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Abstract

Motivation: Gene Ontology (GO) has been widely used to annotate functions of proteins and

understand their biological roles. Currently only < 1% of >70 million proteins in UniProtKB have

experimental GO annotations, implying the strong necessity of automated function prediction

(AFP) of proteins, where AFP is a hard multilabel classification problem due to one protein with a

diverse number of GO terms. Most of these proteins have only sequences as input information,

indicating the importance of sequence-based AFP (SAFP: sequences are the only input).

Furthermore, homology-based SAFP tools are competitive in AFP competitions, while they do not

necessarily work well for so-called difficult proteins, which have < 60% sequence identity to pro-

teins with annotations already. Thus, the vital and challenging problem now is how to develop a

method for SAFP, particularly for difficult proteins.

Methods: The key of this method is to extract not only homology information but also diverse,

deep-rooted information/evidence from sequence inputs and integrate them into a predictor in a

both effective and efficient manner. We propose GOLabeler, which integrates five component clas-

sifiers, trained from different features, including GO term frequency, sequence alignment, amino

acid trigram, domains and motifs, and biophysical properties, etc., in the framework of learning to

rank (LTR), a paradigm of machine learning, especially powerful for multilabel classification.

Results: The empirical results obtained by examining GOLabeler extensively and thoroughly by

using large-scale datasets revealed numerous favorable aspects of GOLabeler, including signifi-

cant performance advantage over state-of-the-art AFP methods.

Availability and implementation: http://datamining-iip.fudan.edu.cn/golabeler.

Contact: zhusf@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

The Gene Ontology (GO) was originally launched in 1998 for the

consistent descriptions of gene and gene product (such as protein

and RNA) across all species (Ashburner et al., 2000). Currently GO

has >40 000 biological concepts over three domains: Molecular

Function Ontology (MFO), Biological Process Ontology (BPO) and

Cellular Component Ontology (CCO). Annotating protein function

by GO is crucial and useful for understanding the nature of biology.

With the development of next generation sequencing technology, we

have seen the explosive increase of protein sequences, while the

number of proteins with experimental GO annotations is limited,

due to the high time and financial cost of biochemical experiments.

In fact, only <1% of 70 million protein sequences in UniProtKB

(The UniProt Consortium, 2015) have experimental GO annota-

tions. To reduce this huge gap, an imperative issue would be effi-

cient automated function prediction (AFP) (Jiang et al., 2016;

Radivojac et al., 2013).

Automated function prediction is a large-scale multilabel classifi-

cation problem (Zhang and Zhou, 2014) by regarding one GO term

as a class label and also one protein as an instance with multiple

labels (multiple GO terms). AFP is very challenging due to: (i) struc-

tured ontology: GO terms are node labels of a directed acyclic graph

(DAG), by which one gene annotated at one node must be labeled

by GO terms of all ancestor nodes in the DAG; (ii) many labels per

protein: we checked GO terms in Swissprot (Boutet et al., 2016)

(October 2016) with 66 841 proteins and found that a human pro-

tein is labeled by around 71 GO terms on average; (iii) large vari-

ation in the number of GO terms per protein: also we found that

only 634, out of all 10 236 GO terms in MFO (GO Ontology in

June 2016), are associated with >50 proteins. This means that most

of GO terms are associated with only a small number of proteins.

To advance the performance of AFP, the first and second Critical

Assessment of Functional Annotation (CAFA1 and CAFA2) chal-

lenges (Also currently (2016–2017), CAFA3 is on-going.)(competi-

tions) were held in 2010–2011 and 2013–2014, respectively (Jiang

et al., 2016; Radivojac et al., 2013). CAFA uses proteins that have

no experimental annotations for each domain (i.e. MFO, BPO or

CCO), before the prediction submission deadline. A target protein is

called a limited-knowledge protein, if it has experimental annotation

in another domain; otherwise, it is called a no-knowledge protein

(Jiang et al., 2016). Importantly, this means no-knowledge proteins

have only sequences and no experimental annotations for all do-

mains before the deadline. Obviously in practice majority (around

99% or more) of proteins have only sequences, meaning that AFP

for no-knowledge proteins would be more important. In fact experi-

mental information, such as protein–protein interactions, are more

costly than sequencing, resulting in literally limited knowledge

(vastly missing information) among the large-scale data of AFP.

Compared with limited experimental data, sequences can be the pri-

mary data available for various species. These would be also the rea-

son why sequence-based AFP is important.

The results of CAFA for no-knowledge benchmark have shown

that simple homology-based methods with BLAST and PSI-BLAST

are very competitive (Altschul et al., 1997; Gillis and Pavlidis, 2013;

Hamp et al., 2013). For example, Hamp et al. (2013) found that

their implementations using simple homology-based inference was

only slightly worse than the best method from the Jones group in

CAFA1. This indicates that sequence identity is even at the present

time still a key to achieve high performance of large-scale sequence-

based AFP, and also implies that prediction would be hard for se-

quences of low identities with any other sequences. For example, the

no-knowledge benchmark can be divided into two types, according

to the largest global sequence identity of the corresponding sequence

to any other sequences in the training data (Jiang et al., 2016). That

is, one type, called difficult, includes those with the largest sequence

identity of <60%; otherwise they are called easy. So an urgent issue

for AFP is, instead of relying on sequence homology only, to develop

an approach which can predict the function of the difficult type of

proteins within the scope of sequence-based approach. An important

point of this approach would be to collect not only homology-

related information but also various types of diverse and informative

sequence information and develop a method which can integrate all

of these information effectively and also efficiently.

We propose a new method which we call GOLabeler for predict-

ing functions of no-knowledge proteins, particularly for those in the

difficult type. The basic idea of GOLabeler is to integrate different

types of sequence-based evidence in the framework of ‘learning to

rank’ (LTR; See Supplement for more introduction on LTR; Li,

2011). The idea of LTR is that for example, positive examples which

are ranked lower are more penalized, while they are treated rather

equally in regular classification. LTR was originally developed for

ranking web pages to be consistent with the relevance between web

pages and user queries. If we focus on binary relevance, the ranking

problem turns into the problem of predicting relevant web pages for

given queries. This is exactly multilabel classification, by regarding

web pages as labels and queries as examples. LTR can solve this

kind of problem by ranking labels and choosing top of them. So

LTR can be applied to AFP by thinking GO terms as labels and pro-

teins as examples. Another noteworthy advantage of LTR is that

GOLabeler can integrate multiple sequence-based evidence effect-

ively, which are generated by different types of classifiers (or compo-

nents), where all information are derived from the sequences only.

We examined the performance of GOLabeler extensively by

using large-scale datasets, which were generated by following the

idea of using time-delayed performance evaluation procedure in

CAFA. Particularly we compared the performance of GOLabeler

with all component methods, three ensemble approaches and two

sequence-based methods. The computational experimental results

indicate significant performance advantage of GOLabeler over all

competing methods in all experimental settings. In particular, the

advantage of GOLabeler could be seen in the prediction for difficult

proteins. Finally we present a typical result, showing that

GOLabeler could predict the largest number of all GO terms cor-

rectly among all competing methods. Moreover, according to the

initial evaluation results of CAFA3 (http://biofunctionprediction.

org/meetings/), GOLabeler achieved the first place out of nearly 200

submissions from around 50 labs all over the world in terms of Fmax

in all three GO domains.

2 Related work

A lot of biological information, such as protein structures, protein-

protein interactions (Ma et al., 2014) and gene expression (Walker

et al., 1999), are useful for AFP, while majority of proteins have no

such information except for sequences (Shehu et al., 2016). We thus

focus on sequence-based approaches, in which sequences or their

parts are used in various ways, such as (i) sequence alignment, (ii)

domains and motifs and (iii) features, etc., as follows: (i) sequence

alignment: BLAST and/or PSI-BLAST are used to find homologous

sequences and transfer their functional annotations to the query pro-

tein. For example, GoFDR (Gong et al., 2016), a top method in

CAFA2, uses multiple sequence alignment (MSA) to generate
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position-specific scoring matrix (PSSM) for each GO term, to score

the query against the corresponding GO term. (ii) domains and

motifs: they are usually functional sites of a query protein, and all of

them in the query sequence are detected by using protein domain/

motif resources, such as CATH (Das et al., 2015), SCOP (Murzin

et al., 1995) and Pfam (Sonnhammer et al., 1997), to understand the

function of the query protein. (iii) Features: the protein query is an

amino acid sequence, from which biophysical and biochemical attri-

butes can be generated, which can be closely related with domains,

motifs and protein families but not necessarily the same. ProFET

(Protein Feature Engineering Toolkit) (Ofer and Linial, 2015) is a

typical tool for extracting hundreds of such sequence-derived fea-

tures including elementary biophysical ones. We note that these vari-

ous sequence-based approaches play different roles, being

complement to each other for AFP.

Thus integrating different types of information or classifiers

trained from them would be a key to improve the performance of

AFP. In fact in AFP, several approaches of using the idea of integrat-

ing data/classifiers have been already proposed. MS-kNN, a top

method in CAFA1 and CAFA2, predicts the function by averaging

over the prediction scores from three data sources, sequences, ex-

pression and protein-protein interaction (Lan et al., 2013) (Note

that MS-kNN is NOT a sequence-based method). Also Jones-UCL,

the top team of CAFA1, integrates prediction scores from multiple

methods by using the ‘consensus’ function [given in Equation (1)]

(Cozzetto et al., 2013). Recently different data integration methods,

mainly ‘one vote’, ‘weighted voting’ and ‘consensus’, where ‘one

vote’ relies on the classifier with the maximum confidence only,

while ‘weighted voting’ weights over input classifiers (Khan et al.,

2015; Lan et al., 2013).

All such data integration methods are rather simple integration

technique, and this might underestimate the performance of integra-

tion. Our proposed approach, GOLabeler, is based on Learning to

Rank (LTR), a powerful paradigm in machine learning for integrat-

ing multiple classifiers trained from different sequence-derived data.

Recently LTR has been effectively used in bioinformatics, such as

annotating biomedical documents (Liu et al., 2015; Peng et al.,

2016) and predicting drug-target interactions (Yuan et al., 2016).

LTR integrates the prediction results of component classifiers so

that GO terms with being relevant more to the query protein should

be ranked higher. One advantage of LTR is that the prediction re-

sults of components can be simply encoded as the input features of

the model, over which any cutting edge classification/regression al-

gorithm can be run. Thus, GOLabeler provides a nice framework of

integrating different sequence-based information of AFP, being

promising to improve the performance of the current AFP of no-

knowledge proteins.

3 Materials and methods

3.1 Notation
Let D be the given training data with ND proteins, i.e. jDj ¼ ND.

Let Gi be the i-th GO term, and NGi
be the number of proteins with

Gi in D (Note that this number is obtained by considering the struc-

ture of GO. That is, if Gi is assigned to a protein, this protein is with

all GO terms of the ancestors of Gi in GO). Let T be the given test

data (the number of proteins: NT ¼ jTj), in which let Pj be the j-th

protein. Let I Gi; pð Þ be a binary indicator, showing if p is with

ground-truth (true) Gi. That is, if p has ground-truth (true) Gi, I

Gi;pð Þ is one; otherwise zero. Let S Gi;Pj

� �
be the score (obtained by

a method), showing that Pj is with Gi. In particular in ensemble

methods, Sk Gi;Pj

� �
is the predicted score between Gi and Pj by the

k-th method (component).

3.2 Overview
Figure 1 shows the entire scheme of GOLabeler for AFP. In testing,

given the sequence of a query protein, candidate GO terms are gen-

erated from five components, which are already trained by using dif-

ferent types of information. Each candidate GO term receives

prediction scores from the five components, resulting in a feature

vector of length five. Then candidate GO terms, i.e. feature vectors,

are put into the learning to rank (LTR) model, which is also already

trained by using training data, and finally, a ranked list of GO terms

is returned as the final output of GOLabeler.

3.3 Component methods
We selected five typical, different sequence-based information for

generating components. They are called Naive (GO term frequency),

BLAST-KNN (B-K, k-nearest neighbor using BLAST results), LR-

3mer [Logistic regression (LR) of the frequency of amino acid tri-

gram], LR-InterPro (LR of InterPro features), and LR-ProFET (LR

of ProFET features), which are all explained more below. Naive

method reflects the prior probability of GO terms and BLAST-KNN

makes use of homology based inference for function prediction.

Amino acid trigram has been used as one component by Jones-UCL

group, which achieved the first place in CAFA1 (Cozzetto et al.,

2013). ProFET has been used in various function prediction task,

LR-Interpro makes use of rich domain, family and motif informa-

tion. These components from different information should be in-

formative and complement to each other.

3.3.1 Naive: GO term frequency

For given Pj, the score that Pj is associated with Gi can be computed

simply by the frequency of Gi in D, as follows (Note that this

method gives the same score for all Pj):

S Gi;Pj

� �
¼ NGi

ND

3.3.2 BLAST-KNN (B-K): sequence alignment

It is reported that using the similarity score (bit-score) between simi-

lar proteins and the query slightly improves the performance of just

using the sequence identity (Radivojac et al., 2013). So for given Pj,

the score of BLAST-KNN S Gi;Pj

� �
is computed by first running

BLAST to identify a set Hj of similar proteins to Pj in D using a

Fig. 1. Entire scheme of GOLabeler with three steps for AFP
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certain cut-off value (set at e-value of 0.001 in our experiments).

Finally the score can be obtained as follows:

S Gi;Pj

� �
¼
P

p2Hj
I Gi;pð Þ � B Pj;p

� �
P

p2Hj
B Pj; p
� � :

Here p stands for one of similar proteins in set Hj.

3.3.3 LR-3mer: amino acid trigram

LR-3mer, LR-InterPro and LR-ProFET are three logistic regression

based methods. Each protein P is represented as a feature vector X

of size n, and the value of the i-th feature is Xi. For estimating the

probability of P with GO term of Gk, we use logistic regression

classifier,

P Gk ¼ 1jXð Þ ¼ 1

1þ exp b0 þ
P

j bjXj

� �h i

where b is the weight vector estimated from training data. The prob-

ability is then used as the score of S Gk;Pð Þ. Specifically, for each

protein in LR-3mer, we use the frequency of the types of three con-

secutive amino acids (amino acid trigram or 3mer) in D, which turns

into a vector of 8000 (¼ 203) features. We then use this vector as an

input of logistic regression classifier of each GO term.

3.3.4 LR-InterPro: protein families, domains and motifs

InterPro (Mitchell et al., 2015) combines 14 different protein and

domain family databases, including Pfam (Sonnhammer et al.,

1997), CATH-Gene3D (Sillitoe et al., 2015), CCD (Marchler-Bauer

et al., 2015) and SUPERFAMILY (de Lima et al., 2010), so covering

a large number of protein families, domains and motifs in sequences.

We run InterProScan (http://www.ebi.ac.uk/interpro/interproscan.

html) over a sequence in D, resulting in a binary vector with 33 879

features, and then use this vector as an instance of training logistic

regression classifier of each GO term.

3.3.5 LR-ProFET: sequence features including biophysical

properties

ProFET (https://github.com/ddofer/ProFET) (Ofer and Linial, 2015)

is a software toolkit extracting features from protein sequence for

function prediction. These features can be divided into six catego-

ries: (i) Biophysical quantitative properties; (ii) Letter-based fea-

tures; (iii) Local potential features; (iv) Information based statistics;

(v) AA scale-based features; and (vi) Transformed CTD features. We

run ProFET over a sequence in D to extract these features, resulting

in a vector of 1170 features which is used as an input to train logistic

regression classifier of each GO term.

3.4 GOLabeler (with three steps)
3.4.1 Step 1: Generate candidate GO terms

For a query protein, we run five component methods to have pre-

dicted GO terms, and after choosing the top-k predicted GO terms

from each component, merge them together as the candidate GO

terms (we used k¼30 in our experiments; See Section 4.3). Note

that reducing k is to focus on the most relevant GO terms to query

protein and also reduce the computational burden of the model.

3.4.2 Step 2: Generate features for ranking GO terms

We then generate features of the query protein by using the scores

(of each of the candidate GO terms) predicted by all five component

methods, resulting in a 5-dimensional feature vector for each pair of

a GO term and one query protein. Note that all score values are be-

tween 0 and 1.

3.4.3 Step 3: Rank GO terms by learning to rank (LTR)

Finally, we use LTR to rank all candidate GO terms of each query

protein. Note that all proteins in the training data and their candidate

GO terms are used for training the LTR model. LTR can effectively

integrate multiple sequence-based evidence for AFP of no-knowledge

proteins in the framework of multilabel classification.

3.5 Competing methods
In our experiments, we compare GOLabeler with five methods:

three ensemble approaches with the same component outputs as

GOLabeler: one vote, weighted voting (WV) and consensus [which

have been often used in other AFP work, e.g. (Vidulin et al., 2016)],

and two existing methods, BLAST (Altschul et al., 1997) and

GoFDR (Gong et al., 2016). We note that GoFDR was a top per-

former of CAFA2.

3.5.1 One vote

One vote selects the most confident prediction out of the five

components.

S Gi;Pj

� �
¼ max

k
Sk Gi;Pj

� �
:

3.5.2 Weighted voting (WV)

Weighted voting combines the predicted scores of component meth-

ods linearly by using weights over components as follows:

S Gi;Pj

� �
¼
P

k xk � Sk Gi;Pj

� �
P

k xk
;

where xk is the weight assigned to the k-th component. In our ex-

periments, the weights are set in proportion to the area under

precision-recall curve (AUPR) of each component. See Section 4.2

for AUPR more.

3.5.3 Consensus

Consensus computes the score as follows:

S Gi;Pj

� �
¼ 1�

Y
k

1� aSk Gi;Pj

� �� �
; (1)

where a 2 0; 1½ � is a constant to balance components by their import-

ance (we used a¼1, the most typical value).

3.5.4 BLAST

BLAST was used as a baseline method in both CAFA1 and CAFA2,

and so we use this as a competing method. Similar to BLAST-KNN,

given query protein Pj, the similar proteins Hj in D to the query pro-

tein are obtained by using some cut-off value (again set at e-value of

0.001 in our experiments) against similarity score (bit-score) B

Pj;p
� �

between Pj and protein p in Hj, by which the score by BLAST

can be obtained as follows:

S Gi;Pj

� �
¼ max

p2Hj

I Gi; pð Þ � B Pj; p
� �

:

3.5.5 GoFDR

Among the top performance methods in CAFA2, GoFDR is only the

method having available source code (http://gofdr.tianlab.cn), and

so we choose GoFDR as a competing method (Gong et al., 2016).
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For a query protein, GoFDR run BLAST or PSI-BLAST to obtain

multiple sequence alignment (MSA) over the query sequence and

find functionally discriminating residues (FDR) of each GO term in

the MSA which are used to generate a position-specific scoring ma-

trix (PSSM). GoFDR uses the PSSM to compute the score between

the query protein and a GO term.

4 Experiments

4.1 Data
Data collection approximately followed the corresponding part of

CAFA1 (Radivojac et al., 2013) and CAFA2 (Jiang et al., 2016):

1. Protein sequences

We downloaded the FASTA-format files of all proteins from

UniProt (http://www.uniprot.org/downloads) (The UniProt

Consortium, 2015).

2. GO terms

We downloaded protein function annotation from SwissProt

(http://www.uniprot.org/downloads) (Boutet et al., 2016), GOA

(http://www.ebi.ac.uk/GOA) (Huntley et al., 2015), and GO

(http://geneontology.org/page/download-annotations) (Ashburner

et al., 2000) in October 2016. Out of them we extracted all ex-

perimental annotations in: ‘EXP’, ‘IDA’, ‘IPI’, ‘IMP’, ‘IGI’, ‘IEP’,

‘TAS’ or ‘IC’, and then merged them to form a full annotation

dataset (Note that SwissProt did not have annotation dates and so

we downloaded data of SwissProt in January 2016 and January

2015 also).

We then generated the following four datasets, which are mainly

separated by the time stamps that proteins are annotated.

1. Training: training for components

All data annotated in 2014 or before.

2. LTR1: training for LTR

Among the data experimentally annotated in 2015 and not be-

fore 2015, no-knowledge proteins.

3. LTR2: training for LTR

Among the data experimentally annotated in 2015 and not be-

fore 2015, limited-knowledge proteins.

4. Testing: testing for competing methods

All data experimentally annotated in 2016 (January to October

of 2016, since we downloaded the data in October 2016) and

not before 2016.

Note that this time-series way of separating training and testing

data is the same as CAFA. Also we used the same target species as

CAFA3, an ongoing challenge for AFP, in LTR1, LTR2 and Testing.

Table 1 shows the number of proteins in the four datasets. We used

Testing (or we call benchmark) as the testset to examine the per-

formance of competing methods.

4.2 Performance evaluation measures
We used three measures: AUPR (Area Under the Precision-Recall

curve), Fmax and Smin for evaluation of the predicted GO terms for

each protein, i.e. a multilabel classification setting. AUPR as well as

AUC (area under the receiver operator characteristics curve) are

very general evaluation criteria for classification. AUPR punishes

false positive more than AUC, resulting in being more frequently

used when high costs are required for obtaining labels, such as ex-

perimental biology. Fmax and Smin are less general but have been

used in CAFA [Evaluation criteria have been actively discussed,

e.g. (Jiang et al., 2014).]. We explain Fmax and Smin below (notation

follows the Method section):

Fmax ¼ max
s

2 � pr sð Þ � rc sð Þ
pr sð Þ þ rc sð Þ

� �
;

where pr(s) and rc(s) are so-called precision and recall, respectively,

obtained at some cut-off value, s, defined as follows:

pr sð Þ ¼ 1

h sð Þ
Xh sð Þ

j¼1

P
i 1 S Gi;Pj

� �
� s

� �
� I Gi;Pj

� �
P

i 1 S Gi;Pj

� �
� s

� � :

rc sð Þ ¼ 1

NT

XNT

j¼1

P
i 1 S Gi;Pj

� �
� s

� �
� I Gi;Pj

� �
P

i I Gi;Pj

� � ;

where h sð Þ is the number of proteins with the score no smaller than

s for at least one GO term, and 1 �ð Þ is 1 if the input is true; otherwise

zero.

Smin ¼ min
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ru sð Þ2 þmi sð Þ2

q� �
;

where ru(s) and mi(s) are two types of errors, called remaining un-

certainty and misinformation, respectively, given as follows:

ru sð Þ ¼ 1

NT

XNT

j¼1

X
i

ic Gið Þ � 1 S Gi;Pj

� �
< s

� �
� I Gi;Pj

� �
:

mi sð Þ ¼ 1

NT

XNT

j¼1

X
i

ic Gið Þ � 1 S Gi;Pj

� �
� s

� �
� 1� I Gi;Pj

� �� �
;

where ic(Gi) is the information content of Gi, defined as follows:

ic Gið Þ ¼ log2

1

Pr Gijparents of Gi in GOð Þ ;

where Pr Gijparents of Gi in GOð Þ is the conditional probability of

Gi given its parents of the GO structure [see Clark and Radivojac

(2013) for more details].

Practically we evaluated the top 100 GO terms predicted by

competing methods for each GO domain (we used 100, since the

number of GO terms per protein is clearly smaller than 100, and

also simply the top GO terms are important).

4.3 Implementation and parameter settings
We processed the FASTA-format data by biopython (http://biopy

thon.org/) and used sklearn (http://scikit-learn.org/stable/index.

html) for running logistic regression and xgboost (Chen and

Guestrin, 2016) to run LTR.

4.3.1 GOLabeler

1. BLAST-KNN

Ver. 2.3.0þ was used with default parameters for BLAST, ex-

cept that blastdb was from all proteins in D and the number of

iterations was one.

2. LTR

We used ‘rank: pairwise’ as the objective loss function in

xgboost. Also the maximum depth of trees in MART (Multiple

Additive Regression Trees) was set at 4, to avoid overfitting to

the training data. We selected top 30 predictions from each com-

ponent to be merged, since this number provided the best per-

formance in five-fold cross validation over LTR training data

(out of four values {10, 30, 50 and 70} tested).
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4.3.2 Competing methods

1. BLAST

We used the same setting as BLAST-KNN.

2. GoFDR

We ran GoFDR over all required data [i.e. all annotation with-

out ‘IEA’ or ‘RCA’ evidence and some annotations with IEA evi-

dence before 2016 from GOA (Huntley et al., 2015)].

4.4 Results
We resampled the test dataset with replacement 100 times (boot-

strap with replacement) to make the experiment reliable. We used

not only the three performance evaluation measure, but also paired

t-test to statistically evaluate the performance difference between

the best performance method (in boldface in tables) and all other

methods. The result was considered significant if P value was

smaller than 0.05. Then in tables, the best performance value is

underlined if the value is statistically significant (see the supplemen-

tary materials for detailed P values).

4.4.1 Comparison with component methods

We first compare the five component methods, the results being

shown in Table 2, where out of the five methods, the best values in

each column are in italics. Out of the nine (¼three evaluation criteria

times three domains) comparison settings, LR-InterPro achieved the

best five times, being followed by BLAST-KNN which achieved the

best three times. This suggests that LR-InterPro and BLAST-KNN are

the two best component methods, which means that domain, family,

motif and homology information are very informative. The other

three methods are less accurate, while their high performance could

be found in some specific cases: LR-3mer achieved the highest Fmax in

CCO. We then examined the performance of GOLabeler trained by

LTR1, the results being shown in the same table, where GOLabeler

with only two components was also checked as well as GOLabeler

(with all five components), which are called GOL (Bþ I) and GOL

(All), respectively. The table shows that GOL (All) outperformed

all competing methods in eight out of nine evaluation settings. For ex-

ample, GOL (All) achieved the highest Fmax of 0.580 in MFO,

followed by GOL (Bþ I) of 0.578, BLAST-KNN of 0.573 and

LR-InterPro of 0.556. This result indicates the advantage of incorpo-

rating all component methods in GOLabeler, compared with using

only a smaller number of components. Another finding was that

among MFO, BPO and CCO, BPO is the hardest task in AFP (this is

consistent with the results of CAFA). For example, the best AUPR of

GOL (All) was 0.546 and 0.700 for MFO and CCO, respectively,

while it was only 0.225 for BPO, implying that sequences are the

limited information for BPO in AFP. Hereafter, we show the result by

GOL (All) as that by GOLabeler.

4.4.2 Comparison with other ensemble techniques and also

performance improvement by making training size larger

We examined the performance of recent ensemble techniques with

the same five component methods and also the performance im-

provement by increasing the training data for ensemble learning, i.e.

weighted voting and GOLabeler. Table 3 shows the result summary

under nine experimental settings. When we used LTR1 only

(GOL-L1), GOLabeler achieved the best performance among the

competing methods. Weighted voting was the next best, while

the performance of one vote was lowest in all nine settings, implying

that choosing one component would not work well. By adding

LTR2, the performance of GOLabeler (GOL-L1þ2) was more

pronounced, achieving the best in all nine settings, except only one,

while the performance of weighted voting was increased in only five

out of all nine cases. This means that GOLabeler can take the advan-

tage of using a larger size of data more effectively than weighted

Table 1. Data statistics (# proteins) on species with at least ten proteins for one domain of GO for each of the four datasets

Species Training LTR1 LTR2 Testing

MFO BPO CCO MFO BPO CCO MFO BPO CCO MFO BPO CCO

HUMAN (Homo sapiens) 9087 11019 15 977 150 216 718 261 454 161 42 64 67

MOUSE (Mus musculus) 5697 9262 8770 169 339 237 140 137 175 100 235 146

DROME (Drosophila melanogaster) 4646 10 778 7609 43 579 172 132 224 327 125 339 188

ARATH (Arabidopsis thaliana) 3857 7238 8492 84 198 140 195 114 70 84 180 128

DANRE (Danio rerio) 2173 8374 1500 76 722 159 108 56 50 66 380 27

RAT (Rattus norvegicus) 4199 5128 4 459 121 185 178 56 70 106 31 88 88

DICDI (Dictyostelium discoideum) 414 921 803 17 52 25 16 15 19 16 26 12

All species (not only the above) 45 543 77 170 71 388 724 2387 1679 1081 1206 956 497 1340 770

Table 2. Performance comparison with component methods

AUPR Fmax Smin

MFO BPO CCO MFO BPO CCO MFO BPO CCO

Naive 0.141 0.151 0.591 0.242 0.299 0.653 7.684 15.965 6.535

B-K 0.452 0.192 0.558 0.573 0.339 0.620 5.157 15.713 5.647

LR-3mer 0.144 0.152 0.600 0.255 0.301 0.664 7.587 15.934 6.415

LR-InterPro 0.536 0.198 0.636 0.556 0.351 0.654 5.248 15.655 5.783

LR-ProFET 0.173 0.096 0.550 0.330 0.265 0.633 7.831 17.030 6.380

GOL (BþI) 0.538 0.173 0.657 0.578 0.352 0.665 5.126 15.225 5.439

GOL (All) 0.546 0.225 0.700 0.580 0.370 0.687 5.077 15.177 5.518

Note: B-K, BLAST-KNN; GOL (Bþ I), only BLAST-KNN and LR-InterPro were used for components in GOLabeler; GOL (All), all five components are used

in GOLabeler.
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voting. Also this implies that the performance of GOLabeler can be

rather easily improved further by increasing the annotation data in

the future. Hereafter we show the results of GOLabeler and

weighted voting with all training data for LTR (both LTR1 and

LTR2) as those by GOLabeler and weighted voting, respectively.

4.4.3 Comparison with BLAST and GoFDR

Table 4 shows the performance of BLAST and GoFDR. GOLabeler

outperformed both BLAST and GoFDR in all experimental settings,

except only one, being statistically significant. GoFDR is a method

that achieved the top performance in CAFA2, demonstrating the

high performance of GOLabeler, even compared with high per-

formers in CAFA.

4.4.4 Performance over ‘difficult’ proteins

The no-knowledge test dataset can be divided into two datasets:

easy and difficult proteins, due to the sequence identity of 60% to

the most similar known protein in the training data (Jiang et al.,

2016). The size of difficult proteins in the test dataset is 370 in MF,

870 in BP and 532 in CC, respectively. As mentioned in

Introduction, AFP for difficult proteins is especially important, since

homology-based methods, such as BLAST-KNN, are unable to pre-

dict the functions of difficult proteins. Table 5 shows the summary

of results over difficult proteins in the test dataset, compared with

two best component methods, BLAST-KNN and LR-InterPro, and

two ensemble methods, weighted voting and consensus. From the

table, we can find that GOLabeler could outperform all competing

methods in all nine settings, meaning that the performance advan-

tage of this case was much clearer than the case of using both diffi-

cult and easy proteins. We note that this result indicates that

GOLabeler is particularly useful for AFP of difficult proteins, for

which effective methods currently do not exist.

4.4.5 Case study

Finally, we show a specific example of the results obtained by

GOLabeler and other competing methods, to illustrate the real effect

of the performance difference on annotating GO to unknown pro-

teins. Table 6 shows the list of predicted GO terms (The GO terms

by each method are determined by its own cut-off value to achieve

the best value of Fmax) of MFO for a protein, Wor4p (Uniprot

Symbol: Q5ADX8), which is, in ground-truth, associated with 12

GO terms in MFO. Also Figure 2 shows the directed acyclic graph

by the 12 GO terms associated with Q5ADX8. Note that Q5ADX8

is a difficult protein. There are no homologous proteins of Q5ADX8

(set the cut-off of e-value at 0.001), by which BLAST-KNN was un-

able to predict any GO terms. Naive predicted three GO terms, out

of which only one very generally term, GO: 0005488 (Binding), was

correct. By checking the InterPro database, we found that Q5ADX8

matches Zinc finger C2H2-type domain (IPR013087) (https://www.

ebi.ac.uk/interpro/protein/Q5ADX8), which was associated with

Table 3. Performance comparison with ensemble techniques and also improvement by adding LTR2 to LTR1

AUPR Fmax Smin

MFO BPO CCO MFO BPO CCO MFO BPO CCO

One vote 0.423 0.193 0.651 0.543 0.335 0.682 6.116 16.237 5.883

WV-L1 0.530 0.230 0.694 0.571 0.368 0.692 5.119 15.117 5.516

WV-L1þ 2 0.530 0.232 0.694 0.571 0.370 0.692 5.114 15.101 5.506

Consensus 0.454 0.222 0.670 0.543 0.360 0.692 5.687 15.510 5.660

GOL-L1 0.546 0.225 0.700 0.580 0.370 0.687 5.077 15.177 5.518

GOL-L1þ 2 0.549 0.236 0.697 0.586 0.372 0.691 5.032 15.050 5.479

Note: WV-L1, Weighted voting with LTR1 only; WV-L1þ 2, Weighted voting with LTR1 and LTR2; GOL-L1, GOlabeler with LTR1 only; GOL-L1þ 2,

GOLabeler with LTR1 and LTR2.

Table 4. Performance comparison with BLAST and GoFDR

AUPR Fmax Smin

MFO BPO CCO MFO BPO CCO MFO BPO CCO

BLAST 0.263 0.071 0.311 0.435 0.262 0.513 7.223 17.358 6.848

GoFDR 0.424 0.183 0.503 0.535 0.322 0.587 6.075 16.909 5.424

GOLabeler 0.549 0.236 0.697 0.586 0.372 0.691 5.032 15.050 5.479

Table 5. Performance comparison over ‘difficult’ proteins

AUPR Fmax Smin

MFO BPO CCO MFO BPO CCO MFO BPO CCO

B-K 0.400 0.203 0.510 0.553 0.350 0.603 5.194 15.410 5.658

LR-InterPro 0.505 0.217 0.639 0.534 0.363 0.663 5.306 15.074 5.581

Consensus 0.407 0.239 0.659 0.517 0.368 0.699 5.987 15.217 5.678

WV 0.497 0.248 0.702 0.547 0.379 0.701 5.264 14.612 5.423

GOLabeler 0.516 0.258 0.704 0.567 0.382 0.706 5.087 14.538 5.344

Note: B-K, BLAST-KNN; WV, Weighted voting.
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GO: 0003676 (nucleic acid binding) (http://www.ebi.ac.uk/interpro/

entry/IPR013087). This was exactly what LR-InterPro predicted.

Compared with Naive method, LR-InterPro, LR-3mer and LR-

ProFET could make more correct annotations particularly for more

specific terms, such as GO: 0003676 (nucleic acid binding). The pre-

diction by weighted voting was also at the same level of specificity

as the three component methods (The poor performance of weighted

voting might be caused by BLAST-KNN, which was unable to pre-

dict any GO term). In fact, the predicted GO terms by LR-InterPro

and weighted voting were all correct, but the number of the pre-

dicted GO terms was only four and five, respectively. On the other

hand, GOLabeler predicted nine terms, out of which eight were cor-

rect. Note that the only wrong predicted GO term GO: 0005515

(protein binding) was a very general term, which was also predicted

by Naive, LR-3mer and LR-PROFET. More importantly, as shown

in Figure 2, the prediction by GOLabeler was most specific. For ex-

ample, even GO: 0044212 (transcription regulatory region DNA

binding), which is next to the end node in Figure 2, was correctly

annotated. From this result, we can see that the performance advan-

tage of GOLabeler results in sizeable differences in quality of real

function annotation.

4.5 Computational efficiency
We implemented GOLabeler on a server with Intel(R) Core(TM) i7-

6700 K 4.00 GHz CPU and 64GB RAM. Training all component

methods and ranking models took around 10 days. During predic-

tion, most computation was spent on BLAST-KNN. Given a thou-

sand new proteins, annotating GO took only less then 6 h.

5 Conclusion and discussion

Sequence-based large-scale AFP (SAFP) for proteins, particularly for

difficult proteins, is an important problem, especially with three

challenging issues: (i) structured ontology, (ii) many labels per pro-

tein and (iii) large variation in the number of GO terms per protein.

For this problem, we have proposed GOLabeler, addressing the

three issues: (i) by using all corresponding GO terms in the DAG

structure of GO, (ii) by learning to rank (LTR), a very effective mul-

tilabel classification framework and also (iii) by LTR, which allows

not to select the number of GO terms per protein. Our thorough

and extensive experiments show the clear advantage of GOLabeler

in predictive performance from many viewpoints over state-of-the-

art techniques in SAFP and ensemble approaches. Diverse informa-

tion from sequences is very useful for SAFP. GOLabeler currently in-

tegrates five classifiers as components which are from GO term

frequency, sequence homology, trigram, motifs and biophysical

properties, and so on. The framework of GOLabeler or LTR is flex-

ible and allows to incorporate any classifiers we can use, implying

that further performance improvement would be possible by adding

more information from sequences. Also this could be done for not

only SAFP but also more general AFP. This would be interesting fu-

ture work. Also possible future work would be to develop

GOLabeler to improve the performance of AFP for specific species,

especially for those with very few proteins, for which current AFP

methods do not necessarily work sufficiently. Finally, with the devel-

opment of structure prediction methods, it will be increasingly im-

portant to integrate protein sequence with predicted structure for

function prediction.

Fig. 2. Predicted GO terms of Q5ADX8 in DAG of MFO by different methods

Table 6. Predicted GO terms of Q5ADX8 in MFO by GOLabeler and competing methods

Method Predicted GO terms

Naive GO: 0005488, GO: 0003824, GO: 0005515

GoFDR GO: 0005488, GO: 0043169, GO: 0043167, GO:00046872, GO: 0097159, GO: 0003676, GO: 1901363, GO: 0003674

B-K

LR-3mer GO: 0005488, GO: 0005515, GO: 0003824, GO: 0097159, GO: 1901363, GO: 0003676

LR-InterPro GO: 0005488, GO: 0003677, GO: 1901363, GO: 0097159, GO: 0003676

LR-ProFET GO: 0003676, GO: 0097159, GO: 1901363, GO: 0005488, GO: 0003723, GO: 0003677, GO: 0001010, GO: 0005515

WV GO: 0005488, GO: 0097159, GO: 1901363, GO: 0003676

GOLabeler GO: 0005488, GO: 0003676, GO: 0097159, GO: 1901363, GO: 0003677, GO: 0005515, GO: 0044212, GO: 0000975,

GO: 0001067

Ground truth GO: 0005488, GO: 0097159, GO: 1901363, GO: 0003676, GO: 0001067, GO: 0003677, GO: 0000975, GO: 0003690,

GO: 0043565

GO: 0044212, GO: 1990837, GO: 0000976

Note: Correctly predicted GO Terms are in bold face.

WV, Weighted voting.
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