
Received: August 28, 2024. Revised: December 15, 2024. Accepted: January 6, 2025
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Briefings in Bioinformatics, 2025, 26(1), bbaf014

https://doi.org/10.1093/bib/bbaf014

Problem Solving Protocol

GOPhage: protein function annotation for
bacteriophages by integrating the genomic context
Jiaojiao Guan 1, Yongxin Ji 1, Cheng Peng 1, Wei Zou 1, Xubo Tang 1, Jiayu Shang 2,*, Yanni Sun 1,*

1Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong (SAR), China
2Department of Information Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (SAR), China

*Corresponding authors. Jiayu Shang, Department of Information Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (SAR), China.
E-mail: jiayushang@cuhk.edu.hk; Yanni Sun, Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
(SAR), China. E-mail: yannisun@cityu.edu.hk

Abstract

Bacteriophages are viruses that target bacteria, playing a crucial role in microbial ecology. Phage proteins are important in understanding
phage biology, such as virus infection, replication, and evolution. Although a large number of new phages have been identified via
metagenomic sequencing, many of them have limited protein function annotation. Accurate function annotation of phage proteins
presents several challenges, including their inherent diversity and the scarcity of annotated ones. Existing tools have yet to fully leverage
the unique properties of phages in annotating protein functions. In this work, we propose a new protein function annotation tool for
phages by leveraging the modular genomic structure of phage genomes. By employing embeddings from the latest protein foundation
models and Transformer to capture contextual information between proteins in phage genomes, GOPhage surpasses state-of-the-art
methods in annotating diverged proteins and proteins with uncommon functions by 6.78% and 13.05% improvement, respectively.
GOPhage can annotate proteins lacking homology search results, which is critical for characterizing the rapidly accumulating phage
genomes. We demonstrate the utility of GOPhage by identifying 688 potential holins in phages, which exhibit high structural
conservation with known holins. The results show the potential of GOPhage to extend our understanding of newly discovered phages.
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Introduction
Bacteriophages (phages) are viruses that can infect bacterial cells.
They are highly prevalent and abundant in the biosphere, being
found in various environmental matrices, including gastrointesti-
nal tracts of animals, water bodies, and soil [1–3]. Accumulating
studies have demonstrated the important role of phages in micro-
bial communities. For example, phages have been observed to
facilitate the horizontal transfer of genes between bacteria, which
can influence bacterial adaptation, evolution, and acquisition of
new functionalities [4]. In addition, they can modulate the abun-
dance and diversity of bacterial populations by killing their host
[5]. Due to the increasing threats posed by antibiotic resistance,
phages have gained significant attention as potential alternatives
to traditional antibiotics, as they can lyse pathogenic bacteria
[6–8].

Despite the significance of phages, the efficacy of their appli-
cations heavily relies on prior knowledge of protein functions.
Understanding the protein function enables us to identify phage
proteins that can target and disrupt essential bacterial processes,
offering the potential for the development of targeted antimicro-
bial therapies [9]. For example, holin proteins, known for their
cell-killing capabilities and broad host range, have gained signifi-
cant attention for their potential applications in bacterial control
[10, 11]. To accelerate the application of phages, it is crucial to
figure out the annotation of the proteins in phages.

Gene Ontology (GO) terms are widely used to annotate the
phage proteins. They are standardized vocabulary and hierar-
chical frameworks comprising three key dimensions: biological
process (BP), cellular component (CC), and molecular function
(MF) [12]. BP encompasses the sequences of events or pathways in
which proteins participate, such as cellular signaling or metabolic
processes, while CC pertains to the subcellular locations or struc-
tures where proteins are localized, such as the nucleus or plasma
membrane. The MF aspect centers on the distinct activities and
tasks carried out by proteins, such as enzyme catalysis or receptor
binding.

However, there are two major challenges to using GO terms
to annotate phage protein. First, the number of phage proteins
with known GO labels is limited. Until 27 February 2024, the total
number of phage proteins from the National Center for Biotech-
nology Information Reference Sequence Database (NCBI RefSeq)
is 541 060, derived from 5160 complete genomes. However, only
20.85% percent of proteins have GO labels. This scarcity of labeled
proteins results in an insufficient database for comprehensive
functional annotation. Second, although phage encodes a small
number of proteins compared with their hosts, these proteins
exhibit a remarkable degree of functional diversity. For exam-
ple, among the 1173 phage proteins provided by the UniProtKB
database, there are a total of 912 GO terms. This means that on
average each GO label contains less than two supporting samples
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Table 1. The introduction of recent protein function annotation
tools, with “DL” referring to deep learning-based solutions.

Tool Type Method

DiamondScore Homology DIAMOND BLASTP
DiamondBlast Homology BLAST
DeepGOCNN DL CNN
DeepGOPlus Hybrid CNN + DIAMOND BLASTP
ATGO DL ESM-1b + Triplet neural network
PFresGO DL ProtT5 + GO term relationship
NetGO3.0 DL ESM-1b + Logistic regression
GPSFun DL ESMFold + ProtTrans + GNN
DeepGO-SE DL ESM2 + Semantic entailment

and will bring challenges to computational methods. Moreover,
the distribution of these GO terms is imbalanced, with certain
terms being more prevalent or specific than others. This imbal-
anced label distribution poses a significant challenge to accu-
rate classification. These obstacles impose great requirements on
annotation tools.

Several attempts have been made to analyze and annotate pro-
tein functions. They can be categorized into two types: homology-
based and deep learning-based methods. The summarized infor-
mation of the state-of-art methods is listed in Table 1. Homology-
based methods, such as DiamondScore [13] and DiamondBlast
[13], rely on sequence similarity to infer protein function. These
methods assume that proteins with similar sequences share sim-
ilar functions. However, due to the extensive genetic diversity
and rapid evolution of phages, phage proteins may not have a
significant sequence similarity when aligned to the reference
database.

To annotate more proteins, most deep-learning methods for-
mulate protein function annotation as a multi-label prediction
task, where protein sequences or extracted features are used
as the model input, and the predicted GO terms represent out-
puts. For example, DeepGOPlus leverages convolutional neural
networks (CNNs) to make annotations based solely on sequence
information, and it combines these predictions with alignment-
based searches [13]. ATGO [14] utilizes the ESM-1b large language
model to extract protein sequence embeddings, enhancing sim-
ilarity among functions through a triplet network. In contrast,
PFresGO [15] incorporates the hierarchical relationships of GO
terms using Anc2Vec [16] and the ProtT5 model for embedding
extraction, employing a cross-attention mechanism to improve
annotation accuracy. NetGO 3.0 [17] replaces the Seq-RNN module
of NetGO 2.0 [18] with ESM-1b and logistic regression, integrating
multiple data sources, including protein sequences and GO term
frequencies. GPSFun [19] employs graph neural networks to learn
3D structural features predicted by ESMFold [20], while DeepGO-
SE [21] utilizes the ESM2 [20] model to generate approximate GO
models, with a neural network predicting function statements.
However, the primary information available for phage proteins is
often limited to the protein sequence, with restricted access to
additional data such as protein interactions or literature refer-
ences. In addition, the methods described previously overlook the
unique properties specific to phage proteins. Thus, there is consid-
erable potential for enhancing the annotation of phage proteins.
In our investigation, we have discovered that the order of phage
protein functions exhibits a high level of conservation within the
same genus. It means that the proteins in the surrounding context
can provide valuable insights for predicting protein functions in
phages.

In this work, we present a novel method, GOPhage, for phage
protein annotation by integrating the powerful foundation model
with the unique properties of phages. There are two main steps
in our GOPhage framework. First, we utilize a pre-trained pro-
tein language model (PLM), ESM2 [20], to encode phage proteins.
ESM2 has acquired a comprehensive understanding of various
protein features, including aspects such as 3D structure and
interaction relationships during training. Thus, it can effectively
return meaningful representations for phage proteins. Second,
we reformat the phage genomes into protein sentences using
embeddings obtained from the PLM. Then, we train a Transformer-
based natural language model to learn and leverage inherent
order association among phage proteins. By considering the posi-
tions of proteins and their functions within the genomic con-
text, the model is expected to further improve phage protein
annotation. The experiments demonstrated a significant advan-
tage of GOPhage in accurately predicting GO terms, achieving
impressive area under the precision-recall curve (AUPR) scores
of 0.8636, 0.8882, and 0.8277 for BP, CC, and MF ontology, respec-
tively. Notably, GOPhage showcased substantial improvements in
predicting the functions of proteins that lacked alignment with
the database and minority GO labels, addressing an important
challenge in functional annotation. In the case study, GOPhage
demonstrates great promise in unraveling the functions of key
phage proteins that lack alignment with the reference database.
We identified 688 holin proteins and showed prediction reliability
based on structural homology. Thus, GOPhage has the potential
to accelerate and enhance the comprehensive understanding of
phages and their biological processes.

Methods and materials
The proteins in the phage sequences are similar to the words in
the natural language. Thus, the phage genomes can be viewed
as a language of phage life that exhibits distinct features. One
notable observation of these phage languages is that phage
proteins within the same genus tend to maintain a consistent
arrangement. For instance, Fig. 1 reveals a distinct pattern in the
order of proteins within the Salasvirus genus. These characteristics
inspire us to reformat the phage genomes into sentences with
contextual proteins and predict the annotations based on the
surrounding information. In the following section, we will detail
how GOPhage leverages the contextual information for phage
protein annotation.

Embedding protein sequences
Figure 2 shows the architecture of the GOPhage model. In Fig. 2A,
let the number of proteins of a phage genome in the training
process be n. The first step is to encode the phage genomes by
generating the embedding of the n proteins. To obtain protein
embedding, we employ the ESM2 model, which is pre-trained on
protein sequences sourced from UR50/D. During training, ESM2
selects 15% amino acids for masking and predicts amino acids
at the masked position. Based on a third-party benchmark result
[22], ESM2-33 performs better than the ProtT5 family. Moreover,
the performance of the ESM2-33 is comparable with ESM2-36
and ESM2-48, but the latter two models have more parameters,
leading to a significant increase in runtime. Specifically, the ESM2-
33 model consists of ∼650 million parameters, while the ESM2-
36 and ESM2-48 models contain 3 billion and 15 billion param-
eters, respectively. Therefore, we chose ESM2-33 to embed the
proteins.
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Figure 1. The function order of proteins within four phage genomes, where blue arrow represents the protein and the gray link shows the similarity
among proteins.

Figure 2. The architecture of GOPhage, including data processing steps for training and inference in (A), leveraging the ESM2 model in (B) for per-residue
embeddings, utilizing the Transformer model in (C) for contextual relationships, and integrating alignment-based methods in (D) to produce Gene
Ontology (GO) term prediction scores.

We define de as the dimension of per-residue embedding and
impose a maximum limit of 1024 residues for each protein
sequence, which aligns with the default setting of the ESM2
model. By applying the ESM2 embedding to the protein sequences,
we generate an embedding matrix X1 with dimensions of 1024×de

for each protein shown in Fig. 2B. In the ESM2-33 model, the
default value of de is 1280. Subsequently, we pass X1 through a
fully connected (FC) layer, resulting in a 1D feature set denoted
as X2. We considered the mean and max pooling methods for
protein embedding. The comparison in the “Ablation Study”
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of Supplementary Material shows that protein embeddings
generated using the fully connected (FC) layer achieve better
performance.

Learning the relationship of context proteins
using Transformer
As words and sentences in human language derive meaning
through their context and relationships with other linguistic ele-
ments, proteins can also be better understood by considering
their interactions, dependencies, and roles within the genome.
Therefore, we annotate the protein functions by considering the
context neighbors. This goal is achieved by preparing the context
protein embedding and learning the relationships among proteins
within the same genome. The sequential steps are illustrated in
Fig. 2C.

To obtain the context protein embedding, first, we treat each
protein as a token and contigs can be seen as sentences composed
of multiple tokens. Then, we combine the embeddings of each
protein into a single embedding with dimensions of n × de. This
integration process considers the order in which the proteins
appear in the contigs and allows us to preserve the contextual
relationships among the proteins within the same genomic con-
text.

We use position embeddings to incorporate positional infor-
mation. This component generates an embedding vector for each
protein index, encoding its relative position within the sequence.
The final output X3 of the embedding layer is obtained by sum-
ming the context protein embedding and position embedding
results, resulting in a comprehensive representation of each pro-
tein in the sequence.

After embedding the context proteins into an n × de matrix,
we introduce a crucial component in our architecture: the self-
attention layer. This layer plays a vital role in learning intricate
connections between proteins. To perform self-attention compu-
tations in Equation (1), we transform the input matrix into three
separate matrices: Query (Q), Key (K), and Value (V) through three
independent FC layers. The n × n attention matrix is computed
by multiplying the Q and K, representing the strength of protein
associations. To prevent excessive values, we scale the attention
matrix by dividing it by the square root of the dimension of matrix
K (denoted as

√
dk). Next, we normalize the attention matrix

using the softmax function, assigning weights to protein pairs to
indicate their relative importance. Finally, we score the proteins
in the sequence by multiplying the V with the weight matrix.

In order to collectively focus on information stemming from
diverse representation subspaces, we employ a multi-head mech-
anism in Equation (2), where each head represents a separate self-
attention layer. Computation is performed in parallel across all
heads, and then the concatenated head is input into an FC layer
as shown in Equation (3), WM ∈ R

1280× 1280 . Following the multi-
head attention block, the resulting output X4 is passed through a
feed-forward layer.

Attention (Q, K, V) = softmax

(
QKT√

dk

)
V, (1)

headi = Attention (Qi, Ki, Vi) , (2)

X4 = FC(Contact
(
head1, . . . , headn

)
, WM). (3)

Predicting the GO terms
We formulate the protein function annotation task as a multi-
label binary classification task. The goal is to assign a proba-
bility to each GO term, indicating the likelihood of the protein
being associated with that specific function. The feed-forward
layer result X5 is input into a fully connected layer with the
sigmoid activation function and the output is an m-dimensional
vector, where m represents the number of GO terms shown in
Equation (4).

Y = sigmoid
(
W · X5 + b

)
. (4)

During training, the model is optimized by minimizing the
binary cross-entropy loss. This loss function in Equation (5) is
commonly used in binary classification tasks to measure the
difference between predicted probabilities and actual labels. In
addition, we train three GO prediction models on BP, CC, and MF
separately.

L = − 1
N

N∑
i=1

|GO|∑
j=1

yij log
(
ŷij

)
(5)

Integrating GOPhage with alignment-based
method
Considering that proteins with significant alignment usually
have high-precision GO prediction results [13, 23], we introduce a
hybrid mode named GOPhage+ by incorporating DiamondScore
into the GOPhage to enhance the predictive capabilities for phage
protein annotations.

SGOPhage+ (i) = β · SGOPhage(i) + (1 − β)SDiamondScore(i), (6)

where SGOPhage+ (i) is the confidence score of GOPhage+ for pro-
tein i, and SGOPhage(i) and SDiamondScore(i) are confidence scores of
GOPhage and DiamondScore, respectively. The weight parameter
β is fine-tuned based on the validation dataset. Considering the
hierarchical nature of GO terms, it is logical to maintain the
predicted probability of a given GO term at least equal to or higher
than that of all its child terms. We evaluate the effect of up-
propagation on performance. The results in the section “Test the
Effect of Up-Propagation” in the Supplementary Material show
that, despite not explicitly incorporating the topology of GO terms
into our model, the model is capable of implicitly learning this
hierarchical structure from the training dataset.

Results
Metrics
We evaluate the performance of GOPhage following previous
work. Specifically, we present two sets of metrics, corresponding
to the prediction accuracy of protein-centric and GO term-centric
evaluation, which are used in the Critical Assessment of Func-
tional Annotation (CAFA) competitions. The protein-centric eval-
uation focuses on determining the function prediction accuracy,
whereas the term-centric evaluation aims to examine whether
the model can correctly identify proteins associated with a partic-
ular functional term [24]. The latter can provide the performance
of different function terms.

First, we introduce protein-centric metrics. Let Pi(t) be the set
of GO terms for a protein i returned by the model under the score
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cutoff t, while Ti represents the true GO term set for protein i.
Then recall and precision for each protein i with threshold t are
calculated in Equations (7) and (8). To calculate the average recall
and precision on all proteins, we define n as the total number
of proteins and nt as the number of proteins that have at least
one predicted GO term when the threshold is t. The equations are
shown in Equations (9) and 10, respectively. We record the F1-score
calculated for each threshold t, ranging from 0 to 1, and obtain the
maximum F1-score as Fmax shown in Eqn. 11. To compute AUPR,
the prediction scores of proteins are concatenated and input into
the scikit-learn Python package.

recalli(t) = |Pi(t) ∩ Ti|
|Ti| (7)

prei(t) = |Pi(t) ∩ Ti|
|Pi(t)| (8)

AvgRecall(t) = 1
n

·
n∑

i=1

recalli(t) (9)

AvgPre(t) = 1
nt

·
m(t)∑
i=1

prei(t) (10)

Fmax = max
t

{
2 · AvgPre(t) · AvgRecall(t)
AvgPre(t) + AvgRecall(t)

}
(11)

Then, we present the term-centric evaluation. To calculate
the term-centric Fmax, we follow a three-step process. First, we
calculate the precision and recall for GO term l under threshold
t, as defined in Equations (12) and (13). In the second step, we
calculate Fmax(l), which is the maximum F1-score for label l under
different score cutoffs (Equation 14). Finally, we average these
Fmax(l) values across all GO labels to obtain the final Fmax, as
shown in Equation (15). The AUPR for each label is calculated and
averaged to obtain the final AUPR.

prel(t) =
∑

i I
(
l ∈ Pi(t) ∧ l ∈ Ti

)
∑

i I
(
l ∈ Pi(t)

) (12)

recalll(t) =
∑

i I
(
l ∈ Pi(t) ∧ l ∈ Ti

)
∑

i I
(
l ∈ Ti

) (13)

Fmax(l) = max
t

{
2 · prel(t) · recalll(t)
prel(t) + recalll(t)

}
(14)

Fmax =
m∑

l=0

Fmax(l) (15)

Dataset
We downloaded the reference genomes and proteins under the
Caudoviricetes class from the NCBI RefSeq database. Due to the
lack of GO terms in the Refseq database, we mapped the protein
accessions into UniProt database [25] using the “ID mapping” tool
and retrieved annotations.

To ensure an adequate number of labeled proteins for training,
we labeled the proteins with no GO terms using the Prokaryotic
Virus Remote Homologous Groups (PHROG) database [26] based
on HHsuite tool [27]. The database contains 38 880 PHROGs,
encompassing 868 340 proteins derived from complete genomes
of viruses infecting bacteria or archaea. Moreover, we saved the

hits that demonstrated a probability of the template being homol-
ogous to query sequences exceeding 80%, ensuring the reliability
and high confidence of the matches between the phage pro-
teins and the entries in the PHROG database. Although we used
the pairwise alignment to extend the dataset, the proteins with
significant alignments were only 15.51%. The remaining 63.64%
proteins still lacked annotations, which further demonstrated the
necessity and importance of developing an effective phage protein
annotation tool.

Because of the requirement for rich protein contextual infor-
mation, we selectively focused on proteins from genera with
high annotation rates. The annotation rate for each genome is
calculated below.

Annotation Rate = #proteins with annotation
#total proteins

(16)

Then, we computed the average annotation rate of the com-
plete genomes in each genus. Proteins from genera where the
annotation rates exceeded 30% for the BP and MF categories and
20% for the CC category are included. It was important to note
that the number of proteins annotated by CC terms was relatively
smaller than BP and MF. Therefore, we set a lower threshold for CC
to ensure to inclusion of more genera. By setting these thresholds,
we aimed to focus on genera with more comprehensive annota-
tion information. The annotation rates for all genera can be found
in the Supplementary material. We compared GOPhage with other
tools using two datasets, with the details outlined below.

• High annotation rate dataset. All genera are sorted based on
their annotation rates. We excluded single-genome genera,
as they were insufficient for training purposes, resulting in a
total of 598 genera. Utilizing the thresholds mentioned above,
we retained the top 62 genera, 59 genera, and 203 genera for
BP, CC, and MF, respectively.

• Leave-genus-out dataset. To thoroughly assess the generaliz-
ability of GOPhage, we selected an additional 10 genera that
were not included in the training dataset. These genera were
chosen based on sorted annotation rates, specifically those
ranked 63–72 for BP, 60–69 for CC, and 204–213 for MF.

To minimize the similarity between the training and test/vali-
dation datasets, we implement the following steps for partitioning
the high annotation rate dataset:

• The proteins obtained from the selected genera are aligned
against all using the DIAMOND BLASTP [28] with a default
e-value threshold of 0.001. The alignment scores among pro-
teins are used to build a graph. Then Markov clustering
algorithm (MCL) [29] is applied to cluster the protein graph,
which is a fast and unsupervised method.

• We randomly select clusters and include all proteins within
those clusters in the training dataset until the cumulative
size exceeds 80% of the total dataset. The remaining proteins
are placed in an independent dataset for evaluation purposes.

• Finally, we randomly divide the independent dataset into
two equal-sized parts while ensuring an even distribution of
proteins for each GO term label.

The GO labels are obtained by propagating all ancestors based
on the “is_a” relationship in the tree. Then, we calculate the
number of proteins annotated by each GO term and filter out
terms with fewer than 200 annotated proteins in the training
dataset. We follow the standard practice of CAFA assessment and
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Table 2. Performance comparison of GOPhage/GOPhage+ and state-of-the-art methods for protein function prediction based on
term-centric evaluation in high annotation rate dataset.

BP CC MF

AUPR Fmax AUPR Fmax AUPR Fmax

DiamondScore 0.7225 0.6710 0.7552 0.6269 0.6557 0.6446
DeepGOCNN 0.6222 0.6380 0.6353 0.6455 0.4348 0.4590
DeepGOPlus 0.7279 0.7349 0.7623 0.7489 0.6304 0.6590
PFresGO 0.7642 0.7692 0.8232 0.8026 0.7210 0.7430
DeepGO-SE 0.7311 0.7500 0.8500 0.8276 0.7757 0.7869
GOPhageBASE 0.7946 0.7814 0.8636 0.8108 0.7368 0.7505
GOPhageLARGE 0.8382 0.8115 0.8664 0.8399 0.8125 0.7974
GOPhage+

BASE 0.8595 0.8263 0.8882 0.8410 0.7804 0.7870
GOPhage+

LARGE 0.8636 0.8341 0.8783 0.8493 0.8277 0.8095

exclude the root terms. The final protein and label number for
three ontologies are shown in Supplementary Table 1.

To enhance the user experience, we provide two variant ver-
sions of GOPhage. The first version, named GOPhageLARGE, is
based on ESM2-33 and offers superior performance at the cost
of increased computational resources and runtime. The second
variant GOPhageBASE utilizes ESM2-12, providing a lightweight
alternative with reduced computational demands. Specifically, we
conducted tests on the prediction runtime for 1000 proteins. The
results indicate that GOPhageLARGE+ takes 13 min to annotate
proteins across three ontologies, while GOPhageBASE+ requires
4.84 min. Moreover, the parameter count for GOPhageLARGE is
approximately seven times higher than that of GOPhageBASE, as
outlined in Supplementary Table 2.

GOPhage outperforms the state-of-the-art
predictors
In this experiment, we compared GOPhage with four tools:
DiamondScore [13], DeepGOCNN [13], DeepGOPlus [13], and
PFresGO [15]. These tools are the most widely used pipelines for
general protein function annotation and have been demonstrated
as state-of-the-art predictors. The same training dataset was
utilized for retaining the learning-based methods (DeePGOCNN,
DeepGOPlus, and PFresGO) or constructing the database for the
alignment-based methods (DiamondScore). The performance
evaluation was then carried out using the same test dataset,
which ensured a fair and comparable assessment for all methods.

The performance based on term-centric is presented in
Table. 2, while the results obtained from protein-centric eval-
uation can be found in Supplementary Table 3. GOPhage+

outperforms the second-best method, regarding both AUPR
and Fmax scores with notable improvements across all three
categories, specifically, the improvements of 9.94%, 6.50%, and
10.67% in AUPR and 6.49%, 4.67%, and 6.65% in Fmax scores for
BP, CC, and MF, respectively.

Comparing GOPhageBASE and GOPhageLARGE, the results reveal
that using a larger protein foundation model has a better
performance. The most significant improvement is observed
in the MF category, with a notable increase of 7.57% in AUPR
and 4.69% in Fmax. Additionally, integrating DiamondScore with
GOPhage through hybrid approaches can further improve the
performance in protein function prediction. Comparing GOPhage
and GOPhage+, the BP category exhibits the highest improvement
of 6.49% and 4.49% in AUPR and Fmax for GOPhage+

BASE and 2.54%
and 2.26% in AUPR and Fmax for GOPhage+

LARGE.

Taken together, utilizing a deeper foundation model and inte-
grating homologous search methods can help GOPhage achieve
the best performance in protein function prediction.

GOPhage improves annotation of proteins by
utilizing the contextual information
In this section, we designed two experiments to evaluate how
contextual proteins impact function prediction. In the first experi-
ment, we compare two different usages of the protein embeddings
from the foundation model: (1) using the per-residue embedding
of a single protein as input, and (2) using joint embeddings of
multiple proteins with genomic context. A model named “Trans”
is designed for a single protein input, which uses the amino
acids as tokens and utilizes the Transformer to learn the relation-
ship of residues. A detailed description of the methods is in the
Supplementary File. For the multiple protein input, the GOPhage
is used to learn the protein associations and predict the GO
terms. In the second experiment, we compare the performance of
GOPhage in different protein context sizes by gradually increasing
the number of context proteins. This step-by-step analysis pro-
vides insights into how the augmentation of context information
influences the model’s performance.

Figure 3 shows the results for the first experiment. Based
on the ESM2-12 model, a comparison between TransBASE and
GOPhageBASE reveals that BP and CC exhibit improvements of
7.3% and 3.8% in AUPR, respectively. Additionally, Fmax shows
enhancements of 3.52% and 2.23% for BP and CC, respectively.
Similarly, based on the ESM2-33 model, a comparison between
TransLARGE and GOPhageLARGE indicates that MF demonstrates
the most significant improvement, with increases of 3.90% and
2.75% in AUPR and Fmax, respectively.

In the second experiment, we fed sentences with an increas-
ing number of proteins into our model to show the impact of
different contextual information. This involves creating three
datasets:

• Length>2 dataset. We select protein sentences whose length
is two or greater. Our goal is to preserve the original context
information for our subsequent annotation.

• Length=1 dataset. From the “Length>2” dataset, we extract
individual proteins by dividing the selected protein sentences.
This dataset ensures that each sentence includes only one
protein, thereby removing the contextual information.

• Length=2 dataset. Taking the protein sentences from the
“Length>2” dataset, we divide them into pairs of two pro-
teins with one overlap. Each sentence contains two proteins,
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Figure 3. Performance comparison of including versus excluding contextual proteins across three ontologies, evaluated using AUPR and Fmax metrics
for term-centric analysis.

Figure 4. The performance on different numbers of context proteins from
“length = 1” to “length >2” based on the Fmax of protein-centric.

representing an increase of one context protein compared
with the “Length=1” dataset.

By inputting three datasets containing varying levels of con-
textual information into our model, we observed notable trends
in performance, as illustrated in Fig. 4. The results indicate a
consistent pattern of performance enhancement as the number
of context proteins is progressively augmented. As more con-
textual information is provided, the model better understands
the relationships and interactions between proteins, resulting in
improved predictions of protein functions. These findings empha-
size the importance of considering contextual proteins and their
impact on protein function prediction tasks.

GOPhage shows superior performance in
annotating novel proteins
In this section, we evaluate GOPhage’s predictive capability
with different levels of sequence identity. The test dataset was
partitioned into three distinct groups based on alignment with
the training data: “no-alignment,” “min-40%,” and “40%–100%.”
As shown in Fig. 5a, the AUPR of all methods improved with
increased sequence identity for all three GO categories. For the
high-similarity dataset, the alignment-based method exhibits
excellent performance, and GOPhage+ demonstrates comparable
results in three ontologies. It suggests that both methods can
effectively predict protein functions when the dataset aligns well
with the training dataset. However, for the dataset that has no

alignment with the training dataset, GOPhage+ stands out with
impressive AUPR. Specifically, GOPhage+ achieves AUPR values
of 0.7524, 0.8478, and 0.8210 for the BP, CC, and MF. These values
represent improvements of 5.68%, 6.78%, and 5.75% compared
with the performance of the second-best method. The term-
centric results are shown with a similar trend in Supplementary
Fig. 1a. Additionally, the percentage of no-alignment proteins
accounts for 27.93%, 55.70%, and 27.62% of the test dataset for BP,
CC, and MF, respectively. These results highlight the robustness
and effectiveness of GOPhage+ in predicting protein functions,
especially for low-similarity proteins.

We continue to analyze the impact of contextual protein infor-
mation on different level-similarity groups. The results are shown
in the Supplementary Fig. 1b. Focusing on the no-alignments
dataset, both GOPhageBASE and GOPhageLARGE demonstrate
improvements compared with their respective counterparts. On
one hand, GOPhageBASE shows performance gains of 10.18%, 6.5%,
and 1.11% for BP, CC, and MF categories, respectively. On the other
hand, GOPhageLARGE exhibits improvements of 5.33%, 3.87%, and
7.91% for BP, CC, and MF categories, respectively.

GOPhage enhances annotation on minority-class
GO terms
To examine GOPhage’s ability on GO terms of different popular-
ities, we split them into three groups based on the information
content (IC) of GO shown in Equation (17). f

(
l
)

is the frequency of
the GO term l in the training dataset. Higher IC values mean fewer
proteins annotated by the GO term labels.

IC
(
l
) = − log2 f

(
l
)

. (17)

The experiment results in Fig. 5b demonstrate that all methods
consistently performed well in the majority labels of GO terms.
However, GOPhage+ demonstrates a distinct advantage in pre-
dicting minority GO terms, surpassing the other methods and
achieving the highest performance across all three ontologies.
Specifically, GOPhage+ achieves medium AUPR of 0.8801, 0.9043,
and 0.8105 for BP, CC, and MF in the smallest GO terms group,
respectively. This indicates that even for infrequently occurring
GO terms, GOPhage+ can make an accurate prediction.

We also further investigate the impact of the context
proteins on the different GO terms. The results are shown in
Supplementary Fig. 1c. Focusing on the smallest GO terms group,
both GOPhageBASE and GOPhageLARGE demonstrate improvements
in performance. For the BP and CC ontologies, GOPhageBASE shows
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Figure 5. Performance comparisons among methods across three ontologies. (a) displays AUPR for protein-centric analysis across diverse sequence
identity groups, and (b) shows AUPR for term-centric analysis across groups with increasing IC values.

performance gains of 4.5% and 3.55% in AUPR, respectively.
Moreover, it achieves comparable results for MF. In addition,
GOPhageLARGE exhibits improvements of 3.71%, 2.29%, and 2.80%
for BP, CC, and MF categories, respectively. These results highlight
the benefits of incorporating context proteins in predicting fewer
GO terms.

GOPhage excels on unseen genera
To assess the generalizability of GOPhage, we evaluate its per-
formance on the leave-genus-out dataset comprising 10 genera
that are absent from the training dataset. The dataset consists
of 1364, 832, and 9700 proteins for BP, CC, and MF, respectively.
A comparative analysis of the term-centric evaluation with five
other methods is presented in Table 3. Notably, GOPhage+

LARGE

surpasses five methods in terms of both AUPR and Fmax scores
across all three categories, achieving 0.8048, 0.7592, and 0.8052 in
AUPR, and 0.7793, 0.7530, and 0.7890 in Fmax scores for BP, CC, and
MF, respectively. The protein-centric performance is provided in
Supplementary Table 4. GOPhage+

LARGE increases by 3.45%, 4.69%,
and 2.46% in AUPR and 3.22%, 2.60%, and 2.05% in Fmax com-
pared with the second-best method.

GOPhage aids in identifying proteins lacking
homology
To showcase the utility of GOPhage in annotating proteins that
lack homology search results, we explore its application in the
analysis of phage’s holin proteins. The holin protein is a small
membrane protein that plays a crucial role in lysing bacterial
hosts by triggering the formation of pores that disrupt the host
cell membrane [30]. It controls the release of phages and the
completion of the lytic cycle, underscoring the significance of
the intricate interplay between phages and their host organisms.
However, according to the protein annotation of phages in the

RefSeq database, over 448 genera have no annotated holin pro-
teins, indicating that holin proteins may be very diverse across
different phages. In this experiment, we apply GOPhage to anno-
tate possible holin proteins.

According to statistical analysis of GO terms for the well-
studied holin proteins from UniproKB, we manually selected six
GO terms as their indicator. The details of selecting GO terms are
shown in the Supplementary file. We input all proteins from 448
genera into GOPhage+ and identified 688 potential holin proteins
spanning 262 genera. After identifying possible holins, we clus-
tered them to analyze their relationship. To accomplish this, we
aligned them all against all and selected alignment with identity
and coverage larger than 90. Gephi [31] was used to represent the
relationships among proteins visually. The results depicting the
top 10 phage genera are shown in Fig. 6a. The genera of phage are
from the RefSeq annotations. An evident observation is the high
conservation of holin proteins within the same genus, mirroring a
common pattern observed among known holin proteins in phage
genomes.

In addition, we aligned them with the known holin proteins
using BLASTP [32] with e-value 1e-5. A total of 590 proteins have
no alignment, indicating the high diversity of holin proteins. Then,
we searched the annotation of 688 proteins from the UniProtKB
database. The automatic annotation pipeline provided by UniProt
and designed to annotate uncharacterized protein sequences,
known as ProtNLM [33], predicted that 335 of these proteins are
holins. Additionally, 171 of the 688 proteins are labeled as unchar-
acterized proteins in UniProt, and 87 proteins are categorized as
membrane proteins. Overall, these top three annotations account
for 86.2% of the total proteins. To further examine the iden-
tified holin proteins without alignment, we employed ESMFold
[20] to predict their 3D structures, which are very fast and can
get comparable predictions with AlphaFold [34]. We found that
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Table 3. Performance comparison of GOPhage/GOPhage+ and state-of-the-art methods on leave-genus-out dataset based on
term-centric evaluation.

BP CC MF

AUPR Fmax AUPR Fmax AUPR Fmax

DiamondScore 0.7042 0.6183 0.7313 0.6439 0.7146 0.7229
DeepGOCNN 0.5136 0.5265 0.4035 0.4901 0.5337 0.5645
DeepGOPlus 0.6792 0.6700 0.6384 0.6689 0.6896 0.7287
PFresGO 0.7532 0.7450 0.7183 0.7117 0.7326 0.7493
DeepGO-SE 0.7079 0.7214 0.7186 0.7443 0.7628 0.7687
GOPhageBASE 0.6660 0.6589 0.5982 0.6139 0.7447 0.7561
GOPhageLARGE 0.7332 0.7066 0.6978 0.7286 0.8023 0.7865
GOPhage+

BASE 0.7746 0.7497 0.7046 0.7217 0.7796 0.7638
GOPhage+

LARGE 0.8048 0.7793 0.7592 0.7530 0.8052 0.7890

Figure 6. The analysis of the identified potential holin proteins. (a) and (b) show clusters within the top 10 phage genera and their structural similarities
with known holin proteins, while (c) and (d) present 3D structures of identified holin proteins (YP_009795370.1 and YP_009823284.1) alongside database
counterparts (YP_009785046.1 and YP_009790916.1).

despite having low sequence similarity, 590 identified holin pro-
teins exhibit structural homology with the known holin proteins.
The result is shown in Fig. 6b. The TM-score and the root mean
square deviation (RMSD) value are calculated by the TM-align tool
[35]. Figure 6c and d are visualizations of the two putative holin
proteins identified by our tool. In conclusion, the experiments
provide further evidence of the great potential of GOPhage as a
valuable tool for viral protein annotation. In addition, the infor-
mation and 3D structure of the 688 holins are available in the
Supplementary data.

Conclusion and discussion
In this work, we proposed a method named GOPhage/GOPhage+

for protein function annotation of phages. The major improve-
ment in our approach can be attributed to utilizing the

properties of phages and the foundation model. The Transformer
model is used to learn the relationship of the genomic context
proteins. Our experiments compared four methods including
alignment-based and deep learning-based. They have shown that
GOPhage can achieve the highest AUPR and Fmax across all three
ontologies, especially on low-similarity and minority GO term
labels. Furthermore, we investigated the impact of incorporating
context proteins into the annotation process and observed that
GOPhage exhibits significant improvements compared with using
only individual proteins as input. Notably, GOPhage plays a crucial
role in enabling the characterization of unannotated proteins,
making it a valuable tool for biological discovery and in-depth
investigations.

Given the increasing interest in engineering phages for vari-
ous applications, it is important to consider the performance of
GOPhage+ on modified or engineered phages. If the engineered
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changes do not significantly alter the overall genomic context of
the modified phages, the performance should remain unaffected.
However, for genomic arrangements that are not well represented
in naturally occurring datasets, we recommend inputting individ-
ual proteins into our model for prediction, as this approach does
not account for the influence of contextual proteins.

GOPhage is trained only on phages within the Caudoviricetes
class, which accounts for 97% of the total reference genomes for
prokaryotic viruses. The primary challenge for improving phage
protein annotation is the limited number of proteins with avail-
able experimentally validated labels, which are inadequate to
serve as the training dataset for deep learning models. Therefore,
we utilize them solely as external test datasets and showcase the
outcomes in Supplementary Tables 8 and 9, aiming to provide a
reference for potential users. By including proteins with enriched
GO terms, we can augment the pool of context proteins available
for analysis. Furthermore, the incorporation of additional proteins
will amplify the number of GO term labels and facilitate the
annotation of phage proteins at a more specific and detailed level,
which will provide valuable insights into the intricate functional
characteristics of these proteins. In the future, incorporating addi-
tional features such as structure information derived from GO
graphs and textual descriptions of proteins is a valuable direction
for further improving the annotation process.

Key Points

• Inspired by the modular genomic structure of phage
genomes, GOPhage is designed by utilizing the latest
foundational model and the Transformer model to learn
the contextual relationship of proteins.

• GOPhage demonstrates superior performance in anno-
tating novel proteins that are commonly discovered in
metagenomic sequencing, enhancing our understanding
of phages.

• GOPhage can identify core functional proteins of phages,
such as holins, from unannotated proteins. Notably,
many of the identified potential holin proteins lack
sequence similarity with known holins yet exhibit struc-
tural homology to them.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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