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Abstract 

Knowledge of protein function is essential for elucidating disease mechanisms and discovering new drug targets. However, there is a widening 
gap between the exponential growth of protein sequences and their limited function annotations. In our prior studies, we have developed a series 
of methods including GraphPPIS, GraphSite, LMetalSite and SPR OF-GO f or protein function annotations at residue or protein le v el. To further 
enhance their applicability and perf ormance, w e no w present GPSFun, a versatile web server for Geometry-aware Protein Sequence Function 
annotations, which equips our previous tools with language models and geometric deep learning. Specifically, GPSFun emplo y s large language 
models to efficiently predict 3D conformations of the input protein sequences and extract informative sequence embeddings. Subsequently, 
geometric graph neural networks are utilized to capture the sequence and structure patterns in the protein graphs, facilitating various downstream 

predictions including protein–ligand binding sites, gene ontologies, subcellular locations and protein solubilit y. Not ably, GPSFun achie v es superior 
performance to state-of-the-art methods across diverse tasks without requiring multiple sequence alignments or experimental protein str uct ures. 
GPSFun is freely a v ailable to all users at https://bio- web1.nscc- gz.cn/app/GPSFun with user-friendly interfaces and rich visualizations. 
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ntroduction 

nowledge of protein function is crucial for comprehending
etagenome functions, unraveling disease mechanisms and
iscovering new drug targets ( 1 ). Since biochemical experi-
ents for protein function determination are expensive, time-

onsuming, and of low throughput ( 2 ), there is currently a
idening gap between the rapid expansion of protein se-
uences and their limited function annotations ( 3 ). To this
nd, numerous computational tools have been developed for
rotein function predictions at residue and protein levels, such
s protein–ligand binding sites ( 4–9 ), gene ontologies (GO)
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( 10–14 ), subcellular locations ( 15–17 ) and protein solubility
( 18–20 ). 

Despite the abundance of protein function predictors de-
signed for various tasks, a one-stop comprehensive platform
that offers high-quality predictions covering a wide range of
functions is lacking. Furthermore, many existing sequence-
based methods, such as TargetS ( 21 ), heavily rely on mul-
tiple sequence alignments (MSA), which are computation-
ally expensive and futile for orphan proteins that lack close
homologs. While our previous studies, LMetalSite ( 9 ) and
SPROF-GO ( 12 ), have overcome this issue by substituting
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MSA with language model representations, the absence of
structural information still presents an opportunity for en-
hancing accuracy. By comparison, experimental structure-
based approaches encoding protein structures via graph neu-
ral networks (GNN) ( 4–7 ,22–25 ) are often more effective.
Nevertheless, most of these methods have not yet fully ex-
plored the geometry within the structure. More importantly,
structure-based methods are not applicable to novel pro-
teins with unsolved structures. Although our previously de-
veloped GraphSite ( 8 ) has shown the feasibility of leveraging
AlphaFold2-predicted structures ( 26 ) for DNA-binding site
prediction, the computationally intensive structure prediction
pipeline hinders its application to sequences absent from the
AlphaFold Protein Structure Database ( 27 ). 

Based on the recent prosperity of protein language mod-
els ( 28 ,29 ), ESMFold ( 30 ) has emerged as a promising al-
ternative to AlphaFold2, which replaces MSA with a large-
scale pre-trained protein language model to significantly ac-
celerate the prediction speed while maintaining comparable
accuracy. To facilitate protein structure modeling, geometric
deep learning has recently flourished in protein structure pre-
training ( 31 ), protein design ( 32 ,33 ), protein docking ( 34 ,35 ),
and binding site prediction ( 4–6 ,22 ). Building upon these re-
cent advancements, it is promising to further enhance the ap-
plicability and performance of our previously well-validated
methods for protein function annotations ( 7–9 , 12 , 18 ). 

Here, we present GPSFun, a versatile web server for
Geometry-aware Protein Sequence Function annotations, in-
cluding protein binding sites for various ligands (i.e. DNA,
RNA, peptide, protein, ATP, HEM, Zn 

2+ , Ca 2+ , Mg 2+ and
Mn 

2+ ), gene ontologies, subcellular locations and protein sol-
ubility . Specifically , starting from the protein sequences in
FASTA format, GPSFun employs pre-trained language mod-
els to efficiently predict the 3D conformations of the proteins
and extract informative sequence embeddings. Subsequently,
geometric GNNs are utilized to synergistically capture the se-
quence and structure patterns in the protein graphs for diverse
downstream tasks. Notably, GPSFun is independent of MSA
and experimental protein structures, enabling fast and ac-
curate predictions from sequences. Experiments demonstrate
that GPSFun substantially outperforms state-of-the-art meth-
ods across various tasks. By providing user-friendly interfaces
and rich interactive visualizations, GPSFun serves as a reliable
and efficient tool for biologists and chemists. The GPSFun web
server is freely available to all users at https://bio-web1.nscc-
gz.cn/ app/ GPSFun . 

Materials and methods 

Benchmark datasets 

The benchmark datasets for assessing binding site predictions
of DNA, RNA, peptide, ATP and HEM are compiled from
BioLiP ( 36 ). For each ligand, we collected the corresponding
binding proteins with resolutions ≤3.0 Å and lengths ranging
from 50 to 1500 released on 29 March 2023. We combined
the binding site annotations of identical sequences and then
removed redundant sequences sharing identity > 25% over
30% alignment coverage using CD-HIT ( 37 ). Subsequently,
each benchmark dataset was split into a training set with
proteins released before 1 January 2021, and an independent
test set with proteins released between 1 January 2021 and
29 March 2023. The datasets of protein-protein and protein-
metal-ion (Zn 

2+ , Ca 2+ , Mg 2+ and Mn 

2+ ) binding sites are di- 
rectly obtained from our previous studies ( 7 ,9 ). To evaluate 
GO, subcellular localization, and solubility predictions, we 
adopted the datasets from ( 11 ), ( 17 ) and ( 20 ), respectively.
More details of these benchmark datasets are provided in 

Supplementary Note S1 and Supplementary Tables S1 –S4 . 

The workflow of GPSFun 

The workflow of GPSFun is shown in Figure 1 . For an in- 
put sequence, GPSFun first adopts the language model-based 

folding algorithm ESMFold ( 30 ) to predict the 3D confor- 
mation of the protein. Then, another pre-trained protein lan- 
guage model ProtTrans (version: ProtT5-XL-U50) ( 29 ) is used 

to extract sequence embedding, which is further normalized 

via min-max normalization as in ( 9 ,12 ). Subsequently, a geo- 
metric featurizer is employed to capture the residual and rela- 
tional geometric contexts in the predicted structure. We also 

calculate the relative solvent accessibility and secondary struc- 
ture profile from the predicted structure using DSSP ( 38 ) as 
done in our previous works ( 7 ,8 ). The resulting geometric- 
aware protein attributed graph is input to a set of GNNs to 

discover high-level patterns for various downstream tasks, in- 
cluding protein–ligand binding site, GO function, subcellular 
localization and solubility predictions. 

The geometric featurizer 
GPSFun represents a protein as a radius graph where residues 
constitute the nodes and adjacent nodes (distance between C α

< 15 Å) are connected by edges. An end-to-end featurizer is 
utilized to extract geometric features similar to ( 33 ), except 
that we additionally encode the sidechain conformations of 
the residues. Specifically, a local coordinate system is first de- 
fined at each residue based on the relative positions of the 
backbone C α , N and C atoms. Then, several SE(3)-invariant 
geometric features are derived to capture the arrangements of 
backbone and sidechain atoms in or between residues. The 
geometric node features consist of intra-residue distances be- 
tween any two atoms, relative directions of other inner atoms 
to C α , as well as bond and torsion angles. The geometric edge 
features consist of inter-residue distances between any two 

atoms from the adjacent residues respectively, relative direc- 
tions of all atoms in the neighboring residue to C α of the cen- 
tral residue, as well as rotation angles between the two refer- 
ence frames of the neighboring nodes. To encode the sidechain 

conformations, the centroids of the heavy sidechain atoms are 
calculated, which participate in the above feature calculations 
as regular atoms. The detailed definitions of the geometric fea- 
tures are given in Supplementary Note S2 . 

The deep graph neural networks 
Given a protein attributed graph containing ProtTrans, DSSP 

and geometric node features, as well as geometric edge fea- 
tures, several GNN layers are adopted to learn the high-level 
residue representations. Specifically, we denote the hidden fea- 
ture vectors of node i and edge j → i in layer l as h 

l 
i and e l ji ,

respectively. To update node i , the message passing in layer l
is performed as follows: 

ˆ h 

l+1 
i = h 

l 
i + 

∑ 

j∈ N ( i ) ∪ i 
αl 

ji 

(
W 

l 
V h 

l 
j + W 

l 
E e 

l 
ji 

)
(1) 
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Figure 1. The workflow of GPSFun. For an input sequence, GPSFun first adopts the language model-based folding algorithm ESMFold to efficiently 
predict the 3D conformation of the protein. Then, another pre-trained protein language model is used to e xtract inf ormativ e sequence embedding, and a 
geometric featurizer is employed to capture the residual and relational geometric contexts in the predicted str uct ure. The resulting geometric-aware 
protein attributed graph is fed into a set of deep graph neural networks to discover high-level patterns for various downstream tasks, including 
protein–ligand binding site, GO function, subcellular localization and solubility predictions. 
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here the attention coefficient αl 
ji from node j to i is calculated

y: 

⎧ ⎪ ⎨ 

⎪ ⎩ 

w 

l 
ji = 

(
W 

l 
Q h 

l 
i 

)T (
W 

l 
K h 

l 
j + W 

l 
E e 

l 
ji 

)
√ 

d 

αl 
ji = 

exp w 

l 
ji ∑ 

k ∈ N ( i ) ∪ i exp w 

l 
ki 

(2)

W 

l 
Q 

, W 

l 
K , W 

l 
V and W 

l 
E are learnable weight matrices, and

(i ) denotes the neighbours of node i . Then we update the
eatures of an edge using its connecting nodes: 

e l+1 
ji = e l ji + MLP 

(
ˆ h 

l+1 
j ‖ e l ji ‖ ˆ h 

l+1 
i 

)
(3)
where ‖ denotes vector concatenation and MLP denotes multi-
layer perceptron. We also exploit the global node update mod-
ule in ( 33 ) to capture the global information. 

Training and evaluation 

To train the models for protein–ligand binding site, subcellu-
lar localization, and solubility predictions, we conducted five-
fold cross-validation on the training sets. For GO prediction,
the models were trained on the training sets using five different
random seeds and evaluated on the pre-defined validation sets.
All hyperparameters were optimized via grid search based on
the performance of the validation sets. In the test phase, all five
trained models (from cross-validation or different seeds) were
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used to make predictions, which were averaged as the final
prediction of GPSFun. Multi-task learning was employed to
train the binding site data for different ligands concurrently as
in LMetalSite ( 9 ), and we integrated the native and predicted
structures to augment the training process. The homology-
based label-diffusion in SPROF-GO ( 12 ) is also incorporated
into GPSFun for GO and subcellular localization predictions.
We adopted Pytorch ( 39 ) to implement GPSFun, and Adam
optimizer ( 40 ) for model optimization with binary cross en-
tropy loss. More details of the architecture and training strat-
egy of GPSFun are provided in Supplementary Table S5 . Be-
sides, the implementations of the baseline methods are de-
tailed in Supplementary Note S3 . Consistent with previous
studies, we use recall (Rec), precision (Pre), accuracy (Acc),
Jaccard, F1-score (F1), maximum protein-centric F-measure
(F max ), Matthews correlation coefficient (MCC), area under
the receiver operating characteristic curve (AUC), and area
under the precision-recall curve (AUPR) to evaluate the pre-
diction performance, whose detailed definitions are given in
Supplementary Note S4 . 

Web server implementation 

GPSFun is run on a nginx ( https:// nginx.org/ ) server, with
a backend based on Go ( https:// go.dev/ ) and a frontend
based on Vue 3 ( https:// vuejs.org/ ). The combination of
MySQL ( https:// www.mysql.com/ ) and MongoDB ( https://
www.mongodb.com/) is employed as the database solution.
The interactive user interface components are provided by Ele-
ment Plus ( https:// element-plus.gitee.io/ en-US/ ). Protein struc-
tures are visualized using Mol * ( 41 ) ( https:// molstar.org/ ), and
the GO function predictions are visualized by the directed
acyclic graphs (DAG) based on Graphviz ( https://graphviz.
org/). The users’ submitted jobs are queued and then run on a
cluster of NVIDIA Tesla V100 GPUs (16 GB). 

Results 

The GPSFun web server 

The GPSFun website ( https://bio- web1.nscc- gz.cn/app/
GPSFun ) is free and open to all users and there is no login
requirement. GPSFun neither utilizes cookies nor collects any
personal information. GPSFun is compatible with most web
browsers including Microsoft Edge, Google Chrome, Apple
Safari and Mozilla Firefox across major operating systems
including Windows, MacOS and Linux. 

Inputs 
The home page of GPSFun is shown in Figure 2 A, where users
can use the navigation bar to submit data, browse the brief in-
troduction of GPSFun, read the detailed tutorial of the server,
and download the datasets for training and evaluating GPS-
Fun. To start, users can either paste the protein sequences
of interest into the text box or upload a file in F ASTA for -
mat. Batch predictions are supported for up to 20 proteins.
An example input can be automatically loaded with a simple
click. After submitting the example input or clicking the ‘Ex-
ample output’ button, the prediction results for the example
sequences will be displayed for demonstration. 

Outputs 
Once the sequences are submitted, users will be directed to a
task page similar to Figure 2 B. Users can bookmark this page
to retrieve their results within 2 months. Typically, the initial- 
ization of the environment and loading of all pre-trained mod- 
els require less than 5 min, while the annotation for a protein 

with 500 residues takes about 2 min. Upon task completion,
a log file is available. Importantly, an overview of the sub- 
mitted proteins is presented, including protein ID, length, pre- 
dicted local distance difference test (pLDDT) and predicted 

TM-score (pTM) estimated by ESMFold. Higher scores of 
pLDDT and pTM indicate greater confidence in the predicted 

structures. Users can select a protein for detailed predictions 
and visualizations, or click the download button below to ob- 
tain the predictions for all proteins. Here, we discuss the out- 
puts of GPSFun using the prediction results for the echPT1 

gene of Aspergillus ruber (UniProt ( 42 ) ID: A0A2D1VNJ8) as 
an example. 

The result page of GPSFun is divided into five sections.
It starts with the basic information of the target protein in- 
cluding ID , length, pLDD T, pTM and the predicted solubility 
by GPSFun (Figure 2 C). The secondary structure and relative 
solvent accessibility calculated from the ESMFold-predicted 

structure using DSSP are also visualized, where users can fur- 
ther hover the mouse over a sequence position to explore the 
detailed properties of a residue. The second section (Figure 
2 D) displays the protein binding site annotations covering 
ten available ligand types including DNA, RNA, peptide, pro- 
tein, ATP, HEM, Zn 

2+ , Ca 2+ , Mg 2+ and Mn 

2+ . To explore the 
ligand-binding hotspots, users can examine the top n residues 
with the highest predicted scores in an interactive form. No- 
tably, a structure view panel exhibits the predicted structure 
along with the GPSFun-predicted ligand-binding propensities.
The confidence of the predictions is represented with a gradi- 
ent of color from blue for non-binding to red for binding. The 
third section (Figure 2 E) illustrates the GO function annota- 
tions regarding molecular function (MF), biological process 
(BP), and cellular component (CC). The hierarchy of the pre- 
dictions is visualized by a DAG with nodes displayed in dif- 
ferent colors based on the predictive scores of the GO terms.
Users can click a node in the DAG to explore detailed informa- 
tion on the AmiGO website ( https://amigo.geneontology.org/ 
amigo ). The fourth section presents the subcellular localiza- 
tion annotations of the protein (Figure 2 F). Since similar se- 
quences tend to share similar functions, the last section (Figure 
2 F) provides cross-links to other similar proteins in Swiss-Prot 
( 42 ) for reference based on DIAMOND ( 43 ). 

Validation 

For protein–ligand binding site predictions, we compared 

GPSFun with state-of-the-art sequence-based methods includ- 
ing GraphSite ( 8 ), PepBind ( 44 ), PepBCL ( 45 ), TargetS ( 21 ),
and LMetalSite ( 9 ), as well as experimental structure-based 

methods including GraphBind ( 23 ), GeoBind ( 22 ), aaRNA 

( 46 ), PepNN ( 47 ), MaSIF-site ( 4 ), GraphPPIS ( 7 ), ScanNet 
( 5 ), DELIA ( 48 ) and IonCom ( 49 ). As shown in Table 1 and
Supplementary Figures S1 and S2 , GPSFun surpasses all com- 
peting methods in AUPR by over 17.6%, 14.2%, 55.0%,
1.9%, 29.3%, 12.0%, 6.8%, 17.5%, 16.8% and 15.0% in 

the independent test sets of DNA, RNA, peptide, protein, ATP,
HEM, Zn 

2+ , Ca 2+ , Mg 2+ and Mn 

2+ , respectively. To further 
illustrate the effectiveness of sequence embeddings and pre- 
dicted structures from language models, we conducted abla- 
tion studies as shown in Supplementary Table S6 . By employ- 
ing ProtTrans embeddings as sequence features instead of the 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae381#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae381#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae381#supplementary-data
https://nginx.org/
https://go.dev/
https://vuejs.org/
https://www.mysql.com/
https://www.mongodb.com/
https://element-plus.gitee.io/en-US/
https://molstar.org/
https://graphviz.org/
https://bio-web1.nscc-gz.cn/app/GPSFun
https://amigo.geneontology.org/amigo
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae381#supplementary-data
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D

A B

C

E F

Figure 2. The GPSFun web server. ( A ) The home page of GPSFun. ( B ) The task page of GPSFun with an overview of the submitted proteins and a 
running log. (C–F) The outputs of GPSFun for the example input (echPT1 gene). ( C ) The confidence metrics and the secondary str uct ure visualizations of 
the ESMFold-predicted str uct ure. The solubility prediction is also provided. ( D ) Visualizations of the protein–ligand binding site predictions. ( E ) 
Visualizations of the GO function predictions. ( F ) The subcellular localization predictions, as well as cross-links to other similar proteins in Swiss-Prot. 
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Table 1. Performance comparison of GPSFun with state-of-the-art methods on the ligand-binding site test sets 

Test set Method Rec Pre Acc F1 MCC AUC AUPR 

DNA GraphBind 0.607 0.355 0.914 0.448 0.422 0.884 0.424 
GeoBind 0.520 0.442 0.935 0.478 0.445 0.896 0.443 
GraphSite 0.493 0.450 0.936 0.470 0.437 0.910 0.455 
GPSFun 0.477 0.552 0.948 0.512 0.486 0.926 0.535 

RNA aaRNA 0.422 0.360 0.870 0.389 0.318 0.803 0.359 
GeoBind 0.562 0.455 0.891 0.503 0.446 0.804 0.459 
GraphBind 0.633 0.400 0.871 0.491 0.436 0.861 0.506 
GPSFun 0.552 0.552 0.912 0.552 0.504 0.901 0.578 

Peptide PepBind 0.062 0.576 0.956 0.112 0.178 0.655 0.148 
PepNN 0.337 0.210 0.913 0.259 0.222 0.783 0.187 
PepBCL 0.168 0.389 0.951 0.234 0.233 0.758 0.222 
GPSFun 0.195 0.591 0.958 0.294 0.324 0.846 0.344 

Protein MaSIF-site 0.584 0.330 0.767 0.421 0.308 0.777 0.384 
GraphPPIS 0.670 0.320 0.745 0.434 0.328 0.794 0.422 
ScanNet 0.568 0.442 0.832 0.497 0.403 0.832 0.476 
GPSFun 0.613 0.419 0.820 0.498 0.403 0.834 0.485 

ATP GraphBind 0.529 0.473 0.967 0.499 0.483 0.901 0.503 
GeoBind 0.614 0.479 0.967 0.538 0.526 0.927 0.534 
DELIA 0.453 0.689 0.977 0.547 0.548 0.918 0.559 
GPSFun 0.720 0.678 0.981 0.698 0.688 0.978 0.723 

HEM GraphBind 0.733 0.505 0.939 0.598 0.578 0.926 0.638 
DELIA 0.604 0.670 0.957 0.636 0.614 0.928 0.664 
GeoBind 0.707 0.710 0.964 0.709 0.689 0.932 0.724 
GPSFun 0.707 0.787 0.970 0.745 0.730 0.973 0.811 

Zn 2+ TargetS 0.454 0.749 0.987 0.566 0.578 0.874 0.593 
IonCom 0.852 0.137 0.898 0.236 0.317 0.937 0.671 
LMetalSite 0.681 0.859 0.992 0.760 0.761 0.976 0.803 
GPSFun 0.710 0.910 0.993 0.798 0.801 0.982 0.858 

Ca 2+ GeoBind 0.279 0.515 0.985 0.362 0.372 0.895 0.348 
GraphBind 0.371 0.623 0.987 0.465 0.475 0.888 0.430 
LMetalSite 0.413 0.724 0.988 0.526 0.542 0.905 0.492 
GPSFun 0.398 0.848 0.990 0.542 0.577 0.927 0.578 

Mg 2+ GeoBind 0.181 0.475 0.990 0.263 0.289 0.840 0.227 
GraphBind 0.273 0.414 0.989 0.329 0.331 0.776 0.231 
LMetalSite 0.245 0.728 0.991 0.367 0.419 0.865 0.316 
GPSFun 0.263 0.732 0.992 0.387 0.436 0.895 0.369 

Mn 2+ GeoBind 0.569 0.479 0.988 0.520 0.516 0.938 0.454 
GraphBind 0.427 0.706 0.992 0.532 0.545 0.930 0.555 
LMetalSite 0.613 0.719 0.993 0.662 0.661 0.966 0.625 
GPSFun 0.662 0.730 0.994 0.695 0.692 0.981 0.719 

Note : The best / second-best AUC and AUPR values are indicated by bold / underlined fonts. 

Table 2. Performance comparison of GPSFun with state-of-the-art methods on the subcellular localization test set 

Micro Macro 

Method AUC AUPR F1 AUC AUPR F1 Acc Jaccard 

DeepLoc 0.812 0.599 0.487 0.726 0.458 0.368 0.360 0.404 
DeepLoc 2.0 0.840 0.644 0.595 0.776 0.486 0.425 0.391 0.522 
GPSFun 0.876 0.700 0.629 0.802 0.538 0.483 0.416 0.551 

Note : Bold and underlined fonts indicate the best and second-best results, respectively. 

Table 3. Performance comparison of GPSFun with state-of-the-art meth- 
ods on the solubility test set 

Method Acc MCC AUC AUPR 

GraphSol 0.628 0.181 0.606 0.723 
SoluProt 0.624 0.187 0.634 0.748 
SWI 0.680 0.269 0.690 0.784 
NetSolP 0.728 0.402 0.760 0.835 
GPSFun 0.734 0.435 0.792 0.859 

Note : Bold and underlined fonts indicate the best and second-best results, 
respectively. 
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MSA profiles we previously used ( 7 ,8 ), an increase of 4.2% in 

the average AUPR across the ten ligands is obtained. On the 
other hand, removing the structure information causes a sub- 
stantial performance drop of 19.3% in the average AUPR. In 

addition, removal of the geometric featurizer within GPSFun 

also results in a considerable decline (11.5%) in the average 
AUPR, underscoring the significance of GPSFun’s perception 

of protein geometry. 
For GO predictions, GPSFun achieves superior perfor- 

mance to sequence-based methods BLAST-KNN, DeepGO- 
Plus ( 10 ) and GOLabeler ( 50 ), predicted structure-based 

method Foldseek-KNN, as well as protein-protein interac- 
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ion network-based methods DeepGraphGO ( 11 ) and NetGO
 13 ), by more than 11.6%, 25.3% and 5.8% in AUPR on the
est sets of MF, BP and CC, respectively ( Supplementary Table 
7 ). Besides, GPSFun performs comparably to our previous
PROF-GO tool ( 12 ). GPSFun also generalizes well to non-
omologous proteins as shown in Supplementary Table S8 .
egarding subcellular localization prediction, GPSFun outper-

orms sequence-based predictors DeepLoc ( 16 ) and DeepLoc
.0 ( 17 ) by more than 8.7% and 10.7% in micro and macro
UPR, respectively (see Table 2 , Supplementary Table S9
nd Supplementary Figure S3 ). GPSFun also exhibits im-
roved performance compared to BLAST-KNN, Foldseek-
NN and the baseline model without structure information

 Supplementary Table S10 ). For solubility prediction, GPSFun
urpasses sequence-based predictors including GraphSol ( 18 ),
oluProt ( 19 ), SWI ( 51 ) and NetSolP ( 20 ) by more than 4.2%
n AUC and 2.9% in AUPR (see Table 3 and Supplementary 
igure S4 ). Similarly, GPSFun also outperforms BLAST-KNN,
oldseek-KNN and the baseline model without structures
 Supplementary Table S11 ). Supplementary Tables S12 –S15
lso attest to the robustness of GPSFun according to the stan-
ard deviations of the models, as well as the benefits of the
odel ensemble technique. 

onclusions 

espite the availability of numerous protein function predic-
ors tailored for diverse tasks, there is still a lack of a con-
enient computational platform for high-quality predictions
hat comprehensively cover a broad range of functions. More-
ver, most existing sequence-based predictors are computa-
ionally intensive due to their reliance on MSA, and limited
n accuracy owing to the absence of structural information.
n the other hand, existing experimental structure-based ap-
roaches are hampered in genome-scale applications for novel
roteins with unsolved structures. 
Building upon our prior well-validated methods for protein

unction annotations at residue and protein levels, we present
PSFun, a versatile web server designed to annotate vari-
us functions for protein sequences, including protein–ligand
inding sites, gene ontologies, subcellular locations and sol-
bility. GPSFun is equipped with sequence embeddings and
redicted structures from large language models, along with
n advanced geometric protein encoder. Consequently, GPS-
un achieves superior performance to state-of-the-art meth-
ds, while eliminating the need for MSA and experimental
rotein structures. The user-friendly interfaces and rich in-
eractive visualizations offered by GPSFun enable biologists
nd chemists without programming backgrounds to readily
nderstand the results. Serving as a reliable and efficient tool,
PSFun could facilitate the exploration of the intricate land-

cape of protein functions, thereby bridging the gap between
enome and phenome. 

ata availability 

he source code of GPSFun and the data underlying this ar-
icle are available in figshare, at https:// doi.org/ 10.6084/ m9.
gshare.25324903 . 
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