR was able
to achieve a better performance using PSI-BLAST based MSAs.

We further investigated the performance of different methods
for GO terms with different sizes and different frequency. By divid-
ing all predictions into groups according to the size of the target
GO terms or the frequency of target GO terms in the query
sequence-based MSAs produced by PSI-BLAST, we computed the
Fmax scores for all methods in each group. GoFDR was the best
method at all GO term sizes, and at all ranges of GO term frequency
(Fig. 5). The advantage of GoFDR over the other methods was most
significant for GO terms with very small sizes (1–5 annotated
genes) or with low frequencies (0–0.05), which represent the most
challenging category of function prediction. Interestingly, when we
divided the predictions into separate groups according to the fre-
quency of the target GO terms, the performance of GOtcha and
PFP was even worse than the two baseline methods (max-ID and
min-E) (Fig. 5). This is likely because both PFP and GOtcha combine
the E-values of all sequences annotated to a GO term for inferring
function, and are therefore affected by the frequency of the target
GO terms; in contrast, the maximum sequence identity or the min-
imum E-value approach is independent of the frequency of the tar-
get GO terms. The significantly improved performance of the min-E
method when its performance based on individual groups of pre-
dictions as compared with all predictions also highlighted the
importance of raw score conversion: also implies that by control-
ling certain features, even very simple methods may achieve signif-
icant performance improvement. In conclusion, the above results
demonstrated the advantage of GoFDR over existing methods.

3.4. The performance of GoFDR in CAFA2

Although we have demonstrated the usefulness of GoFDR using
the above-described benchmarks, it may still be argued that there
may exist biases in the selection of the benchmark dataset, the
selection of evaluation measures, or the way to run the other
methods by us. A common benchmark dataset evaluated by inde-
pendent researchers would provide unbiased estimation of differ-
ent methods. The Critical Assessment of Function Annotation
(CAFA) project represents a community effort to develop a com-



Fig. 3. The comparison of GoFDR’s adjusted score with GoFDR’s raw score and two baseline methods (GO-freq and max-ID). The plots are similar to those in Fig. 2. See Fig. 2
legend for details.
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mon standard for evaluating the performance of function predic-
tion methods. In Aug 2013, the CAFA2 project released over
100,000 sequences to the protein function prediction community.
These sequences are either functionally unknown or only partially
known, and are from 27 different species. According to the organiz-
ers of CAFA2, 54 teams submitted the predicted functions for these
sequences using 126 prediction models. After the submission, the
organizers collected all new experimentally determined function
annotations added to these sequences over a five-month period
of time, and then evaluated the performance of each submitted
model using the new annotations from both EBI and all benchmark
dataset. The classification of two validation datasets was pre-
defined by CAFA2 organizers. We also participated CAFA2, and
applied GoFDR to make predictions for all released target
sequences. Our predictions were named under ‘‘Tian-Lab Model
1” in CAFA2.

According to the preliminary evaluation report shared by the
CAFA organizers with all participants, ‘‘Tian-Lab Model 1” was
one of the top methods in CAFA2. In this report, ‘‘Tian-Lab Model
1” was the only model that ranked top 10 according to the Fmax

scores in each of the three categories of GO term predictions for
both the EBI benchmark and the all benchmark (Fig. 6). In the final
evaluation report shared by CAFA2 organizers, ‘‘Tian-Lab Model 1”
was also ranked one of the top methods, and was ranked the top
method in the molecular function category (personal communica-
tions). Thus, CAFA2 provided an unbiased benchmark to evaluate
and compare the performance of different methods, and the excel-
lent performance of ‘‘Tian-Lab Model 1” clearly demonstrated the
usefulness of GoFDR in predicting protein functions.

3.5. The application of GoFDR to human proteome

As an application of GoFDR, we applied it to human proteome
sequences. The human proteome sequences downloaded from Uni-
Prot include a total number of 20,882 human protein sequences.
After the propagation of GO annotations using the parent–child
relationships in GO graphs, there are 11,610, 10,792 and 12,096
human proteins annotated with at least one non-IEA GO term in
BP, MF and CC categories, respectively. As another validation of
GoFDR, we treated those sequences as testing sequences, and
investigated the performance of GoFDR. Here, PSIB-BLAST-based
MSAs were used, and the homologous sequences with above 60%
sequence identity to the query sequence in each MSA were
removed. The Fmax score of GoFDR for predictions of GO terms in
the MF, BP, and CC category was 0.621, 0.476, and 0.593, respec-
tively (Fig. 7a), further confirming that GoFDR was able to predict
protein functions with reasonably good accuracy. The Fmax scores
of GoFDR obtained using human proteome sequences were lower



Fig. 4. The precision–recall curves for GoFDR, PFP, GOtcha, and ConFunc. The plots are similar to those in Fig. 2. See Fig. 2 legend for details.
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than those using 18,520 sequences in previously describe bench-
mark, which were 0.685, 0.547, and 0.650 for MF, BP, and CC GO
terms, respectively. This was attributed to the difference in the dis-
tribution of GO terms size in the two datasets: in the original
benchmark dataset, there are a small number of GO terms that
are annotated to large number of sequences; in contrast, the distri-
bution of GO term size in the human proteome sequences is more
evenly distributed. Thus, the validation of GoFDR using human
proteome annotations should reflect the practical performance of
GoFDR for genome sequence annotations. In addition, we also
checked the precision score at different threshold of the adjust
probability score in the human proteome validation dataset. When
the adjusted probability produced by GoFDR was above 0.5, the
corresponding precision for MF, BP and CC GO term predictions
was 0.685, 0.559, and 0.512, respectively (Fig. 7b). Thus, in the
following prediction of human proteome sequence, we used the
adjusted probability score of 0.5 as a cutoff to select high
confidence predictions.

When applying GoFDR to predict the function for human
proteome sequences, we followed the same procedure we did in
CAFA2. However, if a GO term was found to include a sequence
with above 60% sequence identity to the query sequence, then
we simply assigned a probability score of 0.9 to the GO term, and
would not use GoFDR to predict that GO term. Here, we
selected all predictions with a probability score of above 0.5 as
high-confidence predictions as high confidence predictions. Before
the prediction, there are 14,841 proteins with 9.28 � 105 annota-
tions (non-IEA annotations + ‘‘confirmed” IEA annotations); after
the prediction, there are now 19,730 proteins with 1.58 � 106

annotations plus high confidence predicted annotations, i.e.,
GoFDR added about 660,000 predictions (the complete list of all
predictions with adjusted probability scores can be downloaded
from http://gofdr.tianlab.cn). The average number of annotations
for each protein sequence increased from 63 to 80.

The GoFDR predictions were made based on the annotations
released in 2013 by UniProt-GOA. Here, we downloaded the new-
est annotations of human proteome sequences from UniPrt-GOA
(2014-12-25 release), and investigated how many of the newly
added non-IEA annotations were predicted with high confidence
by GoFDR. After filtering out the annotations made for newly cre-
ated GO terms and all non IEA plus ‘‘confirmed” IEA annotations in
the 2013 release, we obtained a total number of 22,398, 143,302,
and 44,777 new annotations in MF, BP, and CC categories, respec-
tively. Among these new annotations, about 33%, 19%, and 25%
were predicted by GoFDR with high confidence, respectively; in
comparison, about 28%, 24% and 20% were annotated with IEA evi-
dence code in the 2013 release of GOA, respectively (Fig. 7c). The
annotations that were predicted by both GoFDR and IEA account
for 20%, 10%, and 12% of the newly added annotations in MF, BP,
and CC categories, respectively (data not shown). Since IEA

http://gofdr.tianlab.cn


Fig. 5. The comparison of the Fmax scores of six methods using predictions based on PSI-BLAST output at different GO term size(a, b, c) and different GO term frequency(d, e, f)
level. The Fmax score of each method was compared to that of GoFDR’s at the same level, and the ratios of Fmax scores at different levels is shown in heatmaps. For GO term size
level, 10–30 means the target GO term has 10–30 annotated genes in the benchmark dataset. For Go term frequency level, 0.1–0.2 means the sequences with the target GO
term account for 10–20% of functionally known sequences in a query sequence-based MSA produced by PSI-BLAST.
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annotations were made based on keywords matching that tends to
generate extremely large number of annotations, the fact that
more newly added annotations in the MF and CC categories were
predicted by GoFDR than by IEA suggested well illustrated the
sensitivity of GoFDR. We further checked the statistics of the high
confidence GoFDR predictions validated by newly added annota-
tions, and found the target GO term frequency for most predictions
is less than 0.1, demonstrating GoFDR’s ability to make accurate
predictions for the most challenging category of cases. The target
GO term frequency for most newly added annotations that were
not predicted by GoFDR was also less than 0.1 with the median
at 0.033, indicating that they were difficult to be predicted. Here,
we give two examples for the validated predictions. P59540 (taste
receptor type 2 member 46 encoded by TAS2R46 gene) was
predicted by GoFDR to have GO:0033038 ‘‘bitter taste receptor
activity” in MF category, which was added to the current release
as a non-IEA annotation. Another example is P16050, arachidonate
15-lipoxygenase, that was predicted by GoFDR with GO:0004052
‘‘arachidonate 12-lipoxygenase activity”; this annotation is now
with a non-IEA evidence code in the current release.

We also investigated how many of our high confidence predic-
tions have not been included in the current release of non-IEA
annotations, not predicted with IEA evidence code, and considered
them as novel predictions. We found more than half of our predic-
tions are novel predictions (Fig. 7d). A quick literature search found
support for some of the novel predictions. For example, Q12955
(gene name Ankyrin-3 (ANK3), also named Ankyrin-G) was
predicted to have GO:0045760 ‘‘positive regulation of action
potential”. Ankyrin-G has been found to be required for the normal
clustering of voltage-gated sodium channels at the axon hillock
and for action potential firing [43], supporting our prediction.
Therefore, the novel predictions from GoFDR can provide biologists
with new hypotheses about the function of proteins they are inter-
ested in.

4. Discussion

In this study, we have developed an alignment-based method
named GoFDR for protein function prediction from the query
sequence-based MSA produced by BLAST or PSI-BLAST search.
We have rigorously tested GoFDR’s performance, and have shown
using a large benchmark dataset that it outperformed three exist-
ing sequence-based methods. In addition, we have also shown that
GoFDR was ranked one of the top methods in CAFA2, a function
annotation assessment experiment participated by 54 teams.
Given its excellent performance and the convenient use of PSI-
BLAST or BLAST output, GoFDR is of great value not only for
large-scale genome sequence annotation, but also for discovering
novel functions for genes/proteins of interest.

There are two key steps in GoFDR. One is the identification of
GO term-specific FDRs from the query sequence-based MSA.
Another is the raw score adjustment. Both steps are essential for
GoFDR. Unlike E-values or sequence identities that measures the
similarity between two sequences regardless of whether the two
sequences have the same function or not, the FDRs defined in
GoFDR are determined through comparing sequence conservation
within sequences with the GO term to that within sequences with-
out the GO term, and are therefore specific to the target GO term.
However, there are a number of factors that may affect the identi-
fied FDRs, such as the number of sequences with the GO term, the



Fig. 6. The top 10 prediction models in each of MF, BP, and CC categories in CAFA2 according to the preliminary evaluation report shared by CAFA2 organizers. The
bootstrapped Fmax scores of each method in each category ear shown in barplots for both EBI benchmark dataset (a) and all benchmark dataset (b).
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relative sequence dissimilarity between sequences with the GO
term and those without, and the cutoff for selecting FDRs, etc.,
which in turn would have an impact on the raw score of the query
sequence produced by GoFDR. In addition, the similarity between
the query sequence and the sequences with the target GO term
may also affect the raw scores. While further work could be done
to develop more sophisticated methods that take into considera-
tion of these factors when identifying FDRs, an alternative
approach would be to find a way to adjust the raw scores by con-
trolling some of the above-mentioned factors, which is a imple-
mentation of the raw score adjustment in GoFDR.

In the raw score adjustment step of GoFDR, a list of score-to-
probability tables were generated for different combinations of
GO category, GO term frequency and the maximum sequence iden-
tity between the sequences with the GO term to the query
sequence using a large number of training sequences. With the
score-to-probabilities table, the raw score of a query sequence
could then be easily converted into a probability by locating the
corresponding table based on the information of the target GO
term. This step has proven to be critical for the performance of
GoFDR. In fact, the adjustment step was not only useful for GoFDR,
but also for other methods. For example, we observed that the per-
formance of the two baseline methods—the minimum E-value and
the maximum sequence identity method were significantly
improved if the GO term frequency was controlled. This high-
lighted the importance of the adjustment step, and also implied
that there is room for making further improvement by using more
refined adjustment procedures. In addition to optimizing the FDR
identification step and the score adjustment steps to further
improve GoFDR, we can also integrate the components of the other
successful methods in the future development of GoFDR. For exam-
ple, GOtcha [5] integrates GO hierarchal structure when inferring
protein functions, while PFP [6] considers the association between
different GO terms. These lines of information could also be inte-
grated in GoFDR to enhance its performance.

GoFDR is a sequence-based method, and requires only the input
of query sequence-based MSAs. However, there are currently enor-
mous amount of functional genomics data available for model
organisms. Although the performance of omics data-based meth-
ods is generally worse than sequence-based methods, using only
sequence information while ignoring the genomics data should
not be the solution for predicting protein functions. As shown in
the CAFA2 preliminary evaluation report and also shown in our
benchmark, predicting BP GO terms is a more difficult task than
predicting MF GO terms. BP GO terms describe the relationships
between genes, while MF GO terms describe the properties of a
gene. It can be easily imagined that the property of a gene is deter-
mined by itself, while the relationship of a gene with other genes is



Fig. 7. (a) The precision–recall curves of GoFDR in predicting human proteome sequences. (b) The precision score of GoFDR at different cutoff of adjusted probabilities in
predicting human proteome sequences. (c) The percentage of newly added non-IEA annotations that were annotated by old release IEA annotations or predicted by GoFDR
with high confidence. (d) The percentage of GoFDR’s high confidence predictions in MF, BP, CC category that are novel predictions. A high confidence prediction is considered
novel if it has not been validated by current release of GOA annotation, nor were annotated by GOA with IEA evidence code in the 2013 release.
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not only determined by itself, but also by other genes, and are con-
sequently not necessarily inferred from only the sequence of a
gene. The reason why sequence-based methods can still make rea-
sonably good predictions for some BP GO terms is because there
exists strong correlation between these BP terms and some MF
GO terms. Thus, besides the continuing development of
sequence-based methods such as GoFDR, new tools are in dire
need to take advantage of both sequence data and omics data for
making function predictions, especially for making BP GO terms.

GoFDR is based on PSI-BLAST search output. Once PSI-BLAST is
done, applying GoFDR only takes a couple of seconds. However,
given the huge number of sequences in UniRef90 (about
1.50 � 107 proteins), running PSI-BLAST with three iterations is
computationally expensive, and may take from several minutes
to 10 or 20 more minutes for different query sequences. This will
be a significant factor to limit the online application of GoFDR.
Recently, another version of BLAST, RPS-BLAST, has been included
in the BLAST software release packages. RPS-BLAST searches
against a collection of protein domain databases with the query
sequences, which takes less than a second to complete. We are
currently working to extend GoFDR’s application to the search
output of RPS-BLAST, which is expected to significantly reduce
the running time for making predictions using GoFDR.
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