
Received: July 17, 2024. Revised: October 3, 2024. Accepted: October 17, 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Briefings in Bioinformatics, 2024, 25(6), bbae559

https://doi.org/10.1093/bib/bbae559

Problem Solving Protocol

GGN-GO: geometric graph networks for predicting
protein function by multi-scale structure features
Jia Mi 1, Han Wang1, Jing Li2, Jinghong Sun1, Chang Li1, Jing Wan1,*, Yuan Zeng3,4,*, Jingyang Gao1,*

1The College of Information Science and Technology, Beijing University of Chemical Technology, Beijing
2The College of Life Science and Technology, Beijing University of Chemical Technology, Beijing
3Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences
4Chinese National Microbiology Data Center (NMDC)

*Corresponding authors. Jing Wan, The College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
E-mail: wanj@mail.buct.edu.cn; Yuan Zeng, Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Science. Chinese National
Microbiology Data Center (NMDC), Beijing, 100101, China. E-mail: zengyuan_protect_ol@outlook.com; Jingyang Gao, The College of Information Science and
Technology, Beijing University of Chemical Technology, Beijing, 100029, China. E-mail: gaojy@mail.buct.edu.cn

Abstract

Recent advances in high-throughput sequencing have led to an explosion of genomic and transcriptomic data, offering a wealth of
protein sequence information. However, the functions of most proteins remain unannotated. Traditional experimental methods for
annotation of protein functions are costly and time-consuming. Current deep learning methods typically rely on Graph Convolutional
Networks to propagate features between protein residues. However, these methods fail to capture fine atomic-level geometric structural
features and cannot directly compute or propagate structural features (such as distances, directions, and angles) when transmitting
features, often simplifying them to scalars. Additionally, difficulties in capturing long-range dependencies limit the model’s ability
to identify key nodes (residues). To address these challenges, we propose a geometric graph network (GGN-GO) for predicting protein
function that enriches feature extraction by capturing multi-scale geometric structural features at the atomic and residue levels. We use
a geometric vector perceptron to convert these features into vector representations and aggregate them with node features for better
understanding and propagation in the network. Moreover, we introduce a graph attention pooling layer captures key node information
by adaptively aggregating local functional motifs, while contrastive learning enhances graph representation discriminability through
random noise and different views. The experimental results show that GGN-GO outperforms six comparative methods in tasks with
the most labels for both experimentally validated and predicted protein structures. Furthermore, GGN-GO identifies functional residues
corresponding to those experimentally confirmed, showcasing its interpretability and the ability to pinpoint key protein regions. The
code and data are available at: https://github.com/MiJia-ID/GGN-GO

Keywords: protein function prediction; geometric graph networks; multi-scale structural features; graph attention pooling; graph
contrastive learning

Introduction
Proteins are central to the functioning of life, performing a mul-
titude of functions. They catalyze or inhibit the transcription or
translation of genes [1], transmit signals, and maintain cellular
functions, thereby ensuring the normal operation of biological
systems. Therefore, understanding the functions of proteins is
crucial for disease mechanism research, drug target identifica-
tion, and advancing precision medicine [2, 3]. High-throughput
sequencing technologies have advanced rapidly. This has led to
a significant increase in the number of protein sequences. How-
ever, the experimental identification of protein functions is time-
consuming and costly, which cannot keep pace with the rapid
growth of protein sequences. Therefore, it is urgent to develop
efficient and accurate computational prediction methods [4].

Methods for prediction of protein functions fall into three
categories: template-based methods, sequence-based methods,
and structural-based methods [5]. Template-based methods, such
as local comparison (Blast) [6] and domain comparison (FunFam)
[7] rely on the assumption of homology, which states that if

the sequences are similar, then the functions are also similar.
However, in fact, similar sequences can have divergent functions,
limiting these methods for distantly homologous proteins.
Sequence-based methods extract features like evolutionary and
interaction information via machine learning, which better han-
dle distant homologous proteins. For instance, DeepGO-SE [8] and
SPROF-GO [9] employ pre-trained language models for semantic
reasoning and embedding extraction to predict protein functions.
However, current machine learning primarily computes specific
sequence features and faces challenges in directly extracting
complex features.Sequence-based deep learning methods have
tackled this issue. DeepGO [10] uses convolutional neural
networks (CNN) and fully connected layers to learn complex
features from protein sequences, while DeepGOPlus [11] uses
deep CNNs to identify motifs. Recently, sequence feature-based
methods have integrated ESM2 [12], ProtTrans [13], and other pre-
trained protein language models as feature extraction modules
[14–16]. These models use advanced feature extraction to capture
complex sequence information, enhancing the accuracy of

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae559/7862673 by guest on 17 April 2025

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-9393-4288

 16 18382
a 16 18382 a

mailto:wanj@mail.buct.edu.cn
mailto:wanj@mail.buct.edu.cn
mailto:wanj@mail.buct.edu.cn
mailto:wanj@mail.buct.edu.cn

 20085 19434 a 20085 19434
a

mailto:zengyuan_protect_ol@outlook.com
mailto:zengyuan_protect_ol@outlook.com
mailto:zengyuan_protect_ol@outlook.com
mailto:zengyuan_protect_ol@outlook.com

 27090 20485 a 27090
20485 a

mailto:gaojy@mail.buct.edu.cn
mailto:gaojy@mail.buct.edu.cn
mailto:gaojy@mail.buct.edu.cn
mailto:gaojy@mail.buct.edu.cn
https://github.com/MiJia-ID/GGN-GO
https://github.com/MiJia-ID/GGN-GO
https://github.com/MiJia-ID/GGN-GO
https://github.com/MiJia-ID/GGN-GO
https://github.com/MiJia-ID/GGN-GO
https://github.com/MiJia-ID/GGN-GO
https://github.com/MiJia-ID/GGN-GO

2 | Mi et al.

protein function prediction. Although sequence features are very
important, structural features are equally critical, as protein
sequences dictate structure, which in turn determines function
[17]. Structural features, as a supplement to sequence features,
are crucial for functional prediction.

Currently, most biological molecules, including proteins, are
represented using Graph Convolutional Network (GCN) [18], which
can represent protein structures as non-Euclidean graph struc-
tures with residues as nodes and edges connecting spatially adja-
cent residues. Each node receives feature information from neigh-
boring nodes and aggregates this information at each layer to
update the feature representations. DeepFRI [17] uses contact
maps to construct protein networks and employs GCNs to prop-
agate residue features; GAT-GO [14] uses inter-residue contact
maps and protein sequence embeddings, aggregating node fea-
tures through a graph attention network to improve the accuracy
of protein function prediction; PFresGO [19] also combines pro-
tein sequence embeddings with predicted inter-residue contact
maps, using an attention mechanism to capture this information
and improving prediction accuracy by integrating the hierarchi-
cal structure of GO labels;HEAL [15] uses a hierarchical graph
transformer networks to focus on key features during feature
propagation and enhances the model’s representation capabili-
ties through contrastive learning.

Despite advances in the application of GCNs, limitations
remain: (i) existing protein function prediction methods fail to
capture atomic-level geometric information, hindering under-
standing of active sites and molecular interactions, thus affecting
accurate protein function prediction. (ii)Residue orientations,
angles, and other structural features, cannot be directly prop-
agated in GCNs [20] due to their design for undirected graphs,
which simplifies these to scalars and affects prediction accuracy.
(iii) Difficulties in capturing long-range dependencies restrict the
model’s ability to identify key nodes (residues), which are vital for
understanding protein function.

To address these challenges, we propose a method using a
geometric graph network with multi-scale structural features
(GGN-GO). Specifically,to obtain more comprehensive structural
features, we capture multi-scale structural features in the protein,
including angles and orientations between protein residues and
atoms within the residues. To mitigate the loss of structural infor-
mation during propagation within the geometric graph network,
we introduce geometric vector perceptrons (GVPs) to convert
these features into vector representations. After applying two
linear transformations followed by a nonlinear transformation,
we aggregate these representations with the node features, which
have been converted to scalar values, to create a comprehensive
graph representation. This representation is then input into the
geometric graph network for propagation and computation.To
improve the identification of key nodes, we introduce supernodes
that interact with the protein graph nodes. We use graph attention
pooling (GAP) to aggregate their representations. We also imple-
ment smooth perturbation of node features for normalization,
enhancing robustness and generalization in identifying critical
protein features.

To evaluate the effectiveness of GGN-GO in the prediction
of protein function, we conducted comparative experiments
between GGN-GO and BLAST, FunFam, DeepGO, DeepFRI, PFresGO,
and HEAL. We train GGN-GO-PDB using protein structure datasets
(PDBch) obtained from the Protein Data Bank (PDB). The results
demonstrate that GGN-GO-PDB performs exceptionally well
on PDBch, particularly outperforming other methods in the
biological process (BP) tasks, which have the most functional
labels. Subsequently, we further trained GGN-GO using predicted

datasets (AFch) generated by deep learning methods. GGN-
GO consistently outperformed all other methods on both the
PDBch and AFch test sets, indicating its robust performance
on newly discovered proteins as well. Furthermore, we used
Grad-CAM to understand the key residues influencing GGN-
GO’s decisions. The experimental results indicate that GGN-GO is
capable of identifying crucial functional residue positions, thereby
demonstrating its interpretability.

Materials and methods
An overview of GGN-GO
To obtain richer features, we extracted both the sequence and
structural features from each protein sample. For sequence fea-
tures, we used the protein language models ESM2 [12] and Prot-
Trans [13]. For structural features, we used DSSP [21] to obtain
secondary structure features and capture multi-scale geometric
features of residues and within residues. These features were
integrated into node and edge features, with undirected features
as scalars and directed features as vectors. A graph representation
was constructed using GVPs and processed in a geometric graph
network, trained with supervised and graph comparison learning
strategies. Details are shown in Fig. 1.

Multi-scale geometric features
We first input the protein sequences into the ESM2 and ProtTrans
models. Subsequently, based on the experimentally determined
protein structures (PDB), we represented each protein as a graph
G(V, E). In this graph, V denotes all the nodes (residues) of the
protein, and E represents the edges, which correspond to the
distance relationships between the nodes. We then extracted
multi-scale geometric features of the nodes and edges [22] (Fig. 1b)
and integrated them with high-level sequence features to form
the node and edge features of the protein (Fig. 1c). These features
were subsequently input into the geometric graph network.

Node features
Node features contain vector and scalar features.

Vector features: (i) the central carbon atom of each residue
Cα in the protein serves as the starting point of the node vector,
with the central carbon atoms of its two connected residues as
vector endpoints (Cαi−1 − Cαi,Cαi+1 − Cαi). (ii) The second car-
bon atom Cβ on the side chain to which the current residue
Cα is attached serves as the end point of another node vector
(Cβi − Cαi) [23].

Scalar features: (i) using DSSP to analyze the PDB structure,
we obtained three types of features: one-hot encoded secondary
structure profiles, peptide backbone torsion angles (PHI and PSI)
represented by sine and cosine values, and solvent-accessible
surface area. (ii) Node features were enhanced using pre-trained
language models ESM2 and ProtTrans. These two models comple-
ment each other, enhancing the generalization ability to unknown
sequences.

Edge features
Edge features also contain vector and scalar features.

Vector features: unit vectors from vi to vj, where the direction
between adjacent residues is Cαi − Cαj. Here, vj represents the
current node, and vi − vj represents its neighboring nodes.

Scalar features: (i) distance features encoded using the Gaus-
sian Radial Basis Function [24] for distance

∥∥Cαi − Cαj

∥∥
2. (ii) Posi-

tional features encoded using the sine and cosine functions of the
distances between vi and vj.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae559/7862673 by guest on 17 April 2025

GGN-GO | 3

Figure 1. (a). Overview of the GGN-GO model. We extracted high-level sequence features using ESM2 and ProtTrans, and obtained secondary structure
information with DSSP. Additionally, we extracted multi-scale geometric features from protein structures. These features were integrated into a graph
representation with scalar and vector features by GVPs. Finally, the node and edge features were fed into the geometric graph network and optimized
using a comparative learning strategy. (b) Details of Multiscale Geometric Features. This includes geometric vector features such as Cαi − Cαj between
Cα atoms in neighboring residues, scalar features for angle and position embedding, geometric vector features Cαi−1 − CαiandCαi+1 − Cαi between Cα

atoms in connected residues, and geometric vector features Cβi − Cαi between Cα atoms inside the residue and Cβ atoms in the side chain. (c) Details
of edge features and node features. Edge features include vectors Cαi − Cαj, scalar positional embeddings, and angular embeddings. The node features
consist of the vectors Cαi−1 − Cαi,Cαi+1 − Cαi and Cβi − Cαi, as well as the scalar features of ESM2, ProtTrans, and their respective feature embeddings.
(d) Transformation process in GVP. The vectors and scalars input into the GVP undergo two linear and one nonlinear transformations for vectors, and
one linear and one nonlinear transformation for scalars. The ‖.‖2 computation occurs after the vectors undergo the first linear transformation and are
then integrated into the scalars.

Architecture of geometric graph networks
We use the node and edge features as inputs to the geometric
graph network. The GVP processes these features through linear
and nonlinear operations. Then, the GVP-based GNN updates the
information on neighboring nodes and edges. Finally, a GAP layer
learns the features of key nodes.

GVP
The GVP [25] is used to learn the vector and scalar features.
For vector features, two linear transformations are followed by a
nonlinear transformation. The first linear transformation maps
features to a higher-dimensional space for better representation.
The combination of the second linear and nonlinear transforma-
tions helps extract rotation-invariant information and allows the
model to capture more complex feature representations through
the introduction of nonlinear properties. For scalar features input
to the GVP, the L2 norms of the vector features after the first
linear transformation are concatenated with the input scalars to
generate new scalar features. To further enhance the model’s rep-
resentation and learning capabilities, these new scalar features
undergo an additional linear and nonlinear transformation. The
resulting features reduce dimensionality and complexity while
retaining essential information, which helps to efficiently and
accurately learn protein features.

The node and edge features were computed and propagated
using two separate GVPs. The node and edge features computed
by the GVPs are used to construct the input graph representation,
which then serves as the input for the GVP-based GNN.

V′ = σ+ (∥∥WμWhV
∥∥

2

) � (
WμWhV

)
(1)

s′ = σ
(
Wm (concat (‖WhV‖2, s)) + b

)
(2)

where V ∈ Rv×3 and s ∈ Rn denote the vector and scalar features
of the input GVP, respectively, V′ ∈ Rμ×3 and s′ ∈ Rm are the
new features generated by the GVP.σ+(.) and σ (.) are two different
nonlinear transformation functions,Wμ, Wh and Wm are three
different linear weights, and b is the bias term.

GVP based on GNN
We used graph neural networks to compute and propagate node
information in protein graphs. Unlike previous methods [23] that
propagate only undirected scalar features, our method incorpo-
rates feature directionality during propagation. We employed a
GVP-based GNN for message transmission between nodes, using
the graph representation of each protein as input. The propaga-
tion process is shown below:

hm
(j→i) = g

(
concat

(
hv

(i), he
(j→i)

))
(3)

hv
(i) = LayerNorm

⎛
⎝hv

(i) + 1
k′

⎛
⎝ ∑

j:ej→i∈E

hm
(j→i)

⎞
⎠

⎞
⎠ (4)

where the features of node i and egde (j− i) are represented as hv
(i)

and hm
(j→i), respectively, and g represents the GVP module. hm

(j→i)

passed from node j to node i, and k′ is the dimensionality of the
incoming features.

Since there was no need to learn the directionality of the
features after the GVP-based GNN, and the GVP has already
integrated directional information into the scalar features when
calculating both the scalar and vector features (Fig. 1(d)), we
added an additional GVP after it to incorporate directionality from
the output graph into the scalar features for GAP. This simplifies

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae559/7862673 by guest on 17 April 2025

4 | Mi et al.

the pooling operation’s complexity while maintaining feature
expressiveness, improving network efficiency, and performance.

GAP
n trainable important nodes as a query matrix, with each node’s
feature dimension denoted by d. To learn more complex node rela-
tionships, we introduced the encoders GCN1 and GCN2 to obtain
the key and value matrix. Next, we constructed the multi-head
attention matrices using different parameters, namely �1,...,�H,
to further enhance the model’s focus on key nodes. Finally, we
concatenated the multi-head attention matrices and used a fully
connected layer to generate the important node matrix A ∈ Rn×d.

� = soft max
(

Q · KT

√
d

)
V (5)

K = GCN1(G, E) (6)

V = GCN2(G, E) (7)

A = MLP(�1, . . . , �H) (8)

where G denotes the graph representation of each protein, E rep-
resents the distance relationships between all nodes, and MLP(.)
is the multilayer perceptron used to transform the embedding of
each significant node.

To further capture the key features and structural relationships
of important nodes, we inputted the important node matrix into
the GAP layer. Specifically, we defined a query vector QP ∈ R1×d

and use GCN1 and GCN2 to obtain the key matrices KP ∈ Rd×d and
the value matrix VP ∈ Rd×d, the formula is as follows:

z = soft max

(
QP · (A · KP)

T

√
d

)
A · VP (9)

Finally, the output of the GAP, z ∈ R1×d, is processed by the MLP,
and the sigmoid activation function was applied to generate the
prediction vector ȳ ∈ R1×C.

Graph contrastive learning
To better capture key information in graph data, we introduced
graph comparison learning as a normalization strategy [26, 27].
Optimize similar graph representations to bring them closer and
dissimilar ones to push them apart, effectively distinguishing
structures and features in graphs. We added random noise εv to
the nodes of each graph representation, using the sign function
sign(·), and compared the similarity between the original and
perturbed graph representations:

hv
′ = hv + |εv| · sign(hv) (10)

where hv
′ is the perturbed graph representation.

To maximize similarity, we used the InfoNCE loss function [28]:

Lreg = − 1
M

M∑
m=1

log
ezm◦z′

m/τ∑M
m′=1 ezm◦z′

m/τ
(11)

where M is the number of samples in each batch, and m is the
mth protein sequence. Each sequence passes through the original
GGN-GO to obtain a raw representation zm, and through the
perturbed GVP to get z′

m. The temperature parameter τ is set
to 0.5 [26]. The symbol ◦ computes the cosine similarity between
vectors.

For the multi-label classification task, we use binary cross
entropy as the supervised loss:

Lsup = − 1
M · C

C∑
l=1

M∑
m=1

(
ylog(ȳ) + (1 − y)log(1 − ȳ)

)
(12)

where y and ȳ denote the true probability and the predicted posi-
tive probability of the lth GO term for the mth sample, respectively,
and C represents the number of GO terms.The final loss of GGN-
GO is the weighted sum of supervised and contrastive losses:

L = Lsup + Lreg (13)

Implementation and settings for training
All GGN-GO experiments were performed on four NVIDIA RTX
A6000 (48G) GPUs. Adam optimizer [29] was used with a learning
rate of 0.0001 and a batch size of 64 for 100 epochs. The models
were implemented using PyTorch and PyTorch Geometric [30].
Early stopping with five-epoch patience based on the validation
set was applied to prevent overfitting [31].

Datasets
We used the PDB dataset (PDBch) [32] and the SM dataset (SMch)
[33] provided by DeepFRI (https://github.com/flatironinstitute/
DeepFRI), as well as the AF dataset (AFch) [15, 34] provided by
HEAL (https://github.com/ZhonghuiGu/HEAL). PDBch includes 36
641 protein structures from the PDB database, and SMch includes
244 775 protein structures from the SWISS-MODEL repository.

The processing of PDBch involves (i) obtaining all protein struc-
tures with contact maps in PDBch from the PDB; (ii) clustering by
95% sequence identity and selecting representative protein chains
with at least one GO term; and (iii) dividing PDBch into training,
validation, and test sets according to an 8:1:1 ratio.The protein
chains and corresponding GO terms in PDBch were downloaded as
ground truth values from the SIFTS [35] database, which collates
information from the PDB [33] and UniProtKB [2] databases. After
counting, the occurrences of GO terms in PDBch totaled 489 from
Molecular Function (MF) terms, 1943 from BP terms, and 320 from
Cellular Component (CC) terms.To further categorize all the GO
terms in PDBch, we introduce a frequency score(IC), to calculate
the occurrence frequency of each GO term in the PDBch training
set. A higher IC indicates a lower frequency of occurrence and vice
versa [32]:

L = Lsup + Lreg (14)

SMch data were collected by extracting protein structures with
at least one GO term from PDBch, sourced from the SWISS-MODEL
database, and clustering them at 95% identity. SMch was divided
into training, validation, and test sets (8:1:1).

AFch was constructed by identifying proteins with low-
frequency GO terms (IC <10) from the PDBch training set and
retrieving 44,137 protein structures from the AlphaFold database
[34]. The sequences were clustered with MMseqs at 25% sequence
identity, resulting in a training set with 43,072 sequences and a
test set with 567 sequences. Sequences in the AFch test set with
more than 25% identity to those in the AFch and PDBch training
sets were removed.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae559/7862673 by guest on 17 April 2025

https://github.com/ flatironinstitute/DeepFRI
https://github.com/ flatironinstitute/DeepFRI
https://github.com/ flatironinstitute/DeepFRI
https://github.com/ flatironinstitute/DeepFRI
https://github.com/ flatironinstitute/DeepFRI
https://github.com/ ZhonghuiGu/HEAL
https://github.com/ ZhonghuiGu/HEAL
https://github.com/ ZhonghuiGu/HEAL
https://github.com/ ZhonghuiGu/HEAL
https://github.com/ ZhonghuiGu/HEAL

GGN-GO | 5

Table 1. AUPR, Fmax, and Smin values of different methods on the PDBch test set, with the highest Fmax and AUPR and the lowest
Smin highlighted in bold

Method Training set AUPR (↑) Fmax (↑) Smin (↓)

MF BP CC MF BP CC MF BP CC

Blast – 0.136 0.067 0.097 0.328 0.336 0.448 0.632 0.651 0.628
FunFams – 0.367 0.260 0.288 0.572 0.500 0.672 0.531 0.579 0.503
DeepGO PDBch+SMch 0.391 0.182 0.263 0.577 0.493 0.549 0.472 0.577 0.550
DeepFRI PDBch+SMch 0.495 0.261 0.274 0.625 0.540 0.613 0.437 0.543 0.527
PFresGO PDBch+SMch 0.602 0.293 0.361 0.692 0.568 0.674 0.417 0.535 0.498
HEAL-PDB PDBch 0.571 0.259 0.342 0.691 0.565 0.655 0.401 0.540 0.501
HEAL-SW PDBch+SMch 0.653 0.308 0.432 0.711 0.581 0.654 0.366 0.509 0.489
HEAL PDBch+AFch 0.691 0.337 0.467 0.747 0.595 0.687 0.342 0.509 0.458
GGN-GO-PDB PDBch 0.601 0.291 0.347 0.698 0.643 0.657 0.400 0.546 0.510
GGN-GO-SM PDBch+SMch 0.684 0.339 0.438 0.718 0.659 0.657 0.368 0.513 0.498
GGN-GO PDBch+AFch 0.708 0.418 0.481 0.758 0.677 0.699 0.348 0.500 0.463

Baseline methods
GGN-GO was compared with six methods, detailed in Supplemen-
tary Material S1. These include BLAST [36], an unsupervised
method for functional annotation via sequence similarity; Fun-
Fams [7], a domain-based annotation method; DeepGO [10], a deep
learning method for sequence and network features; DeepFRI [17],
which combines sequence and structural information; PFresGO
[19], which uses self-attention and cross-attention to capture
protein functions; and HEAL [15], a hierarchical graph transformer
method integrating sequence and structural information.

Evaluation metrics
To compare the performance of different algorithms, we use CAFA
evaluation criteria [37], including Fmax, AUPR, and Smin. Fmax
finds the threshold for the highest F1 score, calculating precision
and recall at various thresholds. AUPR measures the area under
the precision-recall curve, providing a comprehensive assessment
of the model’s performance at all thresholds. Smin weights GO
terms with different ICs to evaluate the prediction of rare protein
functions. Detailed calculations for each metric are provided in
Supplementary Material (S2).

Results
Improvement of protein function prediction by
GGN-GO
We evaluated the performance of GGN-GO on the PDBch and AFch
test sets by comparing it to Blast, FunFams, DeepGO, DeepFRI,
PFresGO and HEAL. DeepGO, DeepFRI, and PFresGO were trained
on the PDBch and SMch training sets, and HEAL was trained
on the PDBch, PDBch+SMch, and PDBch+AFch training sets. For
comparison, we trained GGN-GO on the PDBch, PDBch+SMch,
and PDBch+AFch training sets. The resulting models were named
GGN-GO-PDB, GGN-GO-SM, and GGN-GO. The performance of
GGN-GO in the three gene ontology domains (MF, BP, CC) was
assessed using three evaluation metrics (AUPR, Fmax, Smin), as
shown in Table 1.

GGN-GO-PDB achieved AUPR scores of 0.601, 0.291, and 0.347,
Fmax scores of 0.698, 0.643, and 0.657, and Smin scores of 0.400,
0.546, and 0.510 for MF, BP, and CC tasks. Trained on PDBch,
GGN-GO-PDB outperforms Blast, FunFams, DeepGO, DeepFRI, and
PFresGO. It also shows superior AUPR and Fmax scores compared
to HEAL-PDB, especially in BP, with similar Smin scores.

GGN-GO-SM achieved the following scores for MF, BP, and CC
tasks: AUPR scores of 0.684, 0.339, and 0.438; Fmax scores of
0.718, 0.659, and 0.657; and Smin scores of 0.368, 0.513, and 0.498,
respectively. GGN-GO-SM outperforms Blast and FunFams across
all domains and competes well with DeepGO, DeepFRI, PFresGO,
and HEAL-SMch trained on PDBch + SMch.

GGN-GO achieved AUPR scores of 0.708, 0.418, and 0.481, Fmax
scores of 0.758, 0.677, and 0.699, and Smin scores of 0.348, 0.500,
and 0.463 for MF, BP, and CC tasks. Trained on PDBch+AFch, GGN-
GO outperformed all comparison methods in BP, the task with the
most function labels.

By using different random seeds, we conducted 20 training
sessions and performed paired-sample t-tests on the AUPR scores
of the models on the test dataset for each training session. The P-
values for comparisons between GGN-GO or GGN-GO-PDB models
and other baselines were below 0.05 at α = 0.05, indicating our
models significantly outperform the baselines.

Ablation study of components
To evaluate the contribution of different components in GGN-GO,
we performed ablation experiments using the PDBch and AFch
test sets. The four ablated models are as follows: (i) GGN-GO w/o
LLM: Removes feature embeddings from ESM2 and ProtTrans. (ii)
GGN-GO w/o GVP: Remove vector processing in GVP, turning it into
a scalar-only perceptual machine. (iii) GGN-GO w/o GAP: Removes
GAP. (IV) GGN-GO w/o CL: Removes comparative learning opti-
mization. The results are shown in Table 2.

Experimental findings indicate that removal of ESM2 and Prot-
Trans significantly affects AUPR scores (0.315, 0.268, 0.284), Fmax
(0.489, 0.461, 0.583) and Smin (0.571, 0.621, 0.568) on MF, BP, and
CC tasks, underscoring the pivotal role of protein language models
in advance of sequence analysis. Additionally, excluding GVP
reduces AUPR (0.638, 0.311, 0.388) and Fmax (0.672, 0.571, 0.643),
and raises Smin (0.421, 0.547, 0.512), particularly in BP, implying
that integrating scalar and vector features enhances the model’s
grasp of intricate protein attributes. Removing GAP yields poorer
results than GVP removal (AUPR: 0.584, 0.307, 0.371; Fmax: 0.660,
0.569, 0.629; Smin: 0.453, 0.567, 0.527), indicating GAP’s capture
of pivotal nodes. Without contrastive learning optimization, the
performance of the model decreases slightly (AUPR: 0.658, 0.383,
0.462; Fmax: 0.713, 0.659, 0.668; Smin: 0.382, 0.517, 0.493), which
highlights its role in the identification of critical features amid
noisy data.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae559/7862673 by guest on 17 April 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae559#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae559#supplementary-data

6 | Mi et al.

Table 2. AUPR, Fmax, and Smin values of different methods on the PDBch test set, with the highest Fmax and AUPR and the lowest
Smin highlighted in bold

Method AUPR (↑) Fmax (↑) Smin (↓)

MF BP CC MF BP CC MF BP CC

GGN-GO 0.708 0.418 0.481 0.758 0.677 0.683 0.355 0.500 0.473
GGN-GO w/o LLM 0.315 0.268 0.284 0.489 0.461 0.583 0.571 0.621 0.568
GGN-GO w/o GVP 0.638 0.311 0.388 0.672 0.571 0.643 0.421 0.547 0.512
GGN-GO w/o GAP 0.584 0.307 0.371 0.660 0.569 0.629 0.453 0.567 0.527
GGN-GO w/o CL 0.658 0.383 0.462 0.713 0.659 0.668 0.382 0.517 0.493

Table 3. AUPR, Fmax, and Smin values of different methods on the PDBch test set, with the highest Fmax and AUPR and the lowest
Smin highlighted in bold

Method AUPR (↑) Fmax (↑) Smin (↓)

MF BP CC MF BP CC MF BP CC

GGN-GO 0.708 0.418 0.481 0.758 0.677 0.683 0.355 0.505 0.473
GGN-GO w/o ProtTrans 0.641 0.341 0.427 0.672 0.623 0.612 0.430 0.531 0.501
GGN-GO w/o ESM2 0.647 0.363 0.439 0.661 0.628 0.608 0.421 0.537 0.499
GGN-GO w/o dssp+DA 0.697 0.383 0.467 0.734 0.659 0.661 0.368 0.512 0.479

Ablation study of multi-scale features
Since our study focuses on multidimensional geometric features
such as vectors and angles of nodes and edges, we performed
feature ablation experiments using PDBch and AFch test sets to
evaluate the contribution of different geometric dimensions to
the prediction results of GGN-GO. The three ablation experiments
are as follows: (i) GGN-GO w/o ProtTrans: removes ProtTrans
feature embedding. (ii) GGN-GO w/o ESM2: removes ESM2 feature
embeddings. (iii) GGN-GO w/o DSSP + DA: removes the secondary
structure of the protein and the features of the dihedral angle
extracted by DSSP.

The results indicate that without ProtTrans, GGN-GO achieves
AUPR scores of 0.641, 0.341, and 0.427, Fmax scores of 0.672, 0.623,
and 0.612, and Smin scores of 0.43, 0.531, and 0.501 for the MF, BP
and CC tasks (Table 3). This underscores the importance of the
ProtTrans features. Removing ESM2 yields AUPR scores of 0.647,
0.363, and 0.439, Fmax scores of 0.661, 0.628, and 0.608, and Smin
scores of 0.421, 0.537, and 0.499 for the same tasks, similar to per-
formance after removing ProtTrans. Both models improve protein
function prediction by providing advanced sequence information.
Removing DSSP and dihedral angle features (20 dimensions) com-
pared to ProtTrans and ESM2 (1024 and 1280 dimensions) results
in AUPR scores of 0.697, 0.383, and 0.467, Fmax scores of 0.734,
0.659, and 0.661, and Smin scores of 0.368, 0.512, and 0.479 for the
MF, BP, and CC tasks, demonstrating strong performance and the
importance of structural features.

Generalizability of GGN-GO
To assess GGN-GO’s generalizability, we evaluated its perfor-
mance on PDBch test data with homology thresholds of 30%,
40%, 50%, 70%, and 95% and compared GGN-GO, GGN-GO-PDB,
DeepFRI, and DeepGO (Fig. 2). The results show that GGN-GO-
PDB and DeepFRI outperform DeepGO, indicating that structural
information improves prediction accuracy. GGN-GO outperforms
DeepFRI and DeepGO at all thresholds and achieves results
comparable to HEAL, excelling in BP tasks. Lower homology boosts
performance across methods, but GGN-GO achieves similar

results on lower homology data as others do on higher homology,
suggesting multi-scale structure features enhance its learning
of structure-function relationships. See Supplementary Material
(S3.1) for details.

Performance of GGN-GO on the Language Model
predicted structures
A practical scenario for GGN-GO is predicting the functions of
proteins lacking experimental structures or similar sequences. We
benchmark GGN-GO against methods using sequence and homol-
ogy data on the AFch test set, comparing it with DeepFRI, GGN-
GO-PDB, and HEAL. Figure 3 shows that while DeepFRI trains on
homology-modeled AFch sequences, GGN-GO-PDB, trained only
on PDB structures, achieves comparable results. HEAL trains on
AFch data with predicted structures. GGN-GO models trained on
AFch data outperformed others, with higher Fmax scores (0.531,
0.501, 0.672) and AUPR scores (0.558, 0.321, 0.313) (Supplementary
Material S3.2). These results highlight GGN-GO’s effectiveness in
predicting structures without experimental resolution.

Performance of GGN-GO for different specific GO
terms
To evaluate GGN-GO performance across GO terms of varying
specificity, we computed the information content (IC) distribu-
tion of GO terms in the PDBch and PDBch+AFch training sets
(Supplementary Material Figs 1 and 2). The proteins in the PDBch
test set were classified based on IC into three groups: low (IC <

5), moderate (5 < IC < 10), and high- specificity (IC > 10).
In this experiment, the low specificity terms were found to be
relatively common, while the moderate specificity terms exhib-
ited intermediate specificity. High-specificity terms are found
in only a few proteins, but they usually have significant bio-
logical importance and can be hard to predict. We used AUPR
as the main metric to compare GGN-GO, GGN-GO-PDB, HEAL,
HEAL-PDB, DeepFRI, and DeepGO. GGN-GO achieved AUPRs of
0.803, 0.529, and 0.401 for low, moderate, and high specificity
terms, respectively. Its high-specificity performance significantly
outperformed other methods (Supplementary Material Fig. 3).

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae559/7862673 by guest on 17 April 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae559#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae559#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae559#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae559#supplementary-data

GGN-GO | 7

Figure 2. (a) AUPR, (b) Fmax and (c) Smin of different methods on different homology data from the PDBch test set.

Figure 3. AUPR and Fmax of MF, BP, and CC obtained by different methods on the AFch test set.

GGN-GO showed clear improvements in predicting highly specific
functions.

Performance of GGN-GO in recognizing key
residues
To clearly show the contribution of each residue to the prediction,
we applied a gradient-weighted class activation map (Grad-CAM)
[38]. This approach is widely used in the visual interpretation of
CNN classifiers to identify regions that contribute the most to
the final decision by highlighting gradient changes. In analyzing
a single protein sample, we selected the output after the GVP-
based GNN and GVP as the feature map F ∈ RL×D, where L is the
protein sequence length and D is the hidden dimension. We use
the derivative of the protein function yl with respect to Fi,j as the
gradient weight Wl

i,j.

Wl
i,j = ∂yl

∂Fi,j
(15)

The contribution score of each residue can be obtained by the
weighted summation of Fi,j with Wl

i,j:

CAMl
i = ReLU

⎛
⎝

∑D
j=1 Wl

i,jFi,j

D

⎞
⎠ (16)

Figure 4 A shows the CAMl
i heatmap for the GO:0009112 func-

tion numbered 3GDT-A.
To verify the regions contributing most to GGN-GO predictions,

we obtained protein-ligand binding site data from the BioLip
database [39]. Binding sites in BioLip are based on PDB experi-
mental structures. A residue is considered bound to the nucleic
acid if the van der Waals radii sum of the closest atoms between
the residue and ligand is less than 0.5 Å. Residues closer to the
ligand likely contribute more to the predictions for ligand-binding
proteins [23].

For the BP task, we selected 3GDT, involved in nucleobase
metabolism (GO:0009112). Its heat map with the binding site

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae559/7862673 by guest on 17 April 2025

8 | Mi et al.

Figure 4. Visualization of GGN-GO’s predicted attention for four protein samples using Grad-CAM. (a) The weighted summation of visualization weights
and feature maps is shown as the final predicted contribution, with red indicating a large contribution and blue a small contribution. (b)–(e) Mapping
the visualization results onto the 3D structures of the corresponding proteins. (f) ROC curves and AUC scores for different samples.

of 6-AZA-UMP is shown in Fig. 4(b), and residues close to the
ligand contribute more to the prediction. Next, we selected 4TMK,
involved in nucleoside triphosphate metabolism (GO:0009141), as
shown in Fig. 4(c). Residues around the inhibitor TP5A signifi-
cantly contributed to the heat map.

For the MF task, we selected the DNA polymerase 6GEN
(GO:0003677) with DNA-binding function. The heatmap projected
onto the protein structure showed strong signals in the DNA-
binding region (Fig. 4d). We also selected RNA polymerase 6AGB
(GO: 0003723) with RNA binding function and observed strong
signals in the RNA-binding region (Fig. 4e).

Furthermore, we used ROC curves to compare the performance
in identifying significant functional residues. The ROC curves
show the relationship between the true positive rate (sensitivity)
and the false positive rate (1-specificity), quantified by the area
under the curve (AUC). A larger AUC implies higher accuracy in
the prediction at the residue level. Fig. 4(f) shows the ROC curves
and AUC values: 6GEN-G (0.88), 6AGB-D (0.83), 4TMK-A (0.80), and
3GDT-A (0.82), all indicating high predictive precision.

Discussion
Currently, research on protein function prediction increasingly
emphasizes the use of geometric structural information to
understand protein functions. In this study, we propose the GGN-
GO, which integrates multi-scale geometric structural features,
including direction vectors between residues and their internal
atoms, dihedrals, and secondary structures. These features
undergo two linear and one nonlinear calculations using GVP,
transforming them into vectors and scalars to construct a
geometric graph representation. After propagation through a
geometric graph network, key nodes are identified using GAP
for decision-making. Additionally, contrastive learning is utilized
for regularization. GGN-GO significantly improves prediction
accuracy on large-scale functional tag sets and overall outper-
forms the current state-of-the-art model, HEAL, particularly
demonstrating a significant enhancement in performance on

BP tasks. This indicates that GGN-GO effectively propagates
geometric structural features, playing a crucial role in functional
prediction.

Experimental results show that as the volume of data and scale
of labels increase, GGN-GO’s performance significantly improves,
particularly excelling in large-scale the BP task and surpassing
the state-of-the-art model HEAL, demonstrating adaptability to
complex structural information. Ablation experiments confirm
the contribution of various components and features to perfor-
mance; generalization experiments reveal strong performance on
low sequence similarity proteins; experiments on AFch validate
its excellent performance on unknown structure proteins; exper-
iments on different specificity data show significant improve-
ments in prediction accuracy for high-frequency GO terms; and
key residue identification confirms GGN-GO’s interpretability.

GGN-GO uses geometric structural features to understand
protein functional regions, showing potential for predicting pro-
tein interaction sites, offering value in drug target identification
and structural biology. In practice, GGN-GO demonstrates inter-
pretability and reliability for unannotated proteins, advancing
protein design in drug discovery and synthetic biology.

While GGN-GO performs well, it requires experimentally deter-
mined or predicted protein structures, which adds a step com-
pared to sequence-based methods, increasing the complexity.
This reliance can be limiting when structural data are unavailable
or difficult to obtain. However, with advances in AlphaFold3 [40],
the quality of structure prediction has significantly improved,
partially alleviating this limitation. In the future, we hope to use
protein structure prediction models and structural information
for annotating unknown protein sequences.

Key Points

• GGN-GO enriches feature extraction by capturing multi-
scale geometric structural features at the atomic and
residue levels.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae559/7862673 by guest on 17 April 2025

GGN-GO | 9

• GGN-GO uses GVPs to convert these features into vector
representations and aggregates them with node features
for better understanding and propagation within the
geometric graph network.

• GGN-GO introduces supernodes and graph attention
pooling to enhance the identification of key nodes.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.

Conflict of interest: None declared.

Funding
This work is supported in part by funds from the Ministry of
Science and Technology(2022FY101104).

Data availability
The code and data are available at: https://github.com/MiJia-ID/
GGN-GO.

References
1. Wong L, Wang L, You ZH. et al. GKLOMLI: a link predic-

tion model for inferring miRNA-lncRNA interactions by using
Gaussian kernel-based method on network profile and linear
optimization algorithm. BMC Bioinform 2023;24:188. https://doi.
org/10.1186/s12859-023-05309-w.

2. Tianhao Y, Cui H, Li JC. et al. Enzyme function prediction
using contrastive learning. Science 2023;379:1358–63. https://doi.
org/10.1126/science.adf2465.

3. Kim GB, Kim JY, Lee JA. et al. Functional annotation of
enzyme-encoding genes using deep learning with transformer
layers. Nat Commun 2023;14:7370. https://doi.org/10.1038/
s41467-023-43216-z.

4. Boadu F, Cao H, Cheng J. Combining protein sequences and
structures with transformers and equivariant graph neural net-
works to predict protein function. Bioinformatics 2023;39:i318–25.
https://doi.org/10.1093/bioinformatics/btad208.

5. Le NQK. Explainable artificial intelligence for protein function
prediction: a perspective view. Curr Bioinform 2023;18:205–7.
https://doi.org/10.2174/1574893618666230220120449.

6. Huson DH, Buchfink B. Fast and sensitive protein align-
ment using diamond. Nat Methods 2015;12:59–60. https://doi.
org/10.1038/nmeth.3176.

7. Sayoni D, David L, Ian S. et al. Functional classification of CATH
superfamilies: a domain-based approach for protein function
annotation. Bioinformatics 2015;21:3460–7.

8. Kulmanov M, Guzmán-Vega FJ, Roggli PD. et al. Protein function
prediction as approximate semantic entailment. Nat Mach Intell
2024;6:220–8. https://doi.org/10.1038/s42256-024-00795-w.

9. Yuan Q, Xie J, Xie J. et al. Fast and accurate protein function pre-
diction from sequence through pretrained language model and
homology-based label diffusion. Brief Bioinform 2023;24:bbad117.
https://doi.org/10.1093/bib/bbad117.

10. Kulmanov M, Khan MA, Hoehndorf R. DeepGO: predicting pro-
tein functions from sequence and interactions using a deep
ontology-aware classifier. Bioinformatics 2017;34:660–8.

11. Kulmanov M, Hoehndorf R. DeepGOPlus: improved protein func-
tion prediction from sequence. Bioinformatics 2020;36:422–29.
https://doi.org/10.1093/bioinformatics/btz595.

12. Rives A, Goyal S, Meier J. et al. Biological structure and function
emerge from scaling unsupervised learning to 250 million pro-
tein sequences. Proc Natl Acad Sci U S A 2021;118:e2016239118.
https://doi.org/10.1073/pnas.2016239118

13. Elnaggar A, Heinzinger M, Dallago C. et al. ProtTrans: toward
understanding the language of life through self-supervised
learning. IEEE Trans Pattern Anal Mach Intell 2021;44:7112–27.

14. Lai B, Jinbo X. Accurate protein function prediction via
graph attention networks with predicted structure information.
Briefings in Bioinformatics 2022;23. https://doi.org/10.1093/bib/
bbab502.

15. Zhonghui G, Luo X, Chen J. et al. Hierarchical graph trans-
former with contrastive learning for protein function pre-
diction. Bioinformatics 2023;39:btad 410. https://doi.org/10.1093/
bioinformatics/btad410.

16. Mengmeng W, Wang L, Yang L. et al. BioKG-CMI: a multi-
source feature fusion model based on biological knowledge
graph for predicting circRNA-miRNA interactions. Sci China Inf
Sci 2024;67:189104. https://doi.org/10.1007/s11432-024-4098-3.

17. Vladimir, Gligorijevic P, Renfrew D, Kosciolek T. et al. Structure-
based protein function prediction using graph convolutional
networks. Nat Commun 2021;12:3168. https://doi.org/10.1038/
s41467-021-23303-9.

18. Wang L, Li Z-W, Hu J. et al. A PiRNA-disease association model
incorporating sequence multi-source information with graph
convolutional networks. Appl Soft Comput 2024;157:111523.
https://doi.org/10.1016/j.asoc.2024.111523.

19. Pan T, Li C, Bi Y. et al. PFresGO: an attention mechanism-
based deep-learning approach for protein annotation by
integrating gene ontology inter-relationships. Bioinformatics
2023;39:btad094.

20. Kipf TN, Welling M. Semi-supervised classification with graph
convolutional networks. ICLR 2017.

21. Kabsch W, Sander C. Dictionary of protein secondary structure:
Pattern recognition of hydrogen-bonded and geometrical fea-
tures. J Phys Chem Solid 2010;57:75–80.

22. Zhou B, Zheng L, Wu B. et al. Protein engineering with lightweight
graph denoising neural networks. Journal of Chemical Information
and Modeling 2024;64:3650–61. https://doi.org/10.1021/acs.jcim.4
c00036.

23. Song Y, Yuan Q, Zhao H. et al. Accurately identifying
nucleic-acid-binding sites through geometric graph learn-
ing on language model predicted structures. Brief Bioinform
2023;24:bbad360. https://doi.org/10.1093/bib/bbad360.

24. Fornberg B, Larsson E, Flyer N. Stable computations with Gaus-
sian radial basis functions. SIAM J Sci Comput 2011;33:869–92.
https://doi.org/10.1137/09076756X.

25. Jing B, Eismann S, Suriana P. et al. Learning from protein struc-
ture with geometric vector perceptrons. ICLR 2021.

26. Yu J, Yin H, Xia X. et al. Are Graph Augmentations Necessary? Simple
Graph Contrastive Learning for Recommendation. SIGIR 2022.

27. You Y, Chen T, Sui Y. et al. Graph Contrastive Learning with Aug-
mentations. NIPS2020.

28. Yu Q, Lou J, Zhan X. et al. Adversarial contrastive learning via
asymmetric infonce. ECCV 2022.

29. Kingma DP, Ba J. Adam: a method for stochastic optimization. the
3rd International Conference for Learning Representations. San Diego,
2015.

30. Fey M, Lenssen JE. Fast graph representation learning with
pytorch geometric.

31. Prechelt L. Early stopping-but when?

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae559/7862673 by guest on 17 April 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae559#supplementary-data
https://github.com/MiJia-ID/GGN-GO
https://github.com/MiJia-ID/GGN-GO
https://github.com/MiJia-ID/GGN-GO
https://github.com/MiJia-ID/GGN-GO
https://github.com/MiJia-ID/GGN-GO
https://github.com/MiJia-ID/GGN-GO
https://github.com/MiJia-ID/GGN-GO
https://doi.org/10.1186/s12859-023-05309-w
https://doi.org/10.1186/s12859-023-05309-w
https://doi.org/10.1186/s12859-023-05309-w
https://doi.org/10.1186/s12859-023-05309-w
https://doi.org/10.1186/s12859-023-05309-w
https://doi.org/10.1126/science.adf2465
https://doi.org/10.1126/science.adf2465
https://doi.org/10.1126/science.adf2465
https://doi.org/10.1126/science.adf2465
https://doi.org/10.1126/science.adf2465
https://doi.org/10.1038/s41467-023-43216-z
https://doi.org/10.1038/s41467-023-43216-z
https://doi.org/10.1038/s41467-023-43216-z
https://doi.org/10.1038/s41467-023-43216-z
https://doi.org/10.1038/s41467-023-43216-z
https://doi.org/10.1093/bioinformatics/btad208
https://doi.org/10.1093/bioinformatics/btad208
https://doi.org/10.1093/bioinformatics/btad208
https://doi.org/10.1093/bioinformatics/btad208
https://doi.org/10.1093/bioinformatics/btad208
https://doi.org/10.2174/1574893618666230220120449
https://doi.org/10.2174/1574893618666230220120449
https://doi.org/10.2174/1574893618666230220120449
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/s42256-024-00795-w
https://doi.org/10.1038/s42256-024-00795-w
https://doi.org/10.1038/s42256-024-00795-w
https://doi.org/10.1038/s42256-024-00795-w
https://doi.org/10.1038/s42256-024-00795-w
https://doi.org/10.1093/bib/bbad117
https://doi.org/10.1093/bib/bbad117
https://doi.org/10.1093/bib/bbad117
https://doi.org/10.1093/bib/bbad117
https://doi.org/10.1093/bib/bbad117
https://doi.org/10.1093/bioinformatics/btz595
https://doi.org/10.1093/bioinformatics/btz595
https://doi.org/10.1093/bioinformatics/btz595
https://doi.org/10.1093/bioinformatics/btz595
https://doi.org/10.1093/bioinformatics/btz595
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1093/bib/bbab502
https://doi.org/10.1093/bib/bbab502
https://doi.org/10.1093/bib/bbab502
https://doi.org/10.1093/bib/bbab502
https://doi.org/10.1093/bib/bbab502
https://doi.org/10.1093/bioinformatics/btad410
https://doi.org/10.1093/bioinformatics/btad410
https://doi.org/10.1093/bioinformatics/btad410
https://doi.org/10.1093/bioinformatics/btad410
https://doi.org/10.1093/bioinformatics/btad410
https://doi.org/10.1007/s11432-024-4098-3
https://doi.org/10.1007/s11432-024-4098-3
https://doi.org/10.1007/s11432-024-4098-3
https://doi.org/10.1007/s11432-024-4098-3
https://doi.org/10.1038/s41467-021-23303-9
https://doi.org/10.1038/s41467-021-23303-9
https://doi.org/10.1038/s41467-021-23303-9
https://doi.org/10.1038/s41467-021-23303-9
https://doi.org/10.1016/j.asoc.2024.111523
https://doi.org/10.1016/j.asoc.2024.111523
https://doi.org/10.1016/j.asoc.2024.111523
https://doi.org/10.1016/j.asoc.2024.111523
https://doi.org/10.1016/j.asoc.2024.111523
https://doi.org/10.1021/acs.jcim.4c00036
https://doi.org/10.1021/acs.jcim.4c00036
https://doi.org/10.1021/acs.jcim.4c00036
https://doi.org/10.1021/acs.jcim.4c00036
https://doi.org/10.1021/acs.jcim.4c00036
https://doi.org/10.1021/acs.jcim.4c00036
https://doi.org/10.1093/bib/bbad360
https://doi.org/10.1093/bib/bbad360
https://doi.org/10.1093/bib/bbad360
https://doi.org/10.1093/bib/bbad360
https://doi.org/10.1093/bib/bbad360
https://doi.org/10.1137/09076756X
https://doi.org/10.1137/09076756X
https://doi.org/10.1137/09076756X
https://doi.org/10.1137/09076756X

10 | Mi et al.

32. Yao S, You R, Wang S. et al. NetGO 2.0: improving large-
scale protein function prediction with massive sequence, text,
domain, family and network information. Nucleic Acids Res
2021;49:W469–75. https://doi.org/10.1093/nar/gkab398.

33. Andrew W, Martino B, Stefan B. et al. SWISS-MODEL: homology
modelling of protein structures and complexes. Nucleic Acids Res
2018;46:W296–303.

34. Mihaly V, Stephen A, Mandar D. et al. Alphafold protein structure
database: massively expanding the structural coverage of the
protein sequence space with high-accuracy models. Nucleic Acids
Res 2021;50:D439–44.

35. Dana JM, Gutmanas A, Tyagi N. et al. Sifts: Updated Structure
Integration with Function, Taxonomy and Sequences Resource
Allows 40-Fold Increase in Coverage of Structure-Based Annota-
tions for Proteins. Nucleic Acids Res 2019;47:D482–9. https://doi.
org/10.1093/nar/gky1114.

36. Jian Y, Scott MG, Madden TL. Blast: Improvements for better
sequence analysis. Nucleic Acids Res 2006;34:W6–9.

37. Radivojac P, Clark WT, Oron TR. et al. A large-scale evaluation of
computational protein function prediction. Nat Methods 2013;10:
221–7. https://doi.org/10.1038/nmeth.2340.

38. Selvaraju RR, Cogswell M, Das A. et al. Grad-CAM: visual
explanations from deep networks via gradient-based localiza-
tion. Int J Comput Vis 2020;128:336–59. https://doi.org/10.1007/
s11263-019-01228-7.

39. Jianyi Y, Ambrish R, Yang Z. BioLiP: a semi-manually curated
database for biologically relevant ligand–protein interactions.
Nucleic Acids Res 2013;41:1096–103.

40. Abramson J, Adler J, Dunger J. et al. Accurate structure
prediction of biomolecular interactions with AlphaFold 3.
Nature 2024;630:493–500. https://doi.org/10.1038/s41586-024-
07487-w.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae559/7862673 by guest on 17 April 2025

https://doi.org/10.1093/nar/gkab398
https://doi.org/10.1093/nar/gkab398
https://doi.org/10.1093/nar/gkab398
https://doi.org/10.1093/nar/gkab398
https://doi.org/10.1093/nar/gkab398
https://doi.org/10.1093/nar/gky1114
https://doi.org/10.1093/nar/gky1114
https://doi.org/10.1093/nar/gky1114
https://doi.org/10.1093/nar/gky1114
https://doi.org/10.1093/nar/gky1114
https://doi.org/10.1038/nmeth.2340
https://doi.org/10.1038/nmeth.2340
https://doi.org/10.1038/nmeth.2340
https://doi.org/10.1038/nmeth.2340
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1038/s41586-024-07487-w

	 GGN-GO: geometric graph networks for predicting protein function by multi-scale structure features
	Introduction
	Materials and methods
	Datasets
	Baseline methods
	Evaluation metrics
	Results
	Discussion
	Key Points
	Supplementary data
	Funding
	Data availability

