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Abstract—Protein sequences accumulate in large quantities, and the traditional method of annotating protein function by 

experiment has been unable to bridge the gap between annotated proteins and unannotated proteins. Machine learning-based 

protein function prediction is an effective approach to solve this problem. Most of the existing methods only use the protein 

sequence but ignore the three-dimensional structure which is closely related to the protein function. And the hierarchy of protein 

functions is not adequately considered. To solve this problem, we propose a graph neural network (GNNGO3D) that combines 

the three-dimensional structure and functional hierarchy learning. GNNGO3D simultaneously uses three kinds of information: 

protein sequence, tertiary structure, and hierarchical relationship of protein function to predict protein function. The novelty of 

GNNGO3D lies in that it integrates the learning of functional level information into the method of predicting protein function by 

using tertiary structure information, fully learning the relationship between protein functions, and helping to better predict protein 

function. Experimental results show that our method is superior to existing methods for predicting protein function based on 

sequence and structure. 

Index Terms—Graph Neural Networks, Gene Ontology, Language Model, Machine Learning, Protein Function Prediction 

——————————   ◆   —————————— 

1 INTRODUCTION

ROTEINS are biomacromolecules responsible for a 
wide range of activities in our cells, tissues, organs, and 

bodies, playing a central role in the structure and function 
of cells [1]. However, proteins with well-characterized 
functions represent only a small fraction of all known 
proteins and are limited to a few species. Therefore, accu-
rate prediction of protein function is helpful to accelerate 
research in the fields of animal and plant breeding, bio-
technology, and human health [2]. High-throughput and 
low-cost sequencing techniques have produced an ex-
plosive number of sequences, but only a small number of 
sequences have been experimentally annotated [3]. The 
Uniprot database currently includes over 100 million se-
quences, but only 0.5% of them are manually annotated. 
Several biological and computational challenges make it 
difficult to predict protein function, which is determined 
in the context of an organism and rarely by any single ex-
periment or publication [1]. Understanding the function 
and mechanism of newly discovered proteins is one of the 
key biological issues in the post-genome era [4], [5]. 

Protein functions are defined by GeneOntology(GO), 
which is composed of directed acyclic graphs. GO contains 
many terms that describe the biological function of genes 

and their products and is widely used in the field of pro-
tein function [6]. GO represents protein function as three 
functional ontologies with hierarchical structure: molecu-
lar function (MF), biological process (BP), and cellular 
component (CC) to describe different aspects of these func-
tions. Different ontologies respectively describe the func-
tion of different levels of proteins. MF describes the activ-
ity of gene products at the molecular level. BP describes the 
biological processes completed through various molecular 
activities. CC describes the cellular structure position of 
gene products when performing their functions. Each on-
tology is a directed acyclic graph, and each node in the 
graph represents a function called GO term. The edge be-
tween nodes indicates that there is a hierarchical relation-
ship between two GO terms. The root node in the graph 
represents the parent term, while the leaf node is a further 
refinement of the parent term [6]. If a protein is annotated 
with a GO term, it means that the protein has the function 
indicated by the term. Since gene ontology is a directed 
acyclic graph, there is a hierarchical relationship between 
GO terms, and when a protein is annotated by a term, it 
automatically inherits the functionality of all ancestor 
terms of this term as well. A protein is usually annotated 
by multiple GO terms, so protein function prediction can 
be regarded as a multi-label classification task [7], [8]. 

Protein sequences contain a variety of biological charac-
teristics related to structure and function. Traditional pro-
tein biometric features (e.g., motif sequence profile and 
secondary structure) are calculated by a set of programs 
and then combined as sequence feature vectors [9]. Alt-
hough these methods directly exploit the direct relation-
ship between protein sequence features and biological 
functions, this requires in-depth knowledge of proteomics 
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as well as higher costs [10]. 
To solve the large gap between the number of sequences 

and functions, many computational methods have been 
developed to automatically predict protein functions [4]. A 
common type of data used for automatic functional predic-
tion is the amino acid sequence because conserved se-
quence implies conserved function. Traditional protein 
function prediction methods used BLAST [11] and the hid-
den Markov model [12] for sequence similarity compari-
son. The proteins that need to be measured are compared 
by sequence similarity in a large database, and functional 
annotations are transferred from the most similar se-
quences. This method does not have a good prediction ef-
fect on those proteins that are relatively isolated and do not 
have many similarities in the database. 

In addition, with the development of machine learning, 
machine learning has made great progress in protein func-
tion prediction, using neural networks to learn features re-
lated to protein function. Conventional machine learning 
methods, such as support vector machine, random forest, 
logistic regression, and other algorithms are used for clas-
sification problems. Experiments have also determined 
that machine methods are superior to those based on se-
quence similarity alignment [13]. 

It has been shown in the literature that deep learning 
technology is suitable for complex computing problems 
with high-dimensional features and complex or non-linear 
relationships [14]. These techniques can effectively learn 
task-relevant representations from noise and high-dimen-
sional input data. Convolutional neural network (CNN) 
[14] in the field of computer vision research has achieved 
success in protein function prediction. It can extract fea-
tures of specific tasks from protein sequences, search re-
peated spatial patterns within a given sequence, and use 
multiple convolutional layers to stratify them into complex 
features [4]. And CNN is often used in the architecture of 
sequence encoders to learn sequence patterns or motifs re-
lated to function [6], [15]. 

Due to a large number of unknown protein sequences 
(UniprotKB>175M) [2]. Without functional annotation, 
these protein sequences cannot be directly used to train 
models for protein function prediction. However, these se-
quences can be used in unsupervised models to learn 
amino acid and protein features. Recently, combining 
methods in the field of NLP, pre-trained protein language 
models have achieved better performance than other meth-
ods in protein function prediction, and are more promising 
in extracting complex sequence-structure-function rela-
tionships [16]. The parameters of the pre-trained model are 
fixed, and the representations learned using the unsuper-
vised language model can be fine-tuned through super-
vised training and applied to downstream tasks related to 
proteins. Studies have also demonstrated that the use of 
pretraining in bioinformatics is beneficial to protein func-
tions [2], [4], [10], [17]. 

Protein function is encoded as an amino acid sequence, 
but the sequence can be diversified during evolution while 
retaining the same function [2]. Methods based on se-
quence prediction function use sequence similarity to con-
vey functional information and are not suitable for novel 

sequences that are not similar to annotated sequences. Pro-
teins fold into three-dimensional structures in living or-
ganisms to perform their functions [18]. Protein structure 
determines its function, and structure is in principle more 
conserved than sequence [19]. Even if the protein sequence 
is different, two proteins with similar spatial structures 
may have the same function [20]. In other words, purely 
sequence-based methods may not be good at transferring 
functions between structural homologs [17]. Learning the 
tertiary structure information of a protein can better pre-
dict the function of a protein than the sequence infor-
mation. Critical Evaluation of Functional Annotation 
(CAFA), a community-driven benchmark for automated 
protein functional annotation, has shown that integrated 
approaches combining multiple protein information are 
generally superior to sequence-based approaches [5], [22]. 
Experimental and computational advances in structural bi-
ology have made the three-dimensional structure of many 
proteins available. The Protein Data Bank(PDB) [21] is a 
database for storing proteins and their complexes, with 
170,000 entries [4]. On the other hand, unsupervised pro-
tein sequence models are used to capture contact relation-
ships between protein residues. It is also widely used in 
many protein structure prediction methods [17]. 

Some studies have used 3D CNN to extract function-re-
lated features from protein tertiary structure information 
[22], [23]. Extract 3D structure from protein data base 
(PDB). The 3D structure is then converted into a 3D 
voxelized representation and further fed to ResNet-50 
(which is a CNN model) to extract relevant features from 
the protein structure [22]. Since most of the 3D space is not 
occupied by proteins, storing and processing 3D represen-
tations of protein structures at high-resolution results in 
low storage efficiency. 

In contrast, geometric deep learning methods, as well as 
some specific graph neural networks GCN [24] and GAT 
[25], overcome these limitations more effectively in graph-
like molecular representations. The purpose of the graph 
neural network (GNN) is to learn the vector representation 
of entities and relations in the network and the rules that 
constitute them, to save the topological relationship be-
tween structured input data, and to track the graph struc-
ture in the node through the node processing of input data. 
Two recent studies, DeepFRI [4] and GAT-GO [17], ex-
plored the use of graph neural networks for functional pre-
diction in combination with protein sequence and struc-
ture information. 

DeepFRI [4] used a pre-trained LSTM-based protein 
language model to extract residue level features of protein 
sequences, and three-layer GCN [24] learned complex 
structure-function relationships. GAT-GO [17] uses fea-
tures extracted from the pre-trained protein language 
model as the contact map between input and predicted res-
idues to learn the structure-function relationship. The 
above two methods outperform the current leading meth-
ods and sequence-based convolutional neural networks in 
maximum F-score (Fmax) and area under the precision-re-
call curve (AUPRC). As we mentioned above, protein func-
tion prediction is a multi-label classification task, and a 
protein is usually annotated by multiple GO terms, which  
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have a hierarchical relationship between parent and son 
terms. 

Existing functional prediction methods based on ter-
tiary structure [2], [4], [17] considered that all protein func-
tional annotations (GO terms) were isolated and regarded 
protein functional prediction as a planar multi-label classi-
fication without considering the hierarchical relationship 
between GO terms in the directed acyclic graph of gene on-
tology. It's just that each GO term is uncorrelated. However, 
DeepFRI[4] and GAT-GO[17] 's function pre-diction tasks 
have hundreds of functionally related labels, which has 
certain limitations in the process of function prediction. 

In this paper, we propose GNNGO3D, a novel method 
that utilizes protein sequence and tertiary structure infor-
mation combined with GO term hierarchy information in 
gene ontology for function prediction. The overall architec-
ture of the method is shown in Fig. 1. GNNGO3D consists 
of three modules: a) Protein information learning module. 
The position-specific score matrix (pssm) generated by 
Hhblits[26], i.e. protein sequence alignment tool is used as 
the node features. And the contact of RaptorX[27] pre-
dicted protein sequence in space is used as the adjacency 
matrix of the graph. Both are input to GAT[25] network to 
learn the relationship between sequence, structure, and 
function, and learn the protein feature (i.e., GAT-feat). Us-
ing a pre-trained protein language model to generate se-
quence-level embeddings, called sequence-embeddings. Con-
catenating the sequence-level embeddings and the output 
of the graph attention network to obtain the learned pro-
tein-level feature is called protein-feat. b) GO term hierar-
chical information module, using GCN[24] to learn the se-
mantic representation and potential interrelationships of 
gene ontology, and optimize protein representation at the 
same time, which helps to improve the accuracy of protein 

function prediction tasks. c) Classifier module, the protein-
level feature named protein-feat, and gene ontology se-
mantic representation named term-vector are carried out 
vector dot product to learn the mapping from feature rep-
resentation to semantic representation in an end-to-end 
way. The dot product results are fed into the MLP, and the 
MLP output (the probability of each GO term of the protein 
sequence) is mapped between 0 and 1 by the Sigmoid func-
tion. Meanwhile, protein functional annotation and back-
propagation are used to improve the mapping coefficients 
and obtain consistent representation. 

In conclusion, the work contribution of this paper can 
be summarized in the following ways: 

1) The tertiary structure information of protein is com-
bined with the hierarchical information of gene on-
tology, and the interrelationship of functional anno-
tation is considered comprehensively, which im-
proved the accuracy of functional prediction. 

2) Using the multi-stage feature fusion strategy, we 
read out and add the node features of the graph 
convolution layer of each layer in the GAT module, 
which can prevent forgetting some important infor-
mation and retain the features more relevant to pro-
tein function. 

3) Our approach uses protein sequence, tertiary struc-
ture, homologous evolutionary information, and 
GO term level information, using more comprehen-
sive features to better characterize proteins. 

The rest of this paper is organized as follows. Section 2 
describes the data sources, dataset information, and evalu-
ation indicators we used. Section 3 describes the work on 
our method GNNGO3D. Section 4 concludes our results 
with a large number of experiments. Finally, Section 5 sum-
marizes this paper and the prospects for future work. 

 

Fig. 1. Schematic method overview. a) Protein Information Learning Module, with four graph convolutional layers for learning complex sequence-
structure–function relationships. b) GO term hierarchical information module, used for learning the semantic representation and potential inter-
relation-ship of gene ontology. c) MLP classifier to predict GO term probability. 
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2 DATASET AND EVALUATION METRICS 

2.1 Dataset Formation 

The protein sequence database UniprotKB1 [28] currently 
contains over 100 million protein sequences available. Pro-
tein Data Bank(PDB2)[21] contains the tertiary structure 
data of nucleic acid and protein. We downloaded the da-
taset PDB-cdhit of GAT-GO[17], which was originally con-
structed by DeepFRI[4]. PDB-cdhit uses CD-HIT [29] to 
split the dataset into a training set and a test set with 40% 
homology. The ground truth of PDB-cdhit dataset uses GO 
term annotation from gene ontology3, which is organized 
into three ontologies, MF, BP, and CC, according to differ-
ent functional categories. 

GO term annotations are used for 2752 cross-ontologies 
from the Gene Ontology database, including 489 MF, 1943 
BPO, and 320 CCO. The corresponding GO term of each 
protein was retrieved from the SIFTS [30] and UniProtKB 
[28] databases. SIFTS transfers GO annotation to the pro-
tein chain of PDB through the protein mapping relation-
ship between Uniprot-ID and PDB-ID [4]. Each protein 
sample in the PDB-cdhit dataset can be viewed as a sepa-
rate graph structure, with amino acids as nodes and amino 
acid contacts in space as edges. The average number of 
nodes in sample avg_nodes=277, and the average number 
of edges avg_edges= 2522. The summary of the dataset is 
shown in Table 1. 

2.2 Evaluation Metrics 

We use two main types of assessment in the CAFA chal-
lenge: i) the protein-centric indicator Fmax(maximum F-
score), which measures the accuracy of assigning GO term 
to proteins; ii) the area under the precision-recall curve 
(AUPRC) centered on GO term, which measures the accu-
racy of protein allocation to different GO terms. In the pro-
tein function prediction task, the output of the predictor is 
the score for each term in the ontology, with the score 
placed between 0 and 1. A higher score indicates more con-
fidence in the predictor's prediction results. 

Fmax is the maximum harmonic average of the accuracy 
and recall rate of all possible thresholds predicted on the 
protein term correlation matrix, as shown in Eq. (1). 
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( )pr   and ( )rc   are respectively the average accuracy 

and average recall rates at the threshold  , calculated as 
Eq. (4) and Eq. (5). Where ( )m   is the number of proteins 
that have at least one GO term in the test set and N is the 
number of all proteins in the test set. 
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We use Eq. (6) to calculate the AUPRC for each term and 
then take the average AUPRC for all terms. Where Rn and 
Pn are the accuracy and recall rate when the threshold is n, 
and N is the total number of thresholds, which in this pa-
per is 100. AUPRC is primarily used to evaluate highly un-
balanced label classification problems. 
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3 METHODS 

3.1 Sequential Features 

a ) Hhblits [31] is used to search for similar proteins in the 
database, and E-value=0.001 is set for generating the posi-
tion specific scoring matrix (pssm). With a given sequence, 
proteins with similar sequences in the database can be 
identified more quickly and accurately, which can pave the 
way for protein functions to be analyzed.  
b ) The pre-trained unsupervised protein language model 
ESM-1b[32] is used as a feature extractor to extract the in-
put protein sequence to the residue level embedding, and 
then global pooling is carried out to obtain the protein-
level feature. ESM-1b is a high-model capacity Trans-
former trained with hyperparameter optimization, pre-
trained with the protein sequence of Uniref 50. Protein se-
quence language models can learn the physical and chem-
ical properties, secondary and tertiary structures, and in-
ternal rules of functions hidden in the input sequences, so 
as to complete the task of protein function prediction.  

3.2 Construction of contact maps 

PDB database stores protein structure information in the 
form of three-dimensional atomic coordinates. The spatial 
structure information of proteins is usually based on the 
spatial coordinate information of amino acids to calculate 
the distance map between amino acids, and the distance 
matrix of this protein satisfies translation and rotation in-
variance. t. A certain distance threshold is set to obtain the 
link relationship between amino acids which is named the 
contact map. The contact map of a protein can be viewed 
as a binary adjacency matrix, where each amino acid is rep-
resented as a node, and the edge of the adjacency matrix 
indicates whether two amino acids are in contacThe spatial 
structure of proteins can be expressed as the topological 
relationship of amino acids in space. 

1. UniprotKB: https://www.uniprot.org/ 

2. Protein Data Bank: https://www.rcsb.org/ 

3. Gene Ontology: http://geneontology.org/ 

TABLE 1SUMMARY OF THE PDB-CDHIT DATA SET 

Data set Protein_nums  Avg_nodes Avg_edges 

Train set 29902  277 2522 

Valid set 3323  274 2483 

Test set 3416  347 3082 
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When using the PDB database to collect protein struc-
ture information, we encountered some problems such as 
missing amino acids or atoms in protein structure files, and 
some amino acids in protein sequence did not have 3D 
atomic coordinate information determined by experiment. 
This greatly affected the accuracy of predicting protein 
function. 

To solve this problem, we use the protein Cb-Cb distance 
predicted by RaptorX [27] mentioned in GAT-GO [17] and 
set the distance threshold of 10Å  to construct the contact 
map. The principle of RaptorX [27] is to carry out the con-
volution transformation of protein sequences through Res-
Net and also carry out the convolution transformation of 
interaction between protein residues. Through these two 
different convolution transformations, the interaction rela-
tionship between protein amino acids can be predicted 
very accurately.  

3.3 Graph networks 

The traditional deep learning model is designed for a grid 
or simple sequence, and can not get good performance for 
graph structure learning. 

3.3.1 GCN 

Graph Convolutional Networks (GCN) [24] can use the 
structure of the graph to learn the node representation of 
the graph. GCN uses the neighborhood information of GO 
terms for message propagation between GO terms to gen-
erate semantic representations and potential interrelation-
ships between GO terms. The multi-hot encoding 
( 0 N N

H


 ) of GO terms and the corresponding adja-
cency matrix ( N N

A


 ) between GO terms are taken as 
input, and the feature representation between GO terms is 
updated. GCN layer is calculated as follows: 

 
1 1

2 21 ReLU( ( ) )l l lH D A I D H W
−+ = +  (7) 

 
where A is the adjacency matrix, I is the identity matrix, 

D is the diagonal matrix of A, and W is the trainable weight 
matrix. 

3.3.2 GAT 

Graph attention network (GAT) [25] uses a mask self-atten-
tion layer to solve the shortcomings of graph convolution 
and other methods, and assigns different weights to differ-
ent nodes in the neighborhood. GCN has a greater ad-
vantage in handling transductive tasks. GAT is better at 
handling inductive tasks, which means the training set and 
test set with different types of graphs. The importance of 
each node of the GAT can be different, with more expres-
sive power. 

GAT updates the node representation based on the at-
tention of each node on its neighbors. Its calculation is 
mainly divided into two steps: 
1) Calculate the attention coefficient: for node i in the 

graph, calculate the similarity coefficient between 
node i and its neighbors one by one, as shown in Eq. 
(8). hi and hj are the features of nodes i and j, respec-
tively. W is used to increase the dimension of node fea-
tures. || concatenates the features of nodes i and j after 

transformation. a means of projecting the concate-
nated features onto the real numbers. 

([ ] || ]),ij i j ie Wh Wh j N=   (8) 
 

GAT uses mask attention to allocate attention to all 
neighbor node j of node i, as shown in Eq. (9). 

 exp( )
softmax( )

exp( )
i

ij

ij ij

ikk N

e
e

e




= =


 (9) 

2) Update node features: According to the attention coef-
ficient calculated above, a weighted summation of 
node features is performed, as shown in Eq. (10), 
where hi is the output of the new node feature. 

' LeakyReLU( )
i

i ij jj N
h a Wh


=   (10) 

3.3.3 SAGPool 

SAGPool[33] is a self-attentional diagram pooling method 
that uses an end-to-end approach to learn structural hier-
archy information by calculating self-attentional differen-
tiation between retained and discarded nodes to generate 
a new subgraph. The calculation process is mainly self-at-
tentional mask and graph pooling: 
1) Compute graph node score and node selection 

By computing the self-attention score using graph 
convolution, the result of pooling is based on the fea-
tures and topology of the graph. As shown in Eq. (11), 
A is the adjacency matrix of the graph, D is the diago-
nal matrix of A, H is the input node features of the 
graph, and θatt is the only parameter of the SAGPool 
layer. 

                  
1 1

2 2tanh( ( ) )attZ D A I D H
−

= +  (11) 

SAGPool's method of node selection preserves only 
some nodes of the input graph, as shown in Eq. (12). 
The pooling ratio k∈(0, 1) determines the proportion 
of all nodes occupied by the number of nodes to be re-
tained, top-rank is the index of top KN before return, 
and Zmask is the feature attention mask. 

 

 top- rank( , , mask idxidx Z kN Z Z= =    (12) 

2) Generate a new subgraph 
The subgraph generated by SAGPool is processed 

by operations labeled as masks in the graph. Finally, 
the new subgraph structure and node features after 
node deletion is obtained. As in Eq. (13), X and A are 
the new feature matrix and adjacency matrix calcu-
lated according to the index idx in Eq. (12).  

 

,,out idx mask out idx idxX X Z A A= =  (13) 

3.4 GNNGO3D 

a) Protein information learning module 

1DCNN is used to extract features from the pssm gener-
ated by protein sequences, and the deep information is 
mined. The output of 1DCNN is taken as the node features 
of the graph, and the protein contact map predicted by 
RaptorX is used as the adjacency matrix of the graph. Input 
into a network of four layers of GAT and SAGPool to learn 
the relationship between protein and function.  
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Each GAT layer is followed by a SAGPool layer, which 
learns the structural hierarchy information in an end-to-
end manner, and computes self-attention to distinguish be-
tween retained and discarded nodes to generate a new sub-
graph. The global average pooling operation is used to get 
the protein-level feature of each layer. Finally, the protein-
level features of each layer are added to get the final GAT-
feat, as shown in Eq. (14), where xi represents the protein-
level feature computed by global pooling of the subgraph 
node features of SAPool at each layer. 
 

                   1 2 3 4GAT - feat x x x x= + + +  (14) 

The output of the four-layer GAT and SAGPool net-
works, named GAT-feat, is combined with the sequence-
level embeddings, sequence-embedding, generated using 
the pre-trained protein language model ESM-1b. The two 
are concatenated to obtain the final protein-level feature 
called protein-feat. 

b) GO term Hierarchical information module 

We download the go-basic.obo file from the Gene Ontology 
database. This is the basic version of GO and contains a hi-
erarchy of all terms of the three ontologies. The hierar-
chical relationships among GO terms are is_a, part of, has 
part, and regulates. Here we consider the is_a relationship. 
If the term A is is_a B, it means that the term A is the sub-
term of B, and proteins labeled with the term A also have 
the function of the term B. For MF, BP, and CC ontologies, 
three graphs are constructed respectively, and terms in the 
ontologies serve as nodes of the graphs. 

The adjacency matrix Adj contains hierarchical relation-
ships between terms. We set the child node c and parent 
node p as adjacencies between all terms. Considering the 
number of proteins labeled by different terms in the da-
taset, that is, the importance of different terms, we calcu-
lated the prior probability as the weight of the adjacency 
matrix. The prior probability is calculated as shown in Eq. 
(15). N is the number of labels, Nc means the number of 
proteins in the child node term comment, and Np repre-
sents the number of proteins in the parent node term com-
ment. 

( )
( | )

( )

c p c
c p

p p

P U U N
P U U

P U N
= =  (15) 

 
The node features 

0 N N
H


 are represented as a multi-

hot coding matrix, and each row represents a term. The GO 
term and its ancestor term are coded 1, and N represents 
the number of GO terms. 

The adjacency matrix and node features of the gene on-
tology are input into GCN to learn the semantic represen-
tation and potential interrelationships of the gene ontology 
while optimizing the representation of proteins. Finally, 
the relationship between GO terms is term-vector. 

c) Classifier module 

The final protein feature learned by the protein infor-
mation learning module, protein-feat, and the output of the 
GO term hierarchical information module, term-vector, are 
fed into the classifier for multi-label classification. The out-
put of the graph attention module, protein-feat, is firstly 

reduced from N*N to N*d by a linear layer, then combine 
with term vector for feature fusion, and finally fed into the 
classifier for classification. 

Protein function prediction is a multi-label classification 
task, we used the sigmoid function to map the output to 
[0,1]. The multi-label classification task is a binary classifi-
cation task for each GO term, so the loss function uses a 
binary cross-entropy function. 

4EXPERIMENTALS AND DISCUSSION  

4.1 Training Details 

We employed the P100-PCIE for training GNNGO3D on a 
Linux system. The deep learning framework used was 
PyTorch [34]  and Torch-Geometric [35]. To optimize the 
model, we utilized the binary cross-entropy loss function 
and AdamW optimizer with a learning rate of 1e-4. The 
batch size was set to 8. The hidden channels of GAT layers 
are set to 1024. We obtained the best results by training MF, 
BP, and CC for 120, 60, and 60 epochs, respectively. Addi-
tionally, we incorporated the CosineAnnealingLR learning 
rate adjustment strategy. 

4.2 Compared Methods 

BLAST [11] is a commonly used sequence alignment tool 
that infers functional information of proteins by compar-
ing the predicted protein sequence with sequences in a 
known protein database. For each alignment hit, the corre-
sponding GO terms are assigned to the target protein 
based on the similarity score, which is treated as a predic-
tion probability. By extracting the maximum similarity 
score for each GO term, the predicted probability can be 
determined and assigned to the target protein's potential 
GO annotations. 

DeepGO utilizes CNN [14] to automatically learn rele-
vant features in protein sequences. DeepGO employs a 1D 
CNN model architecture consisting of 16 parallel single-
layer convolutional operations, with each convolutional 
layer having different kernel sizes ([8, 16, ..., 128]) and 512 
filters. This structure enables the model to capture local 
and global features of protein sequences at different scales. 

The DeepFRI [4] is a two-stage architecture. The first 
part of the model is LSTM-LM, which is used to extract 
amino acid features from the PDB sequence. The second 
part consists of three layers of GCN. 

The GAT-GO [17] utilizes a CNN to encode residue-
level sequence features extracted from one-hot encoding, 
PSSM, and language models. It uses four layers of GAT to 
take the protein contact map and the representation vec-
tors generated by the CNN as inputs. Through a classifier, 
the GAT-GO model predicts protein functions. 

4.3 Comparison of GNNGO3D with other protein 
function prediction methods 

Our method is compared with other methods based on 
protein sequence information and protein tertiary struc-
ture information on the PDB-cdhit test set with experimen-
tally determined functional annotations. Sequence-based 
approaches include the standard Naive baseline used in 
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the CAFA benchmark, BLAST sequence homology align-
ment methods, and the state-of-the-art sequence-only deep 
learning method DeepGO[15]. Structure-based approaches 
include DeepFRI [4] and GAT-GO [17]. 

All gene ontology are separately trained and evaluated 
on the PDB-cdhit dataset, and the predictive performance 
of these methods is evaluated using the protein-centric 
metric Fmax and the GO-term-centric metric AUPRC. 
Since we used the same dataset as GAT-GO, we imple-
mented the method of GAT-GO on our device, and the 
comparison metrics in the PDB-cdhit test set in GAT-GO 
[17] are used for NAIVE, BLAST, DeepGO, and DeepFRI. 
The experimental results are shown in Fig.2 and Table 2.  

Based on the experimental results, the following conclu-
sions can be drawn:  

• In MF and BP, the GNNGO3D outperforms other 
methods, including Naive, BLAST, DeepGO, 
DeepFRI, and GAT-GO, in terms of both Fmax and 
AUPRC metrics.  

• In CC, the GNNGO3D surpasses other protein 
function prediction methods in terms of the Fmax 
metric and performs comparably to the GAT-GO 
method in terms of the AUPRC metric.  

• Compared to the state-of-the-art model GAT-GO, 
GNNGO3D improves the Fmax from 0.632 to 0.662 
and the AUPRC from 0.659 to 0.675 in MF.  

Overall, GNNGO3D demonstrates excellent perfor-
mance in protein function prediction tasks across multiple 
gene ontologies. Particularly in MF and BP, GNNGO3D 
outperforms other methods in terms of Fmax and AUPRC 

metrics. This suggests that the GNNGO3D method has sig-
nificant potential in utilizing protein sequence and struc-
tural information for function prediction, surpassing the 
current state-of-the-art methods.  

4.4 Comparative experiment 

4.4.1 GO term hierarchy information module is helpful 
for protein function prediction 

The GO hierarchical information module is introduced in 
the prediction task of protein function based on the tertiary 
structure to learn hierarchical information between protein 
functions. The hierarchical structure information between 
GO terms is represented as a graph. The adjacency matrix 
is constructed with the link relationship between all child 
and parent terms, and the prior probability calculated by 
the number of proteins annotated by GO terms is used as 
the edge weight. The node features are constructed as a 
multi-hot matrix, and each row of the matrix is a GO term, 
setting all ancestor nodes of the node as 1. 

We first explored whether the GO hierarchy infor-
mation module is helpful for the function prediction task 
of the protein gene ontology domain. 

Experimental results are shown in Fig. 3. It can be seen 
that Fmax and AUPRC without GO hierarchical infor-
mation encoders have only 0.649 and 0.666 respectively. 
When we use the hierarchical module, Fmax, and AUPRC 
increase by 1.3% and 0.9%, respectively. We found that the 
gene ontology hierarchy information can be combined 
with the features learned from the protein sequence and 
structure information by the graph neural network, which 
significantly improves the model prediction performance. 

We represent the hierarchical structure between gene 
ontologies as a graph structure. The semantic representa-
tion and potential interrelationships of gene ontology are 
learned by using graph neural networks to optimize the 
representation of proteins. We also explore not using GO 
term Hierarchical Information Module, i.e. Without GO En-
coder. And TAGConv[36], GATConv, GCNConv operators 
of one layer, and GCNConv operators of two layers are 
used to learn the strength of the GeneOntology hierarchy 
information. The results are shown in Fig. 3. Compared 

 

Fig. 3 Performance of different methods on GO term hierarchical 
information Module. (a) Distribution of the Fmax score under 100 boot-
strap iterations for the different methods on GO term Module. (b) Fmax 
and AUPRC of different methods on GO term Module. 

TABLE 2 
 PREDICTION PERFORMANCE IN TERMS OF FMAX AND 

AUPRC ON  PDB-CDHIT DATASET 

Model 

Fmax AUPRC 

MF BP CC MF BP CC 

Naive 0.156 0.244 0.318 0.075 0.131 0.158 

BLAST 0.498 0.400 0.398 0.120 0.120 0.163 

DeepGO 0.359 0.295 0.420 0.368 0.210 0.302 

DeepFRI 0.542 0.425 0.424 0.313 0.159 0.193 

GAT-GO 0.632 0.479 0.544 0.659 0.378 0.474 

Ours 0.662 0.499 0.552 0.675 0.390 0.472 

 

 

Fig. 2. Fmax and AUPRC performance over GO terms in different ontol-
ogies 
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with using one-layer GATConv, using one-layer GCNConv 
has higher prediction performance on Fmax and AUPRC 
by 1.6% and 1.1%, respectively. This shows that GCN has a 
great advantage in handling transductive tasks, while GAT 
is more suitable for handling situations where the graphs 
processed by the training set and the test set are different. 

Finally, Choi and Lee [10] hold the view that although 
the prior probability can include the hierarchical relation-
ship learning between GO terms, it is highly dependent on 
the dataset, and the label imbalance problem in the dataset 
will be applied to the adjacency matrix, which can be 
solved by adding Information Content (IC). The specific 
formula is shown in Eq. (16) and Eq. (17). Where root stands 
for the root term, Nk denotes the number of proteins anno-
tated by this term k in the training set and child(k) repre-
sents all the children of term k. 

 ( )
log

( )

freq k
IC(k)

freq root
= −  (16) 

 
( )

( ) ( )k i child k
freq k N freq i


= +  (17) 

We found that the combination of prior probability and 
IC as features of GO term Fmax and AUPRC have 0.650 
and 0.660 respectively, which did not achieve a better per-
formance compared with the prior probability alone. We 
analyzed the reason for potentially adding prior probabil-
ity and IC as new GO term features, which not only failed 
to adequately represent the Gene Ontology information fu-
sion but also resulted in information loss.  

In summary, incorporating the GO hierarchy infor-
mation module is an effective approach in protein function 
prediction tasks. This module utilizes the hierarchical rela-
tionships of GO terms to construct a graph structure and 
combines protein sequence and structural information to 
learn the hierarchical relationships among protein func-
tions. Experimental results have also demonstrated that 
the use of the GO hierarchy information module signifi-
cantly improves the accuracy of protein function predic-
tion. However, further exploration is still needed on how 
to better integrate gene ontology information to enhance 
the predictive ability of protein functions. 

4.4.2 Impact of graph convolution operator and graph 
pooling operator on protein function prediction 
task 

The protein information learning module uses four layers of 
GATConv and SAGPool to learn protein structural features 
hierarchically. 

The goal of graph classification is to use its node fea-
tures and the structural information of the graph to predict 
the labels related to the whole graph, which requires 
graph-level feature representation. GNN is originally de-
signed to learn meaningful node-level features, so a com-
mon way to generate graph-level representations from 
node-level representations is to globally summarize all 
node representations in the graph. Although this is feasible, 
it ignores the structural information of the whole graph. 
Graph pooling models leverage hierarchical learning of 
structural information to generate better graph-level rep-
resentations. 

We explore the influence of different graph convolution 

operators such as GCN, GIN [37], GraphSage [38], GAT, 
GATV2 [39], and different graph pooling operators of 
TopKpool [40], EdgePool [41] , SAGPool on the perfor-
mance of protein function prediction task in MF ontology. 
The results are shown in Fig. 4. It can be seen that GAT has 
better performance than other convolution operators in 
learning features from graph structure information to pre-
dict protein function. This shows that GCN has a great ad-
vantage in transductive tasks. However, GCN cannot com-
plete inductive tasks properly. That is, it cannot handle 
Transductive tasks differently between training set and test 
set. The importance of each node of GAT can be different 
than that of GCN, and as a result, GAT has greater presen-
tation power. 

TopKPooling scores nodes based on learnable projec-
tion vectors and sample nodes with high scores. It avoids 
node aggregation and calculation of soft distribution ma-
trix and maintains sparsity in graph operation. SAGPool-
ing improves TopKPooling by using GNNS to consider the 
graph structure when scoring nodes. EdgePooling designs 
the pooling operation by contracting edges in the graph, 
but it has poor flexibility because it will always pool about 
half of the total nodes. Compared with TopKPooling at 
Fmax and AUPRC of 0.638 and 0.650, and EdgePooling at 
Fmax and AUPRC of 0.652 and 0.663, SAGPooling has sig-
nificantly higher performance in function prediction. 

Additionally, we conducted a study on the impact of the 
number of layers in GAT and SAGPool models on protein 
function prediction tasks. Under the same experimental 
conditions, we trained GAT and SAGPool models with one 
to five layers and recorded the Fmax and AUPRC metrics 
for each group of experiments. The experimental results 
are shown in Fig. 5. 

Between one layer of GATConv and two layers of 
GATConv, there is little difference in Fmax and AUPRC 
metrics. However, there is a slight improvement in the 
metrics when using three layers of GATConv, suggesting 
that increasing the number of GATConv layers can slightly 
enhance model performance. Furthermore, when the num-
ber of GATConv layers is increased to four, both Fmax and 

 

Fig. 4 Performance of different methods on the Protein Information 
Learning Module. (a) Distribution of the Fmax score under 100 boot-
strap iterations for the different methods on the Protein Information 
Learning Module.  (b) Fmax and AUPRC of Different Methods on Protein 
Information Learning Module. 
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AUPRC metrics reach their highest values, indicating a sig-
nificant improvement in model performance. However, 
when the number of GATConv layers increases to five, the 
model performance decreases, possibly due to overfitting 
caused by too many layers. 

In conclusion, our experimental results suggest that us-
ing four layers of GATConv is a better choice in terms of 
improving model performance while avoiding the over-
complexity that may lead to overfitting issues. 

4.4.3 The influence of different protein information on 
protein function prediction task 

It has been shown that sequence similarity is highly corre-
lated with the biochemical properties of proteins, and com-
plex sequence modeling methods can be performed using 
simple vector representations of sequence similar features. 
Experiments show that HMMER, a hidden Markov model-
based biomolecular similarity detection method, can com-
pete with deep learning-based protein representation 
methods [16]. 

Given these results, we add homology information to 
the training of the representation learning model and ex-
plore the impact of using protein information such as pssm, 
one-hot representation of protein sequences, and residue-
level embeddings extracted from the pre-trained protein 
language model ESM-1b [32] as input to the protein infor-
mation learning module on function prediction in MF on-
tology. Experimental results are shown in Fig. 6.  

Compared to using one-hot encoding and residue-level 
embeddings extracted by esm-1b, adding homologous in-
formation (pssm) to the training of the representation 
learning model does improve the predictive performance. 
We conducted a control experiment based on GAT-GO, 
which uses a combination of one-hot encoding, pssm, and 
residue-level embeddings extracted by a protein language 
model. The results showed that when multiple features 
were used, the performance metrics Fmax and AUPRC de-
creased by 1.4% and 2.5%, respectively, and the prediction 
confidence was lower. 

Based on these analyses, we can conclude that incorpo-
rating homologous information (pssm) in the training of 
the representation learning model has a positive impact on 

protein function prediction. However, when using multi-
ple features, there is a possibility of introducing noise or 
redundant information, which can lead to decreased per-
formance and lower prediction confidence. Therefore, it is 
important to carefully consider and evaluate different fac-
tors when selecting and integrating features in order to 
find the optimal model configuration for this task. 

4.4.4 Comparison of different protein pre-training      
models as feature extractors for functional 
prediction tasks 

We used the following protein pre-training model as a fea-
ture extractor to generate protein embeddings. 

Bepler [42]: A protein sequence encoding model trained 
with a two-step feedback mechanism (global structural 
similarity information between proteins and residue con-
tact maps of individual proteins) using bidirectional LSTM. 
It is trained on a complete protein domain sequence set (a 
total of 21,827,419 sequences) from the Pfam [43] database.  

Cpcprot [44]: An unsupervised contrastive learning 
framework for protein representation based on maximiz-
ing mutual information. It is pre-trained on 32,207,059 pro-
teins from the Pfam database.  

PlusRnn [45]: A protein sequence representation model 
using structural informatics learning for pretraining a Bi-
directional Recurrent Neural Network, resulting in the 
PLUS-RNN model. The Pfam dataset is used as the pre-
training dataset, which includes 14,670,860 sequences from 
3,150 families. 

Seqvec [46] is a deep unsupervised protein sequence 
model called Seqvec, which is based on the natural lan-
guage processing model ELMO. The model consists of a 
character-level CNN and two layers of bidirectional LSTM. 
It is pre-trained on a large-scale unlabeled dataset called 
UniRef50.  

The experimental results of using different pre-trained 
models as feature extractors are shown in Fig. 7. It can be 
observed that compared to other pre-trained models as 
feature processors, the features extracted using Esm-1b ex-
hibit significant superiority in protein function prediction 
tasks. This is also the reason why GNNGO3D chose ESM-
1b as the sequence feature extractor. 

 

Fig. 6 Performance with Different Feature Combinations on 
GNNGO3D. (a) Distribution of the Fmax score under 100 bootstrap iter-
ations with Different Feature Combinations. (b) Fmax and AUPRC with 
Different Feature Combinations on GNNGO3D. 

 

Fig. 5 Performance with Different GATConv layers on GNNGO3D. 
(a) Distribution of the Fmax score under 100 bootstrap iterations with 
Different GAT layers. (b) Fmax and AUPRC with Different GAT layers on 
GNNGO3D. 
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4.5 Ablation experiment 

To verify the effectiveness of the modules and innovations 
in our model, ablation experiments are conducted. The use 
of the GO hierarchical information module, GAT-SAGPool, 
and multi-stage feature fusion strategies are evaluated on 
MF ontology. The experimental results are shown in Table 
3, where Without Add Different Level indicates that the 
multi-stage feature fusion strategy is not used in 
GNNGO3D. WithotGATModule indicates that the output of 
1DCNN is directly concatenated with protein-level embed-
ding in Fig. 1(a) without using GAT and SAGPool with four 
layers. Without GO Encoder means that the GO term Hierar-
chical Information Module is not used in Fig. 1(b). 

When only the pssm is fed into CNN, without using 
GAT-SAGPooling to learn protein structure information, 
Fmax and AUPRC have 0.644 and 0.654, respectively. By 
using GAT-SAGPooling, the predictive performance of 
Fmax and AUPRC of MF ontology is improved by 1.8% 
and 2.1% respectively. 

If we only read out the residue-level features entered by 
SAGPooling in the last layer into protein-level feature, 
Fmax and AUPRC are 0.645 and 0.655. The multi-stage fea-
ture fusion strategies Fmax and AUPRC increased by 1.7% 
and 2% respectively. This indicates that the multi-stage fea-
ture fusion strategy can avoid forgetting important infor-
mation during training.  

Regarding why GNNGO3D uses feature addition in-
stead of feature concatenation for multi-level feature fu-
sion, it is because when using feature concatenation at each 
layer, it achieved an Fmax of 0.658 and an AUPRC of 0.669, 
whereas when using feature addition at each layer, it ob-
tained an Fmax of 0.662 and an AUPRC of 0.675. Com-
pared to the feature concatenation method, the feature ad-
dition method allows for better integration of information, 
elimination of interference and noise, and improvement of 
the gradient vanishing problem. Therefore, it can yield bet-
ter results in this task. 

4.6 Significance test 

To compare the differences in prediction performance of 

GNNGO3D and GAT-GO in MF, BP, and CC, we con-
ducted significance tests using p-values and t-values.  

The p-value is used to evaluate the probability of ob-
serving the data under the null hypothesis. When the p-
value is small (usually less than 0.05), we consider that the 
observed data has a low probability of occurring under the 
null hypothesis. The t-value is a statistic in t-tests used to 
assess the significance of differences between the means of 
two groups of samples. Specifically, the larger the absolute 
value of the t-value, the more significant the difference be-
tween the sample means. 

The results are shown in Table 4. For the MF ontology, 
the p-value is 1.00e-17 (much smaller than 0.05), meaning 
that there is a significant difference in performance be-
tween GNNGO3D and GAT-GO in MF. The t-value is 8.60, 
indicating a significant difference in the sample predic-
tions of the two methods. For the BP ontology, the p-value 
is still smaller than 0.05, indicating a significant difference 
in performance between GNNGO3D and GAT-GO in BP. 

For the CC ontology, the p-value is larger than 0.05, in-
dicating that there is no significant difference in perfor-
mance between GNNGO3D and GAT-GO in CC. This 
could be due to the fact that both our method and GAT-GO 
utilize GNN networks. Additionally, in the CD-HIT da-
taset, the CC ontology has only 320 functional annotations, 
which limits the hierarchy features learned by the GO hi-
erarchical information module and provides limited assis-
tance for function prediction tasks, resulting in less notice-
able differences. 

4.7 Performance in the LIGASE protein family 

To validate the GNNGO3D's broad applicability and effec-
tiveness, experiments are planned to be conducted on a 
new protein family. The LIGASE [21] protein family plays 
a crucial role in DNA repair, replication, and recombina-
tion, as well as RNA repair and splicing processes, ensur-
ing the accurate transmission and stability of genetic infor-
mation in cells. 

For this purpose, we selected 107 proteins from the LIG-
ASE family and used our GNNGO3D to predict their MF, 
BP, and CC functions. The results are shown in Table 4. 

The GNNGO3D achieved significant performance in 
predicting the MF ontology of LIGASE family proteins, 
with Fmax and AUPRC values of 0.764 and 0.796, respec-

TABLE 3 
GNNGO3D PERFORMANCE WITH DIFFERENT ARCHI-

TECTURES  

Ablation experiment Fmax AUPRC 

Without Add Different Level 0.645 0.655 

Without GAT Module 0.644 0.654 

Without GO Encoder 0.649 0.666 

Ours 0.662 0.675 

 
 

Fig. 7 Performance with Different feature extractors on GNNGO3D. 
(a) Distribution of the Fmax score under 100 bootstrap iterations with 
Different feature extractors. (b) Fmax and AUPRC with Different feature 
extractors on GNNGO3D. 

TABLE 4 
SIGNIFICANCE TEST FOR GNNGO3D AND GAT-GO 

Test of Significance MF BP CC 

p-value 1.00 e-17 1.35 e-3 0.66 

t-value 8.60 3.21 -0.43 
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tively. This indicates that the GNNGO3D can more accu-
rately predict the functional characteristics of LIGASE fam-
ily proteins, with higher recall and precision rates. This is 
of great significance for a deeper understanding of the 
functional mechanisms of LIGASE family proteins in MF 
Ontology. 

In terms of the BP ontology and CC ontology, the 
       ’  performance in predicting the biological pro-
cess functions of the LIGASE family has improved com-
pared to the PDB-CDHIT dataset, with Fmax and AUPRC 
values of 0.581 and 0.398, respectively. With 1943 GO terms 
in the BP ontology, this suggests that the biological process 
functions of LIGASE family proteins are more complex 
compared to other functional ontologies and may exhibit 
greater diversity. As for the CC ontology, the poor perfor-
mance of AUPRC for the LIGASE family may be due to de-
creased accuracy in judging positive and negative in-
stances or potential influences from class imbalance and 
the complexity of data features. 

5 CONCLUSION  

In this paper, we proposed GNNGO3D, a method based on 
protein structural information combined with functional 
hierarchical relationships to effectively improve protein 
function prediction.  We used the encoder that learns the 
hierarchical relationship of GeneOntology in the tertiary 
structure-based protein function prediction task to con-
struct the node feature matrix of GO terms and the adja-
cency matrix that represents the hierarchical relationship 
of GO terms. The experimental results shows that our 
method is superior to the current protein function predic-
tion methods in MF, BP. The GO term hierarchical infor-
mation module used in our approach does improve the 
performance of protein function prediction, and consider-
ing the output of the graph convolution combined with 
each layer during message passing prevents some im-
portant information from being forgotten. 

Most of the existing methods of protein structure repre-
sentation are only the coordinates of a certain amino acid 
atom or the use of pre-trained models to build contact 
maps, which cannot completely represent the characteris-
tics of proteins. We will then consider other ways to better 
represent the spatial structure of the protein, as well as con-
sider the addition of protein helices and amino acid angle 
information to design more suitable models. 

Protein function prediction is a multi-label classification 
task, and most proteins are annotated by multiple labels, 
and labels are not isolated. How to better learn the relation-
ship between labels and consider the influence of other as-
pects of prior knowledge on the prediction task still needs 
to be explored. 
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