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Abstract
A key challenge of the post-genomic era is the identification of the function(s) of all the molecules in a given
organism. Here, we review the status of sequence and structure-based approaches to protein function inference
and ligand screening that can provide functional insights for a significant fraction of the �50% of ORFs of unassigned
function in an average proteome. We then describe FINDSITE, a recently developed algorithm for ligand binding
site prediction, ligand screening and molecular function prediction, which is based on binding site conservation
across evolutionary distant proteins identified by threading. Importantly, FINDSITE gives comparable results when
high-resolution experimental structures as well as predicted protein models are used.

Keywords: protein function prediction; ligand binding site prediction; virtual ligand screening; protein structure prediction;
low-resolution protein structures

INTRODUCTION
Over the past decade, catalyzed by the sequencing

of the genomes of hundreds of organisms [1–4],

biology is undergoing a revolution comparable to

what physics underwent in the early 20th century.

The emphasis is shifting from the study of individual

molecules to the large-scale examination of all genes

and gene products in an organism and comparative

genomics studies of multiple organisms [5–9].

Here, the goal is to understand the function of all

molecules in a cell and how they interact on a

system-wide level; this perspective has given birth

to the new field of Systems Biology [10, 11]. Of

course, biological function is multifaceted, ranging

from biochemical to cellular to phenotypical [12,

13]. By detecting evolutionary relationships between

proteins of known and unknown function,

sequence-based methods can provide insights into

the function of about 50% of the ORFs in a given

proteome [14–20], with the remainder believed to

be too evolutionarily distant to infer their function

[21]. Thus, the prediction of the function of the

remaining 50% of unannotated ORFs remains

an outstanding challenge. However, since protein

structure is more conserved than protein sequence

[22–24], it can play an essential role in annotating

genomes [13, 25–31]. In addition, protein structure

should assist in lead compound identification as part

of the drug discovery process [11, 32–34]. A key

question is whether one can use low-to-moderate

resolution predicted structures which can be pro-

vided for about 70% of the protein domains in a

proteome [35] or if high-resolution experimental

structures are required [36, 37]. This issue also has

implications for the requisite scope of structural

genomics that aims for high-throughput protein

structure determination [38–44]. If low-to-moderate

resolution models were to prove useful for functional
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inference, then the value of contemporary protein

structure prediction approaches would be signifi-

cantly enhanced [45].

One of the more disappointing aspects of protein

structure-based functional inference has been the

relatively minor marginal impact it has had to

date relative to sequence-based methods that rely

on inferring function on the basis of the evolution-

ary relationship between proteins of known and

unknown function. Here, however, caution needs

to be exercised; just because a pair of proteins are

evolutionarily related does not imply that they

have the identical function [20]. Proteins can add

additional functions during the course of their

evolution or can modify their function from

that of their ancestors [46–49]. On the other hand,

especially for binding site prediction and ligand

screening, as proteins become evolutionary more

distant, it is unclear what features are conserved

and what have become modified [50]. Here, one

might imagine that conservation of the protein’s

binding site in the structure and conservation of

ligand binding features and associated ligands could

prove useful. Indeed, just as protein homology

modeling as extended by threading [51] (note that

the most successful threading approaches have a

strong evolution based component [52]) has proven

to be a very powerful tool in protein function

prediction, one would like to exploit these ideas

for the prediction of protein function, binding site

prediction and ligand screening [37]. That is to say,

we wish to exploit the signal averaging provided

by evolution to identify the conserved/variable

functional features that can be used to infer the

functional properties of proteins of unknown func-

tion and to do so by automatic approaches suitable

for proteomes.

Based on the above, there is a pressing need for

the development of more powerful approaches to

protein function prediction that can be applied on

a proteome scale. In that regard, in this Briefings in
Bioinformatics article, we first summarize the status of

sequence-based approaches to functional inference

[14, 19, 53–55] that provide the baseline against

which protein structure-based approaches are com-

pared. Next, there is the issue of the utility of protein

structure for functional inference. Is it marginal?

Being bounded at higher levels of sequence identity

(420%) by purely sequence-based approaches

[14, 19] and at low levels of sequence identity by

the inability to transfer function by interference [20]

(which is the only effective means of function

prediction), can one effectively exploit the insights

provided by protein structure? If so, what is the

quality of protein structure required for functional

inference in general, and for binding site and

ligand screening in particular? Can predicted, low-

resolution protein models be used or are we limited

to high-resolution, experimental structures [36, 56,

57]? Here, we focus in particular on a newly

developed, powerful threading-based approach to

protein function prediction, FINDSITE [37], that

shows considerable promise in its ability to exploit

both experimental and predicted protein structures

for the inference of protein function, the prediction

of protein binding sites as well as for providing

guidance in small molecule ligand screening. These

issues are discussed below.

SEQUENCE-BASED FUNCTIONAL
INFERENCE
The biological function of a protein can be defined

in physiological, developmental, cellular or bio-

chemical contexts [58]. To characterize these facets

of protein functions, a number of ontologies have

been developed, including those in GO [59], KEGG

[60] and MIPs [61]. However, even having an

appropriate description of protein function, per-

forming experimental assays on all the uncharacter-

ized proteins provided by the hundreds of ongoing

genome sequencing projects is impractical. Thus,

computational tools are needed [62]. In fact, in

newly sequenced genomes, the functional annota-

tions of the vast majority of genes are not based

on experiment but are inferred on the basis of the

sequence similarity to previously characterized pro-

teins [58, 63, 64].

The fundamental assumption of this strategy,

termed ‘annotation transfer by homology’ [65], is

that sequence similarity is equivalent to functional

similarity. However, sequence similarity based func-

tion transfer is complicated by numerous factors;

most critical is the functional divergence of highly

similar sequences, a problem exhibited by many

protein families [54, 55]. Here, permissive criteria

to assess the significance of the similarity between

proteins can lead to wrong annotations. For

example, depending on the protein family, detailed

biochemical function is not completely conserved

between similar proteins even when their pairwise

sequence identity is 60% [20]. Despite this fact,
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much lower sequence similarity thresholds have been

used in the functional annotation of some genomes

[66]. This issue can be partly addressed by introduc-

ing family specific sequence identity thresholds [20],

and especially at lower pairwise sequence identity

levels (20–30%), enhanced specificity and coverage

can be achieved by exploiting the conservation of

functionally determining residues [14, 19, 67, 68].

Indeed, the sequence-based method EFICAz for

enzyme function inference [14, 19] shows quite high

levels of precision, sensitivity and specificity even

at the levels of 20% sequence identity between pairs

of enzyme sequences. It works because a combina-

tion of criteria designed to give a low false positive

rate is used. Here, the use of functionally discrimi-

nating residues that act as a filter once a sequence

is assigned as being evolutionary related to sequences

of known enzymatic function is of importance.

STRUCTURE-BASED FUNCTIONAL
INFERENCE
Active and binding site prediction
Within a protein family, the global fold is more

strongly conserved than protein sequence [69]. Thus,

the inference of protein biochemical function should

benefit by the inclusion of structural information

[13]. However, divergent and convergent evolution

results in a non-unique relationship between protein

structure and protein function; i.e. the structure of

a protein in and of itself is insufficient for correct

function prediction [70, 71]. As in highly accurate

sequence-based approaches [19], additional informa-

tion is required. Three-dimensional descriptors or

templates of biologically relevant sites [26, 72–81] are

one example of such a filter. As demonstrated for

4 enzyme systems [82], local 3D motifs frequently

outperform global similarity searches using protein

structure [83] or sequence [84] alone. Furthermore,

the Evolutionary Trace (ET) approach shows that

the accuracy of 3D templates can be further increased

by selecting evolutionarily relevant residues [85, 86].

In addition to these active site descriptors designed

to capture the geometric features of known catalytic

residues, a number of structure-based approaches

have been developed to identify ligand binding sites

[87]. Many focus on the recognition of particular

ligand, e.g. adenylate [81], calcium [88] or DNA [89,

90], with more general methods mainly tested on

a few ligand types [75, 91]. Of interest is the PINTS

[30] approach designed to perform database searches

against a collection of ligand-binding sites excised

from the PDB [92] and the ProFunc server that

combines a collection of sequence- and structure-

based methods to identify close relationships to

functionally characterized proteins [93].

Geometric methods locate putative binding

residues by searching for cavities/pockets in the

protein’s structure [94–97]. Comprehensive bench-

marks carried out for the unbound/bound protein

crystal structures reveal that among the best of these

pocket-detection algorithms is LIGSITECSC [96],

an extension of LIGSITE [95]. LIGSITECSC calcu-

lates surface-accessibility on the Connolly surface

[98] and then re-ranks the identified pockets by

the degree of conservation of identified surface

residues. Other methods calculate theoretical micro-

scopic titration curves [99], analyze the spatial

hydrophobicity distribution [100] or identify elec-

trostatically destabilized residues [101]. In all these

methods, the ligand itself is ignored; rather the

focus is on the structural features of the protein

surface.

Ligand docking algorithms
Given a protein structure, one should not only be

able to identify the functional site, but also be able

to predict which ligands (for enzymes, substrates)

bind to that site. There are two key elements of

any docking approach: First, a scoring function is

required that accurately ranks the generated set of

solutions. In that regard, blind docking can be used

to elucidate some general features of binding ligands

(or more practically, drug candidates) [102, 103],

even if one lacks the ability to correctly rank known

binding ligands. Second, a fast and effective search

algorithm is necessary to explore the conformational

space of protein–ligand interactions. Efficiency is

especially important in virtual screening experiments

[104, 105], where millions of possible ligands need

to be docked into a receptor structure in an

acceptable amount of time. Thus, as a practical

matter, for each ligand, the docking cannot require

more than a few minutes of CPU time on a state-

of-the-art computer.

The past years have seen the development of

a number of algorithms for docking small molecules

into receptor proteins [106–109]. These approaches

have been evaluated in terms of ligand binding pose

accuracy and the ability to predict binding affinities

[110–113]. However, it is evident that most con-

temporary approaches have significant problems
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with ligand ranking, and most require high-resolu-

tion, experimentally determined protein structures

[36, 111]. Thus, while considerable progress has been

made, significant issues remain.

Utility of predicted structures for
functional inference
A number of protein structure-based function infer-

ence methods have been reasonably successful when

applied to high-resolution structures [26, 72–81, 89,

90]. Given the recent improvements in protein

structure prediction algorithms [45, 114–123], it is

important to establish if lower resolution predicted

structures are useful. A structure-based method for

protein function prediction that does not require

high-resolution structures would be of significant

practical value, especially since the best structure

prediction approaches can produce low-resolution

or better models for �2/3 of the proteins in a given

proteome [35, 124–126].

The key issue is to establish the quality of

structure required to transfer a given biochemical

function at a specified level of accuracy. While there

have been attempts to address this issue for enzymes

using active site template matching [13, 127], further

investigation is required. Most often, ligand docking

programs typically utilize high-resolution receptor

structures determined by experiment or theoretical

modeling [128–130]. Virtual screening reveals that

the success rate decreases from ligand-bound to

ligand-free to modeled structures [131] and is

correlated with the degree of protein movement

in the binding site; protein binding site rearrange-

ments greater than 1.5 Å lead to almost complete

lack of recovery of the ‘true’ binding mode [132].

Furthermore, decoy-docking experiments using

deformed trypsin structures with a Ca root-mean-

square deviation, RMSD from the native structure

in the range of 1–3 Å for the docking of 47 ligands

experimentally known to bind trypsin reveal that

specific ligand–receptor contacts are rapidly lost with

increasing receptor structure deformation [111].

Different docking techniques have been devel-

oped to address this problem. Most account for

receptor flexibility/distortion by docking ligands

against a precalculated ensemble of receptor con-

formations [133] or by softening the criterion for

the steric fit between the ligand and receptor [134].

Other docking techniques capable of dealing with

significant structural inaccuracies employ a low-

resolution representation of the protein designed to

accommodate structural distortions. For example, an

ultra low-resolution (�7 Å) protein representation

that averages all high-resolution structural details

dramatically improves the tolerance to receptor

deformation [135, 136]. A similar approach demon-

strated that even low-quality receptor structures

could be utilized [57].

Another, newly developed, low-resolution dock-

ing approach that uses a reduced ligand and protein

representation is Q-dock [36]. Self-docking using

crystal structures revealed ligand pose prediction

accuracy comparable to all-atom docking. All-atom

models reconstructed from Q-Dock’s low-resolution

models can be further refined by simple all-atom

energy minimization. In decoy docking against

distorted receptor models with a backbone RMSD

from native of �3 Å, Q-Dock recovers on average

15–20% more specific contacts and 25–35% more

binding residues than all-atom methods. Q-Dock

also gives encouraging results for ligand screening

against predicted protein structures whose average

global backbone RMSD is 5 Å (Brylinski &

Skolnick, unpublished results). Thus, the possibility

of using low-resolution predicted structures for

binding pose identification and ligand screening

appears quite promising. In this spirit, we next turn

to an automated approach that can predict ligand

binding sites, binding ligands as well the molecular

function of proteins, even when low-resolution

protein structures are used.

FINDSITE: A threading based method
for ligand binding site prediction/
functional annotation
The comprehensive examination of known protein

structures grouped according to SCOP [137] reveals

the tendency of certain protein folds to bind

substrates at a similar location, suggesting that very

distantly homologous proteins often have common

binding sites [138]. That is, evolution tends to

conserve the functionally important region in the

protein structure and conserves a subset of ligand

binding features as well. For example, as shown

in Figure 1, the localization of the binding pocket

as well as the local geometry and the binding

mode of the ligands are remarkably well conserved

in glutathione S-transferase family despite the low

sequence identities between family members. Hence,

it should be possible to develop an approach for

ligand binding site identification that is less sensitive

than pocket-detection methods to structural
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distortions of the protein, as these distortions are

present in the set of evolutionarily distant protein

structures.

In this spirit, we developed FINDSITE [37], an

algorithm for protein functional annotation that is

based on binding site similarity among superimposed

groups of template structures identified from thread-

ing [51]. Threading is of importance in that it acts

as a filter to establish that the set of protein struc-

tures are evolutionarily related. A schematic over-

view of the FINDSITE methodology is shown in

Figure 2. For a given target protein, the threading

algorithm PROSPECTOR_3 [52] identifies protein

structure templates with bound ligands. Then, these

holo-templates are superimposed onto the predicted

(or experimental, if available) target protein structure

using the TM-align protein structure alignment

algorithm [139]. Upon superimposition, the clus-

tered centers of mass of the ligands bound to the

threading templates identify putative binding sites,

and the predicted sites are ranked according to the

number of templates that share a common binding

pocket. As suggested by Figure 1, FINDSITE also

specifies the chemical properties of the ligands that

likely occupy the binding site and provides a

collection of ligand templates for use in fingerprint-

based virtual screening.

To assess the general validity of FINDSITE, we

employed a representative set of 901 proteins with

<35% sequence identity to their templates (with

a mean target-template pair-wise sequence identity

of 20%) and generated models using TASSER [35,

123, 140, 141]. As demonstrated below, we find

that FINDSITE operates satisfactorily in the ‘twilight

zone’ of sequence similarity [142], which covers

�2/3 of known protein sequences [143]. No

experimental structure of the target protein is

required; high accuracy and ability to correctly

rank the identified binding sites are sustained when

protein models instead of target crystal structures

are used for template superimposition. Use of

consensus ligands extracted from the binding sites

is quite useful in ligand screening. In most cases,

FINDSITE accurately assigns a molecular function to

the protein model. These features should enhance

the utility of low-to-moderate quality protein

models in ligand screening and structure-based

drug design.

Binding site prediction results
Figure 3 shows ligand binding site prediction results

carried out for the 901 benchmark proteins. Here

LIGSITECSC identifies possible binding pockets in

the target structure (either the crystal structure

or predicted model). Using FINDSITE, the set of

predicted template models (where the target has a

sequence identity <35% to all template structures)

is superimposed onto the target structure. In

Figure 3A, the target protein’s crystal structure is

used. In terms of both overall accuracy and pocket

ranking ability, FINDSITE performs better than

LIGSITECSC. Using the native structure, the success

rate (where the centers of mass of the predicted

and native binding sites are �4 Å) using the best

of top five identified binding pockets is 70.9%

and 51.3% for FINDSITE and LIGSITECSC,

respectively. For those proteins where a binding

pocket is correctly identified, the ranking of both

methods is comparable; 76.0% and 74.7% of the

best pockets are ranked as the top solutions by

FINDSITE and LIGSITECSC.

As shown in Figure 3B, where modeled target

structures are used, the prediction accuracy of

LIGSITECSC falls off considerably, with its success

rate decreasing from 51.3% for the target crystal

structure to 32.5%, when protein models generated

by TASSER are used. For TASSER models,

only 61.4% of the best pockets are assigned rank 1.

Figure 1: Binding pockets in threading templates:
glutathione S-transferase (GST) from R. norvegicus
(PDB-ID: 1b4p), Z. mays (PDB-ID: 1bye) and H. sapiens
(PDB-ID: 17gs) upon the global superposition onto the
target structure, GST from E. coli (PDB-ID: 1a0f, not
shown). Template-bound ligands are presented as black
sticks. Selected binding residues are shown as gray
sticks and labeled by the equivalent positions in the
target sequence. The sequence identity to the target
as well as the pairwise sequence identities between
the templates is in the range of15^25%.
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Thus, when models are used, LIGSITECSC results

deteriorate. In contrast, with FINDSITE, both the

high accuracy of ligand binding site prediction and

correct binding site ranking are sustained when

models instead of native structures are used as refer-

ence structures for holo-template superimposition.

In 67.3% of the cases FINDSITE identifies a correct

binding site, with corresponding ranking accuracy

of 75.5%. Note that for both native structures

and predicted models, the results using random

patches are much worse than for LIGSITECSC and

FINDSITE.

We find that for models with a global RMSD

from the native structure �6 Å, FINDSITE typically

predicts the center of mass of the binding site within

6 Å. This is because the binding sites in the models

have an RMSD below 3 Å. In contrast, as is evident

from Figure 3, LIGSITECSC is far more sensitive to

structural distortions. The average distance between

the LIGSITECSC predicted and observed binding

pockets is 10–13 Å when the global RMSD of

the predicted model exceeds 4 Å from the native

structure.

FINDSITE’s overall binding site prediction

accuracy depends on the number of identified

ligand-bound templates with a common binding

site. We can classify proteins as Easy (4125 threading

templates, including homologous proteins for each

Figure 2: Overview of the FINDSITE approach.
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template), Medium (25–125 templates) and Hard

(<25 templates) targets for threading-based binding

site prediction. In the 901 protein benchmark set,

9%, 47% and 44% of the proteins are assigned by

FINDSITE as Easy, Medium and Hard targets, and

the average distance between the centers of predicted

and observed binding pockets for top-ranked

FINDSITE solutions is �2, 5 and 10 Å, respectively.

Using a cutoff distance of 4 Å between predicted

and observed binding sites, the hit rates for the

top-ranked predictions are 90.0%, 71.7% and 43.7%

of Easy, Medium and Hard targets, respectively.

Figure 3: Ligand binding site prediction by FINDSITE, LIGSITECSC and randomly selected patches on the target
protein’s surface using (A) target crystal structures and (B) TASSER models. Results are presented as the cumulative
fraction of proteins for which the distance between the ligand center of mass in the native complex and the center
of the best of top five predicted binding sites is � the distance on the x-axis with the rank of the best pocket of top
five predictions in the inset.
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We next explored the structural diversity of the

binding site residues. We calculated the average

local pairwise RMSD of binding site residues for

the subset of 561 target proteins that satisfy the

following criteria: The best predicted pocket must

be rank 1, with the number templates identified

�5 and there must at least 10 binding site residues.

With these restrictions, we find that the average

pairwise RMSD of binding site residues is

2.15� 0.77 Å. This gives an estimate of the allowed

structural degeneracy of binding residues.

Ligand virtual screening
FINDSITE also extracts information about the

chemical properties of the ligands bound to the

consensus-binding site; we term these ‘template

ligands’. Since the ‘template ligands’ are extracted

form the holo templates identified by threading,

only the target protein’s sequence is needed for

their selection. These molecules are then used

to construct fingerprints that are subsequently

employed in fingerprint-based similarity searching

[144, 145] of the KEGG compound library, which

contains 12,478 compounds [146]. For the 901

representative target proteins, all with <35%

sequence identity to their closest template,

Figure 4A presents the cumulative distribution of

enrichment factors for the top 1% of the screening

library of the ranked ligands. For accurately predicted

binding sites (70.9% of the target proteins have a

binding site center of mass is <4 Å of the native

structure), FINDSITE performs better than random

in 78% of the cases. The ideal enrichment factor

(all native-like compounds in the top 1% of the

ranked library) was observed for 50% of target

proteins. For less accurately predicted binding

pockets, the ideal enrichment factor was obtained

for 12% and is better than random for 34% of the

cases. Finally, in Figure 4B, a case study examined

the performance of FINDSITE in virtual screening

for 895 active HIV-1 protease inhibitors in a 123,331

compound library. Again, if only templates with

<35% sequence identity to the target are used, the

enrichment factor of the top 1% of compounds is 40.

Molecular function prediction
The relatively high accuracy of the ligand selection

procedure encouraged us to investigate the transfer-

ability of specific functions from the threading

templates to the target. Here, the Gene Ontology

(GO) [59] description of protein molecular function

is used. We selected the subset of 753 proteins from

the 901 protein benchmark set for which a GO

annotation is provided by Gene Ontology [59] or

UniProt [125]. For each target, all GO annotations

are identified for the threading templates that

share the top-ranked predicted binding site. Then,

the target protein is assigned a function with

a probability that corresponds to the fraction of

threading templates annotated with that molecular

Figure 4: (A) Using FINDSITE selected ligand templates, cumulative distribution of enrichment factors from
the ligand-based virtual screening experiment against the KEGG compound library. Depending on the whether the
distance between the top-ranked pocket and the center of mass of the native ligand �4— and >4—, target proteins
are divided into two subsets. (B) Enrichment behavior in virtual screening for HIV-1 protease inhibitors using
ligands predicted by FINDSITE from either homologous or weakly homologous threading templates compared
to that using known inhibitors and random ligand ranking.
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function. When at least one half of the threading

holo-templates are annotated with the same GO

term, the maximal Matthew’s correlation coefficient

of 0.64 is found. This corresponds to a precision

of 0.76, and a recall of 0.54. In addition, we cal-

culated predictive metrics with respect to individual

GO identifiers. When the closest template has <35%

sequence identity, FINDSITE distinguishes between

enzymatic and non-enzymatic function, with a

precision and sensitivity of 0.93 and 0.89, respec-

tively. Moreover, many molecular functions that

cover a broad spectrum of molecular events includ-

ing both enzymatic and binding activities are

accurately transferable from the templates selected

by FINDSITE.

By way illustration, in Table 1, for the 753

protein benchmark set, the FINDSITE precision and

sensitivity is presented for 10 most accurate predicted

molecular functions as described by Gene Ontology

classification and as assessed by the Matthew’s

correlation coefficient. Clearly, a broad spectrum of

both enzymatic and non-enzymatic activities are

adequately described. However, we note that since

FINDSITE describes the common functional fea-

tures found across an evolutionary distant but related

set of proteins, it cannot describe highly specific

functions such as all four EC digits of an enzyme.

CONCLUSION
The most frequently used methods for protein

function prediction are based on functional inference

by homology [147, 148]. However, as demonstrated

for enzymes [20], because of the promiscuity of

protein function, care must be taken if the goal is

high accuracy (an necessary condition if one wants

to ascertain whether or not a specific pathway [60]

is present in the proteome of interest). Moreover,

current sequence-based methods become unreliable

as the sequence identity between the target protein

of unknown function and the template protein of

known function drops below 20–30% [31]. To

address this limitation, a number of structure-based

approaches based on 3D geometric descriptors of

enzymatic function, termed fuzzy functional forms

(FFFs) were developed [26] and shown to provide

high-confidence novel annotations [149]. However,

they have only been successfully applied to enzymes,

and typically require extensive manual intervention

in their construction. In practice, their level of

accuracy drops when they are applied to predicted

protein models [127].

To remove these limitations, in the development

of FINDSITE [37], we explored whether the

conservation of binding sites among threading

identified templates can be used to predict the

target binding site, the ligands that bind to this site

and using consensus GO molecular functions [59] of

the templates, to predict the molecular function

of evolutionary distant target proteins. We find that

threading followed by binding site filtering to identify

functionally related proteins is a very powerful

approach to predict these aspects of protein function.

This holds even if the sequence similarity to the target

protein is well below 35% and has profound

implications as to how protein molecular function

has evolved. As was observed for enzymes, some

functional sites in the protein structure are strongly

conserved throughout evolution [150]. Not only is

the protein structure conserved, but the chemical

features of the ligands that bind to the protein are

conserved as well. Such conservation provides a type

Table 1: Using the GO classification, the top 10 function predictions by FINDSITE as assessed by their Matthew’s
Correlation Coefficient for the 753 protein benchmarkdata set

Molecular function GOID Frequency
in the
dataset

Matthew’s
correlation
coefficient

Precision Sensitivity

Oxygen binding GO:0019825 0.027 1.00 1.00 1.00
Ligand-dependent nuclear receptor activity GO:0004879 0.015 1.00 1.00 1.00
Peroxidase activity GO:0004601 0.005 1.00 1.00 1.00
Dihydrofolate reductase activity GO:0004146 0.004 1.00 1.00 1.00
30,50 -Cyclic-nucleotide phosphodiesterase activity GO:0004114 0.004 1.00 1.00 1.00
Steroid hormone receptor activity GO:0003707 0.015 1.00 1.00 1.00
N-acyltransferase activity GO:0016410 0.015 0.96 0.92 1.00
N-acetyltransferase activity GO:0008080 0.015 0.96 0.92 1.00
Pyridoxal phosphate binding GO:0030170 0.012 0.94 1.00 0.89
Monooxygenase activity GO:0004497 0.009 0.93 1.00 0.86

386 Skolnick and Brylinski
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/10/4/378/297658 by guest on 08 January 2024



of signal averaging that can be exploited for various

applications of functional inference.

The clear advantage of FINDSITE is that

predicted structures can be used. This is of impor-

tance in that state-of-the-art approaches provide

predicted structures of the requisite quality for greater

than 2/3 of protein domains in a given proteome [35,

143]. This work also suggests that there is a robustness

to the structure and chemistry of binding sites and

their associated binding ligands that needs to be more

effectively exploited for both general functional

inference as well as ligand screening. The fact that

‘template ligands’ from distantly related template

structures conserve aspects of binding even as the

binding sites become somewhat distorted (with an

average local RMSD of 2.15� 0.77 Å), suggests that

many ligand docking algorithms that require a highly

accurate experimental structure [106, 151–153] are

missing the essential features of binding. Nature itself

tolerates binding site modifications in the range of

�1.5–3 Å while retaining the ability to bind related

ligands with strongly conserved substructures. The

utility of a lower resolution description [135, 136] for

docking as in Q-Dock [36] is not only of practical

utility but also recapitulates aspects of the features of

the ligand–receptor complex that are exhibited across

evolutionary distant proteins. It is quite likely that

there are other functional properties that can be

detected by extensions of the FINDSITE approach.

The key idea is to find a set of distantly related

structures, identify common functional features and

then transfer these features to the protein of interest.

Thus, this is a promising avenue of investigation that

holds considerable promise in extending the range

and scope of structure-based approaches to protein

function prediction.
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