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Abstract 
Predicting protein function is crucial for understanding biological life processes, preventing diseases and developing new drug targets. 
In recent years, methods based on sequence, structure and biological networks for protein function annotation have been extensively 
researched. Although obtaining a protein in three-dimensional structure through experimental or computational methods enhances 
the accuracy of function prediction, the sheer volume of proteins sequenced by high-throughput technologies presents a significant 
challenge. To address this issue, we introduce a deep neural network model DeepSS2GO (Secondary Structure to Gene Ontology). It is a 
predictor incorporating secondary structure features along with primary sequence and homology information. The algorithm expertly 
combines the speed of sequence-based information with the accuracy of structure-based features while streamlining the redundant 
data in primary sequences and bypassing the time-consuming challenges of tertiary structure analysis. The results show that the 
prediction performance surpasses state-of-the-art algorithms. It has the ability to predict key functions by effectively utilizing secondary 
structure information, rather than broadly predicting general Gene Ontology terms. Additionally, DeepSS2GO predicts five times faster 
than advanced algorithms, making it highly applicable to massive sequencing data. The source code and trained models are available 
at https://github.com/orca233/DeepSS2GO. 

Keywords: protein function prediction; secondary structure; deep learning; sequence-based method; homology identification 

INTRODUCTION 
Proteins are vital for a wide range of biological processes, serv-
ing key roles in cellular functions across both prokaryotic and 
eukaryotic organisms. An in-depth understanding of protein func-
tion not only has a considerable impact on meeting the aca-
demic demand for life science, but also drives advancements 
in the field of biomedicine [1]. Protein function annotation can 
be achieved through biochemical experiments or computational 
methods. While the former is the gold standard due to its high 

accuracy and reliability, it is costly and low-throughput, making 
it unsuitable for the vast amount of protein sequence data gener-
ated by high-throughput sequencing instruments [2]. Therefore, 
there is a pressing need to develop theoretical computational 
methods that combine accuracy with efficiency in protein func-
tion prediction [3]. 

Currently, there are multiple protein function classification 
standards, including Gene Ontology (GO) [4], EC [5], KEGG [6], Pfam 
[7, 8], etc. Among these, the GO database is widely recognized
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for its relative comprehensiveness and systematic approach to 
describing the biological aspects of Molecular Function Ontology 
(MFO), Cellular Component Ontology (CCO) and Biological Process 
Ontology (BPO). The GO database is structured as a directed 
acyclic graph (DAG) with ‘is-a’ or ‘part-of’ relationships between 
GO terms, efficiently capturing protein functional characteristics 
[4]. Meanwhile, if a protein is annotated with a GO term, all its 
ancestor terms up to the root of the ontology should also be 
annotated. 

Protein function prediction methods can be categorized by 
the information utilized or the algorithms employed [9, 10]. 
Information-based categorization includes methods grounded 
on primary sequence, tertiary structure or protein–protein 
interaction (PPI) [11]. Algorithm-based categorization includes 
methods relying on sequence homology alignment (e.g. BLAST 
[12, 13], InterProScan [14], Multiple Sequence Alignment [15] and  
Position-Specific Scoring Matrix (PSSM) [16]) and those based 
on deep learning (e.g. Convolutional Neural Networks (CNNs) 
[17], Graph Neural Network (GNN) [18], Diffusion Network [19], 
Transformer [20, 21], Large Language Models [22], etc). These two 
classification schemes intersect with each other. For instance, 
methods that rely on extracting primary sequence features can 
utilize various techniques, such as DeepPPISP [23] with PSSM,  
DeepGOPlus [24] employing CNN and TALE [25] with transformer 
architecture. Additionally, methods like Graph2GO [26] and  
DeepFRI [27], leverage GNN to utilize the three-dimensional 
(3D) structure. Furthermore, NetGO [28] harnesses PPI network 
information from the STRING database [29] for protein function 
prediction. Lastly, researchers often integrate multiple sources of 
information, such as combining protein sequence features with 
protein network information, as seen in the DeepGraphGO [30] 
approach. 

Determining the relevant biological data and extracting essen-
tial features for model training is crucial beyond the variety of 
algorithms. This process is fundamental in leveraging biological 
information effectively. The essence of protein function prediction 
lies in learning the relationship between various biological infor-
mation features and known functional labels within established 
species. This process is not about creating new GO terms; the 
predicted functions are inherently part of the existing functional 
pool. When confronted with unknown proteins, the trained model 
is employed in conjunction with the biological features of these 
proteins to score all the GO terms in the functional pool. The 
biological features of primary sequences encapsulate the patterns 
of the 20 amino acids. Different lengths and sequence orders 
correspond to diverse functions. Conversely, the biological fea-
tures associated with tertiary structures pertain to spatial shapes, 
where distinct shapes and size features reveal critical insights and 
identify different functions. 

According to the thermodynamic hypothesis proposed by 
Christian Anfinsen [31], the amino acid sequence dictates the 
protein tertiary structure, which is directly linked to its function. 
Therefore, incorporating 3D structural features is expected 
to improve the accuracy of protein function annotation, and 
many algorithms have also demonstrated this [26, 27]. However, 
limitations of introducing 3D structures persist. While wet 
laboratory methods for analyzing protein 3D structures deliver 
accurate and reliable outcomes [32, 33], they are not sufficient 
to accommodate the demands of predicting functions from a 
large influx of new sequences [34], also entailing substantial 
financial and temporal costs [35]. While computational methods 
like AlphaFold2 [36] and trRosetta [37] have reduced this 

prediction time to a matter of hours, 3D-based function prediction 
methods still fall short of efficiently handling the vast amount 
of sequencing data produced by high-throughput sequencing 
instruments. Consequently, although methods that combine 
multiple sources of information typically outperform those solely 
relying on sequence data, obtaining these additional pieces of 
information in a short time frame is challenging. It may not be 
applicable to predict the function of less-studied proteins. 

In cases where an abundance of primary sequences is available 
but tertiary structures are lacking, secondary structures exhibit 
distinct advantages. While primary sequences may vary signifi-
cantly among different species, secondary structures, by eliminat-
ing redundant information, allow for a more focused investigation 
into the arrangement patterns of modules. 

Secondary structures can be classified into eight categories 
according to the Dictionary of Secondary Structure of Proteins 
(DSSP) [38, 39]: alpha-helix (H), 310-helix (G), pi-helix (I), beta-
strand (E), beta-bridge (B), hydrogen-bonded turn (T), bend (S) and 
Coil (C). Although some research integrates protein secondary 
structure information as input features, like GAT-GO [40] and  
SSEalign [41], the application of secondary structure information 
has historically been constrained by data quality and quantity. 
We employ modified SPOT-1D-LM suite [42] to predict secondary 
structures for 68 325 primary sequences from SwissProt including 
all species in 20 h, offering accuracy and speed suitable for 
processing large-scale datasets. Details will be illustrated in the 
Materials and Methods section in Table 1. 

Notably, relying solely on secondary structure predictions 
remains insufficient for protein function prediction because of 
two reasons: First, this is due to variations in the amino acid 
arrangement of similar α helices (H, G, I) and β sheets (E, B), 
resulting in differences in physicochemical properties like charge 
and hydrophobicity. Secondly, intrinsically disordered protein 
regions, which play a critical role in alternative splicing, folding 
and catalytic reactions [43], will be indiscriminately labeled 
with the secondary structure tag of Coil (C), thus failing to 
precisely differentiate between various functions. Consequently, 
we require the primary sequence and the homology information 
obtained through the Diamond algorithm [44] as a more refined 
supplement to the coarse secondary structure feature. 

In this study, we propose a protein function predictor 
DeepSS2GO (Secondary Structure to Gene Ontology). This 
method utilizes deep learning models to extract features from 
the secondary structure and supplements them with primary 
sequence and homology information. This algorithm combines 
the sequence-based speed with the structure-based accuracy 
while also overcoming shortcomings like streamlining the 
redundant information in primary sequences and avoiding 
the time-consuming issue associated with tertiary structure 
analysis. When compared with similar algorithms, DeepSS2GO 
demonstrates superior performance in the MFO and CCO 
while achieving the second place in the BPO on both the 
Maximum F-measure (Fmax) and Area Under the Precision-Recall 
Curve (AUPR) evaluation criterion. Furthermore, it attains the 
highest ranking in all three sub-ontologies when evaluated 
using the Minimum Sensitivity Index (Smin) criterion. Notably, it 
accelerates computational speed by 5-fold [45]. Through two case 
analyses, we validate the efficacy of our approach in accurately 
predicting key functions of non-homologous proteins, providing 
comprehensive coverage. Moreover, the reduced training duration 
of our model facilitates prompt revisions of the SwissProt and GO 
databases, enhancing the timeliness of database updates.
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Table 1: The number of protein sequences in the training-testing sets and the number of GO term classes grouped by sub-ontologies. 
Datasets include SwissProt, CAFA3 and training HUMAN testing other species. Detailed information on training one species and testing 
other species can be found in Supplementary Table S1 

Training Testing Terms classes 

MFO CCO BPO Total MFO CCO BPO Total MFO CCO BPO Total 

SwissProt 38 530 51 022 51 079 68 325 SwissProt 1954 2643 2657 3597 700 576 3965 5241 
CAFA3 32 090 45 080 45 715 60 372 CAFA3 1046 1294 2095 3049 514 355 2643 3512 

HUMAN 9125 12 037 10 151 13 238 ARATH 5038 7352 7225 10 002 336 217 1293 1846 
HUMAN 9125 12 037 10 151 13 238 ECOLI 2267 2228 2525 3288 265 74 792 1131 
HUMAN 8677 11 447 9644 12 576 HUMAN 448 590 507 662 302 269 1517 2088 
HUMAN 9125 12 037 10 151 13 238 MOUSE 5382 7977 8201 10 152 389 347 2509 3245 
HUMAN 9125 12 037 10 151 13 238 MYCTU 563 1133 732 1456 189 46 617 852 
HUMAN 9125 12 037 10 151 13 238 YEAST 3191 4730 4256 4964 335 247 1267 1849 

Figure 1. Overview of the DeepSS2GO conceptual diagram. This concept parallels two sets: ‘fiber - wooden block - wooden bridge’ and ’gravel - stone 
block - stone bridge’, comparing them witht the protein primary sequence - secondary structure - tertiary/quaternary structures. Traditional methods 
predict functions (bridge or tower), by studying the arrangement patterns of fiber or gravel (primary sequence features). This study introduces a new 
approach by examining the arrangement patterns of wooden blocks (secondary structure features) to predict functionality. 

MATERIALS AND METHODS 
Overview 
The overall concept and idea of the DeepSS2GO algorithm is illus-
trated in Figure 1. The primary sequence is analogous to fiber/-
gravel, the secondary structure to wooden/stone block and the ter-
tiary–quaternary structure to a wooden/stone bridge or tower. Tra-
ditional sequence-based prediction methods (model-aa) study the 
arrangement patterns of fiber and their relationship to the macro-
scopic object functional label as bridge or tower. However, due to 
potential differences in the arrangement of fibers and gravel, it 
might be difficult to predict whether it is a bridge or a tower. In 
situations where 3D spatial coordinates are not readily available, 
this study, instead of focusing on the arrangement of fibers, inves-
tigates the arrangement of intermediate wooden blocks and their 
relationship (model-ss8) to the macroscopic object functional 
label. Theoretically, compared with primary sequences, the model 
trained on secondary structures possesses greater translational 
capability, especially for cross-species predictions. 

Datasets 
In this study, the functional annotations were derived from the 
GO [4] (June 2023), encompassing a comprehensive dataset dis-
tributed across three domains, including 47 497 terms: MFO (12 
480), CCO (4474) and BPO (30 543). Referencing the experiences 

from other studies [24, 45, 46], to enhance training efficiency and 
prediction accuracy, our training approach focused exclusively 
on GO terms with a sufficient number of training samples (i.e. 
the same GO label appearing in ≥ 50 sequences). Furthermore, 
annotations were propagated utilizing the relationships within 
the GO hierarchy [46]. 

Two datasets were employed in this research: SwissProt [47] 
(April 2023) and Critical Assessment of Function Annotation Chal-
lenge (CAFA3) [24]. SwissProt, a subset of the UniProt database, is 
meticulously curated and manually annotated. Protein sequences 
and GO annotations used in this study are collected from Swis-
sProt, retaining only experimental GO annotations with evidence 
codes IDA, IPI, EXP, IGI, IMP, IEP, IC or TA. A total of six major 
species are selected for cross-validation training-testing: Ara-
bidopsis thaliana (ARATH, 10 002), Escherichia coli (ECOLI, 3288), 
Homo sapiens (HUMAN, 13 238), Mus musculus (MOUSE, 10 152), 
Mycobacterium tuberculosis (MYCTU, 1456) and Saccharomyces 
cerevisiae (YEAST, 4964). 

The selection of these six species was primarily based on two 
reasons: First, the choice was to include species with a relatively 
large number of sequences, ensuring an ample amount of data 
for training and testing. The six selected species are all ranked 
within the top 10 in terms of total quantity. Secondly, it was 
important to select species that include both closely related and 
significantly divergent organisms. This approach helps to reduce
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bias in horizontal comparisons, demonstrating the superiority of 
the ss8 model over the aa model across various cross-validation 
evaluations. Among the selected species, some exhibit close sim-
ilarities, such as HUMAN VS. MOUSE and ECOLI VS. MYCTU. 
Conversely, some show substantial differences, such as HUMAN 
VS. ARATH, and eukaryotes VS. prokaryotes. 

Table 1 illustrates detailed statistics of the training and 
testing sets for the three domains in GO, including the number 
of proteins and GO labels. The datasets include SwissProt, 
CAFA3 and training HUMAN testing other species. Detailed 
information on training one species and testing other species can 
be found in Supplementary Table S1. Additionally, to facilitate 
comparisons with other cutting-edge protein function prediction 
methodologies [46], CAFA3 [24] dataset is used for both training– 
testing sequences and functional annotations. Modified SPOT-
1D-LM algorithm [42] is employed to predict secondary structures 
from primary amino acid sequences. Given that this algorithm 
utilizes the ESM-1b [21] and Prottrans [48] pre-trained models, it 
is constrained by protein length (less than 1024). After screening, 
a total of 68 325 protein sequences for Swissprot and 60 372 for 
CAFA3 were retained. 

The architecture of DeepSS2GO 
The overall architecture is shown in Figure 2A. DeepSS2GO com-
prises three modules: two deep learning modules, one focused on 
secondary structures and the other on primary sequences, and a 
third module oriented toward homology alignment. 

Overall framework 
The process begins by obtaining primary sequences and manually 
propagated annotations that have been filtered from the Swis-
sProt training set, shown as the initial input in Figure 2A. Subse-
quently, data preprocessing is conducted. The altered SPOT-1D-LM 
suite is employed to convert primary amino acid sequences into 
secondary structures in bulk, i.e. replacing the original 20 amino 
acid letters with eight letters representing secondary structures 
(H, G, I, E, B, T, S, C)  [38, 39]. Then, both the primary sequences 
and secondary structures are fed into the deep learning model 
(Figure 2B), respectively, yielding initial predictions for pred-aa 
and pred-ss8. On the other hand, homology comparison result 
Pred-bit-score is performed using the Diamond method [44], a 
remarkably high-speed and high-performance tool for conducting 
protein homology searches. The final prediction score is calcu-
lated by combining the three prediction scores (Saa, Sss8, and  
SDiamond) through Equation 1, where  α and β are two hyperparam-
eters balancing the influence of the three components, satisfying 
the following conditions: 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ α + β ≤ 1. 

S(p, f ) = α ∗ Saa + β ∗ Sss8 + (1 − α − β) ∗ SDiamond (1) 

Setup of model 
As both primary sequences and secondary structures are one-
dimensional linear data structures, we employed the same deep-
learning model for both. To highlight the advantages and effec-
tiveness of secondary structures and to restore the biological 
essence as much as possible, we employ the most classic and 
concise CNN to extract their features. 

We utilize PyTorch [49] to construct our neural network mod-
els, as depicted in Figure 2B. For a given protein sequence, we 
first convert the input primary sequence or secondary structure 
sequence into a one-hot matrix. If the input is a primary amino 
acid sequence, the matrix size will be [1024, 21], where the width 

21 represents the 20 types of amino acids plus ‘other’. If the input 
is a secondary structure, the matrix size will be [1024, 9], where 
width 9 represents the eight types of secondary structures plus 
‘other’. 1024 is the length of the input, and sequences shorter than 
1024 are padded with zeros. The input is then passed through a 
series of CNN layers with varying kernel sizes and filters, followed 
by Max Pooling layers, and normalized to the scoring range [0, 1] 
for n types of GO terms individually through the Sigmoid function. 
The training of a single model concludes within a maximum of 50 
epochs. Additionally, we employed an EarlyStopping strategy with 
the patience of six epochs to prevent overfitting. 

Given the considerable parameter search space, after estab-
lishing certain hyperparameters such as the loss function (Binary 
Cross Entropy Loss), optimizer (Adam [50]), learning rate (0.0003) 
and activation function (Sigmoid), we focused on studying the 
parameters of kernel and filter size, which are more sensitive to 
protein function. These parameters will determine the features 
of specific sequences of particular sizes. Our model explores 
different combinations of kernels and filters, with kernel size 
varying between 8 and 128 in increments of 8, whereas the filter 
size ranges from 16 to 65 536, doubling with each step. 

The model-aa and model-ss8 are trained separately, and eval-
uated on the respective testing dataset for MFO, CCO and BPO, 
thus determining the optimal kernel and filter size for each sub-
ontology. The predicted GO scores by the best model, Pred-aa or 
Pred-ss8, will be combined with Pred-bit-score to yield the Final-
score. Regarding the design of the model framework, we have 
also attempted to add fully connected layers after Max Pooling 
and represent secondary structures with three letters, but neither 
approach was satisfactory. Therefore, we will not elaborate further 
here. 

Implementation 
We conduct two categories of experiments: specified cross-
species testing, and testing that includes all species. To validate 
the enhanced translational ability of models trained on secondary 
structures, we employ cross-species testing, i.e. training with 
species A and testing with species B. To maximize primary 
sequence diversity, we aim to select species with significant 
distinctions, even using prokaryotic and eukaryotic organisms 
as separate training and testing sets. From SwissProt, six 
different species (ARATH, ECOLI, HUMAN, MOUSE, MYCTU, 
YEAST) are chosen for mutual testing. This selection includes 
two prokaryotes and four eukaryotes, the latter encompassing 
animals, plants and fungi. 

For the comprehensive species testing, the CAFA3 dataset is 
utilized for benchmarking against other similar algorithms, and 
the entire SwissProt dataset is employed to develop a model as 
complete and extensive as possible for predicting protein func-
tions in new species. Specific details of the data can be found in 
the Datasets section. 

If training and testing are conducted on the same species A (or 
the whole-species SwissProt dataset), then a random 5% of species 
A data is used as the testing set, with the remaining 95% as the 
training set. In contrast, if different species are used for training 
and testing, i.e. training on species A and testing on species B, then 
100% of species A data is used as the training set, and 100% of 
species B data as the testing set. In both cases, 10% of the training 
set is allocated for validation during training. For instance, as 
shown in Table 1, there are a total of 13 238 HUMAN proteins and 
10 002 ARATH proteins. If both training and testing are performed 
using HUMAN, then 12 576 proteins (95%) are used for the training 
set and 662 proteins (5%) for the testing set. If training HUMAN
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Figure 2. (A) The architecture of DeepSS2GO. The model consists of three components: a model trained on secondary structures (model-ss8), a model 
trained on primary sequences (model-aa) and Diamond homology alignment. First, the input primary sequence is converted into a secondary structure. 
Then, the primary sequence and secondary structure are separately processed through deep learning models to obtain preliminary predictions, Pred-aa 
and Pred-ss8. These, combined with the Pred-bit-score predicted by Diamond, are integrated to yield the Final-score. (B) The setup of model-aa and 
model-ss8. The input is a one-hot matrix, which passes through convolutional layers and pooling layers. After that, each term in the GO pool is scored 
individually using the Sigmoid activation function. For the one-hot matrices based on primary sequences and secondary structures, the sizes of the 
convolutional kernels and max pooling slightly differ. Kernel size ranges from 8 to 128 in increments of 8, while filter size ranges from 16 to 65 536, 
doubling with each increment. 

and testing ARATH, then all 13 238 HUMAN proteins are used as 
the training set, and all 10 002 ARATH proteins as the testing set. In 
total, we conducted 76 (i.e. 36 × 2 + 4) sets of tests, including cross-
training/testing among the six species, and all-species dataset of 
SwissProt/CAFA3, for both aa and ss8. All training and testing 
processes are carried out on a Linux system equipped with a 24GB 
Nvidia GeForce RTX 3090. 

Evaluation metrics 
Referring to relevant studies in this field [45, 46], we adapt 
three metrics for performance evaluation: Fmax, AUPR  and  Smin 

[51–53]. Fmax is a metric that integrates precision and recall. The 
F-measure is the harmonic mean of precision and recall. Fmax is 
the maximum F-measure achieved across all potential threshold 
settings, reflecting the optimal balance between precision and

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/3/bbae196/7663430 by guest on 05 June 2024



6 | Song et al.

recall. 

pri(t) =
∑

f I(f ∈ Pi(t)
∧

f ∈ Ti)∑
f I(f ∈ Pi(t)) 

(2) 

rci(t) =
∑

f I(f ∈ Pi(t)
∧

f ∈ Ti)∑
f I(f ∈ Ti) 

(3) 

AvgPr(t) = 
1 

m(t) 
· 

m(t)∑
i=1 

pri(t) (4) 

AvgRc(t) = 
1 
n 

· 
n∑

i=1 

rci(t) (5) 

Fmax = max 
t

{
2 · AvgPr(t) · AvgRc(t) 
AvgPr(t) + AvgRc(t)

}
(6) 

In this context, f represents a GO class, Ti denotes the set of 
true annotations, Pi(t) refers to the predicted annotations set for 
a protein i at a specific threshold t, m(t) indicates the count of 
proteins that have at least one predicted category, n is the overall 
count of proteins and I is a function that returns 1 if its given 
condition holds true, otherwise it returns 0. AvgPr(t) and AvgRc(t) 
represent the average precision and average recall at thresholds t, 
and calculated from pri and rci by the above formulas. 

AUPR is the area under the precision-recall curve across all 
potential thresholds. It is a powerful tool for evaluating model per-
formance in imbalanced datasets, especially when there is a sub-
stantial disparity in the number of positive and negative samples. 
Compared with the traditional Receiver Operating Characteristic 
Curve (ROC), AUPR is more sensitive to the predictive performance 
of a model for the minority class. This metric reflects a model’s 
ability to correctly identify positive (minority) instances amidst 
a large number of negatives (majority instances), focusing on 
precision and recall. In such contexts, AUPR is sensitive because it 
penalizes models more heavily for misclassifying the rare positive 
cases, thus providing a truer assessment of model performance on 
imbalanced datasets. It prioritizes the accurate detection of the 
minority class, highlighting the model’s effectiveness where it is 
most needed. 

Smin, focusing on the minimum sensitivity index, a calculation 
of the gap between the true positive rate and the false positive rate 
across thresholds, sharply evaluates a classifier’s discriminative 
power between positive and negative instances. This metric is 
particularly insightful for assessing how well a model can differ-
entiate between classes under varying conditions. A lower Smin 

indicates a model’s struggle to separate positive from negative 
cases effectively, often resulting in higher misclassification rates 
of crucial instances. In contrast, a higher Smin suggests that the 
model has a stronger capability to discern between the two, 
thereby reducing the likelihood of false positives and negatives. 
This sensitivity makes Smin an invaluable tool for model evalua-
tion, especially in scenarios where the cost of misclassification is 
high. It pushes for models that not only recognize patterns but 
do so with a precision that minimizes the overlap between class 
distributions, enhancing the reliability of predictions in practical 
applications. 

IC(c) = −log(Pr(c|P(c))) (7) 

ru(t) = 
1 
n 

n∑
i=1

∑
c∈Ti−Pi(t) 

IC(c) (8) 

mi(t) = 
1 
n 

n∑
i=1

∑
c∈Pi−Ti(t) 

IC(c) (9) 

Smin = min 
t

√
ru(t)2 + mi(t)2 (10) 

The information content, IC(c), is determined by the likelihood 
of annotations for class c. Here,  P(c) represents the collection of 
parent classes for class c. Smin is derived using the equations 
below, where ru(t) represents the average residual uncertainty, 
and mi(t) denotes the average misinformation. 

RESULTS 
This section encompasses the following aspects: First, we validate 
the superiority of secondary structures over primary sequences in 
predicting functions by conducting cross-training predictions on 
proteins from different species. Secondly, we compare DeepSS2GO 
with other state-of-the-art methods, demonstrating the accuracy, 
efficiency and updating convenience of our algorithm. Thirdly, 
we perform ablation experiments on the techniques used in 
DeepSS2GO. Finally, we conduct two case studies to verify the 
effectiveness, efficiency and comprehensiveness of the algorithm 
in predicting key functions. 

Superiority of secondary structures 
Using the training and testing of all SwissProt data as an example, 
each training set employs either primary amino acid sequences 
or secondary structures as inputs. After training and evaluation, 
we can obtain results derived from primary amino acid sequences 
(see Supplementary Figure S1) and results stemming from 
secondary structures (see Supplementary Figure S2). Each figure 
comprises nine subfigures representing the evaluation results 
of three parameters: Fmax, AUPR  and  Smin, across three sub-
ontologies: MFO, CCO and BPO. The horizontal axis represents 
the logarithmic value of the filter size, and the vertical axis 
corresponds to the parameter values, with each plot representing 
the same kernel size. The extremum values of these three metrics 
will be disscussed in the Ablation study section 

For any fixed kernel, both Fmax and AUPR values first increase 
and then decrease as the filter size rises. Reduction usually 
indicates overfitting. In the analysis with primary amino acid 
sequences, the peak Fmax values observed for MFO, CCO and BPO 
stand at 0.528, 0.666 and 0.426, respectively. These are achieved 
with kernel 16 and filter 32 768. When considering secondary 
structures, the maximum Fmax values for MFO and BPO reach 
0.616 and 0.452, respectively, both realized with kernel 32 and 
filter 32 768. In contrast, CCO highest Fmax of 0.664 is attained 
with kernel 48 and filter 16 384. Comparatively, the model relying 
on secondary structures shows superior Fmax values, exceeding 
the primary sequence model by 16.7% and 6.1% in MFO and BPO 
sub-ontologies, while matching performance in CCO. 

Similarly, in AUPR, the secondary structure algorithm outper-
forms the primary sequence by 19.6% and 9.3% in MFO and BPO, 
respectively, and is on par in CCO. In Smin, the secondary structure 
algorithm is higher by 13.4%, 1.1% and 3.2% in MFO, CCO and 
BPO, respectively. It is evident that the model based on secondary 
structures is markedly more effective in predicting the actual 
functions of proteins (MFO and BPO) compared with the primary 
amino acid sequence model. The two models perform comparably 
in determining protein components (CCO). 

In addition to testing the whole SwissProt dataset, we select 
six species from SwissProt for cross-training and testing, as 
introduced in the Implementation section. Extracting the highest 
Fmax values from the cross-validation of six different species, 
we obtained Figure 3 (AUPR and Smin results can be found in
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Table 2: Performance comparison of DeepSS2GO against five state-of-the-art methods using the CAFA3 benchmark datasets 

Methods Fmax AUPR Smin 

MFO CCO BPO MFO CCO BPO MFO CCO BPO 

DiamondScore 0.509 0.557 0.427 0.340 0.335 0.267 9.031 8.198 22.860 
DeepGOCNN∗ 0.420 0.607 0.378 0.355 0.616 0.323 9.711 8.153 24.234 
TALE+ 0.558 0.622 0.480 0.539 0.595 0.427 8.360 7.822 22.549 
DeepGOPlus∗ 0.544 0.623 0.469 0.487 0.627 0.404 8.724 7.823 22.573 
MMSMAPlus 0.595 0.622 0.535 0.559 0.601 0.470 7.922 7.631 22.202 
DeepSS2GO 0.601 0.643 0.518 0.559 0.634 0.441 6.709 7.037 18.753 

Note: Models with ∗ are referenced from associated literature [24 ]. The best results are in bold. 

Table 3: Assessment of the impact of different components within DeepSS2GO 

aa ss8 Diamond Fmax AUPR Smin 

MFO CCO BPO MFO CCO BPO MFO CCO BPO 

� 0.528 0.666 0.426 0.511 0.696 0.376 9.365 10.119 39.989 
� 0.616 0.664 0.452 0.597 0.691 0.407 8.174 10.066 38.951 

� 0.643 0.657 0.514 0.525 0.514 0.381 8.085 9.620 37.079 
� � 0.655 0.698 0.527 0.660 0.732 0.484 7.951 9.206 36.413 

� � 0.666 0.695 0.531 0.669 0.727 0.487 7.709 9.206 36.183 
� � � 0.670 0.703 0.535 0.674 0.742 0.493 7.682 9.072 36.138 

Note: ‘aa’ symbolizes the model based on the primary amino acid sequence, and ‘ss8’ denotes the model based on the secondary structure. The best results 
are in bold. 

Supplementary Figures S3 and S4). In Figure 3, subfigures  A, C, E  
represent predictions based on primary amino acid sequences 
(aa), while B, D, F represent predictions based on secondary 
structures (ss8). The same color in the upper and lower figures 
corresponds to the same GO sub-ontology, with subfigures A 
and B representing MFO, C and D representing CCO and E and F 
representing BPO. In each figure, a darker color indicates a higher 
Fmax value. 

The following observations are noted: In examining the same 
subplot, aligning along the diagonal, the Fmax values for self-
testing consistently rank highest. Furthermore, the approach of 
training on eukaryotes and testing on prokaryotes demonstrates 
superior performance compared with the inverse. This disparity 
may be due to the more substantial sample size in eukaryotic 
training sets, potentially enhancing model accuracy. 

Upon comparing the outcomes between aa and ss8, the sub-
figures G, H and I of Figure 3 focus on the percentage increase 
in performance when transitioning from aa-trained models to 
ss-trained models within MFO, CCO and BPO, respectively. The 
red colors in the heatmaps signify a percentage increase in per-
formance, while the blue colors indicate a decrease. For MFO, 
ss8-Fmax shows a notable improvement, approximately 5–20% 
higher than aa. This highlights the considerable advantage of 
secondary structures over primary sequences in the GO predic-
tion of Molecular Function. Regarding CCO, ss8-Fmax values are 
marginally lower, around 1–2% than those of aa. This indicates 
that aa encompasses more comprehensive CCO information den-
sity compared with ss8. In the context of BPO, ss8-Fmax values 
generally outperform those of aa, with an increase of about 4– 
10%. An exception is observed in the scenario involving training 
on prokaryotes (ECOLI, YEAST) and testing on ARATH, where aa 
and ss8 yield comparable results. 

The conclusions drawn from the AUPR and Smin (Supplementary 
Figures S3 and S4) analyses align with these observations. It is 
evident that secondary structures offer a clearer advantage in the 
prediction of protein functions. This is underlined by the fact that 
the structure dictates functions; secondary structures provide 

more structural information than primary sequences, enhancing 
their predictive capability for functions. 

Comparison with the state-of-the-art methods 
Relying solely on primary sequences falls short in protein function 
prediction. To solve this issue, we integrate equation 1 with sec-
ondary structure predictions, primary sequence data and align-
ment score assessments for a holistic approach to function anno-
tation. This section uses the CAFA3 dataset [24] for both training 
and testing components, facilitating comparative analysis of the 
DeepSS2GO algorithm against five other sequence-based meth-
ods: DiamondScore [24], DeepGOCNN [24], TALE+ [25], DeepGO-
Plus [24] and MMSMAPlus [46]. The effectiveness of different algo-
rithms is showcased through their best Fmax, AUPR and Smin values 
across three sub-ontologies MFO, CCO and BPO, as illustrated in 
Table 2. 

Our model, despite leveraging the most traditional CNNs, still 
achieves excellent results, enhancing the protein function pre-
diction performance on the CAFA3 dataset. Table 2 highlights 
DeepSS2GO superior performance in MFO and CCO for the metrics 
Fmax and AUPR, and its near-best results in BPO. In terms of 
the Smin metric, it excels in all three sub-ontologies. The sub-
sequent section (Case 2), delves into the functional prediction 
of the protein LYPA2_MOUSE, emphasizing how the algorithm 
predicts specific sub-classes of GO functions and compares with 
other methodologies, underscoring the advantage of extracting 
features from protein secondary structures for predicting their 
functions. 

Moreover, DeepSS2GO stands out for its high predictive accu-
racy coupled with computational efficiency. On average, the algo-
rithm processes 1000 proteins from CAFA3 testing dataset in just 
1.2 min, a substantive improvement over the cutting-edge algo-
rithm, which requires approximately 7 min for 1000 proteins [45]. 
This quintuple increase in speed is particularly beneficial when 
analyzing large volumes of sequenced, unknown metagenomic 
proteins.
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Figure 3. The performance of Fmax scores in predicting GO functional annotations across species is depicted through heatmaps, utilizing models that 
have been trained and tested among six different species: Arabidopsis thaliana (ARATH), Escherichia coli (ECOLI), Homo sapiens (HUMAN), Mus musculus 
(MOUSE), Mycobacterium tuberculosis (MYCTU) and Saccharomyces cerevisiae (YEAST). (A) and (D) present MFO results based on model-aa and model-
ss8, respectively; (B) and (E) show CCO results and (C) and (F) illustrate BPO outcomes. The darker shades in the color gradients indicate higher metrics 
scores, reflecting greater prediction accuracy. Each matrix cell provides a metrics score for a model trained on the species denoted at the top and tested 
on the species labeled on the side. (G) depicts the percentage increased performance from model-aa to model-ss8 in MFO, similarly, (H) and (I) represent 
the increments in CCO and BPO, respectively. Red indicates the percentage of increase, while blue represents the percentage of decrease. 

In addition, the simplicity and user-friendliness of the model 
also mean that retraining costs are minimized. With continuous 
updates to the SwissProt and GO databases, our approach allows 
for rapid retraining to integrate new GO terms and discard out-
dated ones. 

To sum up, the DeepSS2GO algorithm not only surpasses com-
parable methods in enhancing prediction performance on the 
CAFA3 dataset but also brings a substantial increase in processing 
speed. Furthermore, it provides a straightforward and update-
friendly solution for adapting to the evolving landscape of protein 
and GO databases. 

Ablation study 
We conduct ablation studies to demonstrate the efficacy of the 
three modules: aa, ss8 and Diamond, in the proposed DeepSS2GO 
framework (Figure 2A). Here, ‘aa’ symbolizes the model based on 
the primary amino acid sequence, and ‘ss8’ denotes the model 
based on the secondary structure. For a universally applicable 
validation model, we utilize the entire SwissProt database for both 
training and testing. Six sets of experiments were carried out, each 
involving different combinations of the three modules. 

The findings deduced from the data presented in Table 3 
can be summarized as follows: Initially, it is evident that the
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simultaneous presence of all three modules yields the best results, 
as highlighted in bold. The optimal values for Fmax in MFO, CCO 
and BPO are 0.670, 0.703 and 0.535, respectively. For AUPR, the 
best values in MFO, CCO and BPO are 0.674, 0.742 and 0.493, 
respectively. Similarly, Smin achieves its optimal values in MFO, 
CCO BPO at 7.682, 9.072 and 36.138, respectively. 

Furthermore, when only a single module is used, employing 
ss8 alone achieves the best AUPR scores, while Diamond alone 
performs best in terms of Fmax; the performance of aa alone is 
not as impressive. A comparison between the aa+Diamond and 
ss8+Diamond combinations reveals a slight edge for the latter. 

Lastly, while using the Diamond alignment score alone shows 
some effectiveness, it is particularly valuable in complementing 
the deficiencies of either the model-aa or model-ss8, thereby 
enhancing the overall prediction accuracy. Thus, sequence 
homology information remains a precious source for functional 
inference. 

Case analysis 
In this section, we conduct two sets of case studies. The first 
case is a self-comparison, where we demonstrate the superior-
ity of features extracted from secondary structures over those 
from primary sequences by predicting the function of Surface 
Lipoprotein Assembly Modifier (SLAM) proteins. It shows that fea-
tures from secondary structures better reflect the key functional 
GO terms and exhibit better generalizability in non-homologous 
proteins. The second case involves a horizontal comparison with 
similar methods, by predicting the function of the LYPA2_MOUSE 
protein. It proves that our predictor accurately predicts all the 
bottom-layer functionalities of the protein with high scores, and 
provides deeper and more precise GO annotations. Following com-
munication with users of protein function prediction software, 
their usage habits have been understood. For novel, unknown 
proteins, researchers typically focus on the top 20–30 high-scoring 
results of GO terms in each of the three sub-ontologies as a 
preliminary judgment of the most probable functions. Therefore, 
the threshold does not have an absolute significance. Hence, in 
the following cases, the threshold is only used as a reference value 
for filtering. 

Case 1, Prediction of non-homologous SLAM proteins 
SLAM1 and SLAM2 are two transport membrane proteins of the 
Neisseria meningitidis serogroup. Their primary function is to 
transport substrates, with SLAM1 targeting TbpB, fHbp and LbpB, 
and SLAM2 targeting HpuA [54]. 

These two twin proteins are chosen as cases for several reasons. 
First, SLAM is not listed in the SwissProt database, thus not 
included in our training and testing sets. Secondly, homology com-
parisons of SLAM with other proteins in the SwissProt database 
yield a Diamond score of zero. This implies that SLAM is a non-
homologous protein. Thirdly, the sequence variance between the 
two proteins is substantial, with only about 25% sequence identity 
(Supplementary Figure S5B). However, their secondary structures 
are remarkably similar, each comprising one β barrel and mul-
tiple α helices (Supplementary Figure S5A), performing similar 
substrate transport functions. Therefore, these two SLAM cases 
effectively demonstrate that secondary-structure-based models 
are superior in predicting the function of non-homologous pro-
teins with substantial sequence differences, compared with those 
primary-sequence-based models. 

Three sets of tests are conducted using the aa+Diamond, 
ss8+Diamond and aa+ss8+Diamond models to predict SLAM1 

and SLAM2, with MFO results at a threshold of 0.06 presented in 
Table 4. The  aa+Diamond model predicts broader, higher-level GO 
terms, but the inclusion of ss8 features allows for the prediction 
of specific terms such as GO:0005215, GO:0022857, GO:0022803, 
related to transporter and transmembrane activity. To be noticed, 
within the aa+Diamond module, SLAM1 exhibits scores of 0.011 
for both GO:0005215 and GO:0022857, placing it at the 31st and 
32nd positions in the list. Generally, researchers do not focus 
on GO terms that are ranked too low. In addition, in the case of 
SLAM2, also in the aa+Diamond module, there were no detected 
GO terms associated with transporter activity. Despite the low 
sequence similarity between SLAM1 and SLAM2, these GO terms 
are predicted due to the ss8-model involvement, highlighting 
the transport-related functionalities essential to these proteins. 
Since SLAM proteins primarily act as substrate transporters, the 
highlighted parts in their functional annotations are particularly 
noteworthy. 

This case validates the hypothesis proposed in Figure 1. Despite 
the vastly different arrangement of fibers and gravels, the func-
tion of the macrostructure can be determined as a ‘bridge’ rather 
than a ‘tower’ by learning the arrangement patterns of blocks. 
Similarly, even with the diversity in primary sequences, the accu-
racy of protein function prediction can be improved by learning 
the arrangement patterns of secondary structures. Incorporating 
features extracted from secondary structures provides higher 
sensitivity in predicting protein functions compared with models 
based solely on primary amino acid sequences. Even though 
the three main evaluation metrics (Fmax, AUPR, Smin) are indeed 
crucial for assessing the algorithm for general comparison, in a 
practical predicting application, it is vital to identify the specific 
key functions of an unknown protein. In this aspect, DeepSS2GO, 
which integrates secondary structure features, proves to be more 
effective. 

Case 2, Prediction of LYPA2_MOUSE protein 
As the literature [46] has already examined the LYPA2_MOUSE 
protein (UniProt Symbol: Q9WTL7) and conducted comparisons 
with other similar algorithms, in this case, we also adapt this 
protein as our test object. The LYPA2_MOUSE protein serves 
as an acyl-protein thioesterase, responsible for hydrolyzing 
fatty acids attached to S-acylated cysteine residues in various 
proteins. A critical function of LYPA2_MOUSE includes facili-
tating the depalmitoylation process of zDHHC [55]. Therefore, 
predicting depalmitoylation-associated GO terms (GO:0098734 
and GO:0002084) is of crucial importance in understanding its 
biological process. 

Since the LYPA2_MOUSE protein exists in the SwissProt training 
set, we remove this protein from the set, then retrain the model 
using the same kernel and filter parameters as the optimal solu-
tion and predict this protein function with the new model. The 
BPO results are shown in Table 5. The DeepSS2GO algorithm suc-
cessfully predicted all 23 GO terms with high scores, achieving an 
accuracy of 100%, highlighted in bold. Further analysis revealed 
that the success in predicting all GO terms mainly stemmed from 
accurately predicting the sub-node GO:0002084, which led to the 
inference of all parent-level label terms. Figure 4 compares the GO 
term labels predicted by DeepSS2GO with those by other similar 
algorithms. DeepSS2GO managed to accurately predict all labels, 
transcending all other same-type algorithms. This proves that our 
predictor provides deeper, more specific and crucial functional 
annotations, making it a more practical method for the accurate 
and comprehensive prediction of protein functions in biological 
research.
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Table 4: Evaluation of MFO prediction for SLAM1 and SLAM2 proteins, using different combinations of DeepSS2GO modules with a 
threshold of 0.06 

Methods SLAM1 SLAM2 

GO term Annotation Score GO term Annotation Score 

aa+D∗ GO:0003674 molecular_function 0.368 GO:0003674 molecular_function 0.368 
GO:0003824 catalytic activity 0.235 GO:0003824 catalytic activity 0.362 
GO:0005488 binding 0.146 GO:0016787 hydrolase activity 0.133 
GO:0097159 organic cyclic compound binding 0.095 GO:0005488 binding 0.132 
GO:1901363 heterocyclic compound binding 0.091 GO:0097159 organic cyclic compound binding 0.079 
GO:0005515 protein binding 0.061 GO:0016757 glycosyltransferase activity 0.077 

GO:0016740 transferase activity 0.077 
GO:1901363 heterocyclic compound binding 0.070 

ss8+D∗ GO:0003674 molecular_function 0.355 GO:0003674 molecular_function 0.299 
GO:0005488 binding 0.355 GO:0005488 binding 0.287 
GO:0005515 protein binding 0.168 GO:0005515 protein binding 0.166 
GO:0005215 transporter activity 0.114 GO:0005215 transporter activity 0.137 
GO:0022857 transmembrane transporter activity 0.109 GO:0022857 transmembrane transporter activity 0.137 
GO:0003824 catalytic activity 0.062 GO:0022803 passive transmembrane transporter 0.092 
GO:0097159 organic cyclic compound binding 0.061 GO:0015267 channel activity 0.092 
GO:0003676 nucleic acid binding 0.060 GO:0003824 catalytic activity 0.083 
GO:1901363 heterocyclic compound binding 0.060 GO:0022829 wide pore channel activity 0.080 
GO:0140096 catalytic activity, acting on a protein 0.060 GO:0005102 signaling receptor binding 0.066 

aa+ss8 +D∗ GO:0003674 molecular_function 0.355 GO:0003674 molecular_function 0.341 
GO:0005488 binding 0.339 GO:0005488 binding 0.277 
GO:0005515 protein binding 0.159 GO:0005515 protein binding 0.154 
GO:0003824 catalytic activity 0.106 GO:0003824 catalytic activity 0.153 
GO:0005215 transporter activity 0.100 GO:0005215 transporter activity 0.118 
GO:0022857 transmembrane transporter activity 0.096 GO:0022857 transmembrane transporter activity 0.118 
GO:0097159 organic cyclic compound binding 0.074 GO:0016787 hydrolase activity 0.084 
GO:1901363 heterocyclic compound binding 0.064 GO:0022803 passive transmembrane transporter 0.079 
GO:0003676 nucleic acid binding 0.063 GO:0015267 channel activity 0.079 

GO:0022829 wide pore channel activity 0.069 

Note: Under aa+D combination: SLAM1 has GO:0005215 and GO:0022857 scores of 0.011, ranking 31st and 32nd. SLAM2 has no transporter-related GO terms 
detected. Module D∗ refers to the Diamond algorithm. The best results are in bold. 

It is important to note that some GO terms in the literature [ 46] 
have been changed. For example, GO:0044260 is now obsolete, and 
GO:0044267 with GO:0006464 are secondary IDs for GO:0019538 
and GO:0036211, respectively. Moreover, in the latest GO database 
used in this study, GO:0006807, GO:1901564 and GO:1901565 are 
defined as parent-level terms of GO:0002084 [56]. The following 
four aspects are continuously updated: the SwissProt database, 
the GO database, the interrelationships between GO terms and the 
correspondence between proteins and GO terms. Therefore, the 
simplicity, time efficiency and ease of retraining the DeepSS2GO 
model ensure regular updates. 

These results indicate that the proposed DeepSS2GO method 
overtops the state-of-the-art methods in stability, reliability, accu-
racy, efficiency and generalization to non-homologous proteins. It 
can further extend to proteins of species not ‘seen’ in the training 
set, predicting biological functions of new and unknown protein 
sequences. 

DISCUSSION 
Protein function prediction methods based on primary sequences 
or tertiary structures exhibit inherent limitations. The informa-
tion in primary sequences contains an overload of information, 
making it challenging to accurately predict functions from 
unknown species through amino acid sequence information 
alone. Although leveraging tertiary structure for function predic-
tion improves accuracy, it is impractical for analyzing massive 

datasets due to its time-consuming nature. From primary to 
tertiary levels, it is precisely because the ‘functional information 
density’ continually increases that it becomes easier to predict 
function. This functional information density refers to the ratio 
of functional information to total information. Considering this, 
our developed secondary-structure-based prediction algorithm, 
DeepSS2GO, can compensate for these shortcomings, combining 
the efficiency of sequencing based on primary sequences with 
the accuracy of utilizing partial spatial structural information. 

DeepSS2GO is characterized by its accuracy, critical insights, 
comprehensiveness, efficiency and ease of updating. It enhances 
protein function prediction by reducing the redundant informa-
tion of primary sequences through the modular integration of 
secondary structure features. This approach improves the predic-
tion accuracy, relevancy and breadth. Furthermore, DeepSS2GO 
outperforms current leading sequence-based predictors in perfor-
mance, offering comprehensive predictions of essential protein 
functions and demonstrating excellent generalization capabilities 
for non-homologous proteins and new species. Its rapid prediction 
capability makes it highly applicable in various fields, including 
metagenomics, for large-scale unknown species. Additionally, the 
user-friendly model architecture minimizes the costs associated 
with retraining, facilitating quicker and more convenient updates 
with the latest database. 

However, there are areas where DeepSS2GO can be further 
improved. In an effort to emphasize the effectiveness of the 
secondary structure, the model was built using the classic
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Figure 4. Comparison of predicted GO terms by various methods for LYPA2_MOUSE (UniProt Symbol: Q9WTL7) protein within the BPO DAG. The 
established baseline for these predictions is derived from the propagation of experimental BPO annotations (GO:0002084). 

conventional CNN, proving that even simple methods can yield 
outstanding results. Recent algorithmic developments in areas 
such as GNN [ 18], Diffusion mechanisms [45], Geometric Deep 
Learning [57], Self-supervised learning [48] and Large Language 
Models [22] have shown exceptional utility in protein structure 
and function analysis. Applying these state-of-the-art algorithms 

to extract protein sequence information from various dimensions 
could enhance the accuracy of functional predictions. Moreover, 
the algorithm transition from primary to secondary sequence 
prediction uses ProtTrans and ESM pre-trained models, which 
are limited by protein sequence length, thereby excluding large 
proteins over 1024 amino acids. Adopting more versatile
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Table 5: Evaluation of the BPO prediction for the LYPA2_MOUSE 
protein, ranked in descending order of scores 

GO term Annotation Score 

GO:0008150 biological_process 0.870 
GO:0008152 metabolic process 0.823 
GO:0071704 organic substance metabolic process 0.814 
GO:0009987 cellular process 0.781 
GO:0044238 primary metabolic process 0.766 
GO:0043170 macromolecule metabolic process 0.663 
GO:0043412 macromolecule modification 0.663 
GO:0098732 macromolecule deacylation 0.663 
GO:0006807 nitrogen compound metabolic 0.654 
GO:0019538 protein metabolic process 0.654 
GO:0035601 protein deacylation 0.654 
GO:0036211 protein modification process 0.654 
GO:1901564 organonitrogen compound metabolic 0.654 
GO:0009056 catabolic process 0.618 
GO:1901575 organic substance catabolic process 0.614 
GO:0042157 lipoprotein metabolic process 0.538 
GO:0098734 macromolecule depalmitoylation 0.495 
GO:0044237 cellular metabolic process 0.484 
GO:1901565 organonitrogen compound catabolic 0.481 
GO:0009057 macromolecule catabolic process 0.446 
GO:0050896∗ response to stimulus 0.444 
GO:0030163 protein catabolic process 0.438 
GO:0006629∗ lipid metabolic process 0.413 
GO:0044255∗ cellular lipid metabolic process 0.413 
GO:0046486∗ glycerolipid metabolic process 0.413 
GO:0002084 protein depalmitoylation 0.389 
GO:0042159 lipoprotein catabolic process 0.389 

Note: GO terms in bold are True Position predictions. Go terms with ∗ are 
referred to as False Positive predictions. 

secondary structure prediction methods for longer sequences 
in the future would expand our algorithm scope significantly. 
Lastly, functional prediction is not limited to full-length proteins 
but can also be applied to studying various polypeptides 
[ 58, 59], integrating multiple features which will facilitate a 
broader elucidation of disease mechanisms and the discovery 
of drug targets. Therefore, we aim to further integrate drug and 
disease information using information fusion methods, allowing 
functional annotation algorithms to be more effectively applied 
in practical applications, benefiting humanity. 

Overall, DeepSS2GO combines advanced feature learning 
capabilities with cross-species transfer potential. As genomic 
sequencing progresses and the quantity of new species sequence 
data grows, this method promises to be a valuable tool for protein 
function prediction, balancing accuracy with computational 
efficiency. 

Key Points 
• DeepSS2GO is a protein function predictor that treats 

secondary structure as a module, integrating it with 
primary sequence and homology information. 

• DeepSS2GO combines sequence-based speed with 
structure-based accuracy, also simplifying redundant 
information in primary sequences and avoiding time-
consuming complexities associated with tertiary 
structure analysis. 

• DeepSS2GO surpasses similar algorithms in accuracy, 
capable of predicting key functions of non-homologous 

proteins and providing more in-depth and specific func-
tional annotations. 

• DeepSS2GO exhibits exceptional performance and 
speed, operating five times faster than advanced 
algorithms, making it more suitable for large-scale 
sequencing data. 

• DeepSS2GO model is streamlined, enabling easy updates 
and the tracking of the latest SwissProt and GO 
databases. 
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Supplementary data are available online at http://bib.oxfordjournals. 
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