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A Deep Learning Framework for Predicting
Protein Functions With Co-Occurrence
of GO Terms

Min Li
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Abstract—The understanding of protein functions is critical to many biological problems such as the development of new drugs and
new crops. To reduce the huge gap between the increase of protein sequences and annotations of protein functions, many methods
have been proposed to deal with this problem. These methods use Gene Ontology (GO) to classify the functions of proteins and
consider one GO term as a class label. However, they ignore the co-occurrence of GO terms that is helpful for protein function
prediction. We propose a new deep learning model, named DeepPFP-CO, which uses Graph Convolutional Network (GCN) to explore
and capture the co-occurrence of GO terms to improve the protein function prediction performance. In this way, we can further deduce
the protein functions by fusing the predicted propensity of the center function and its co-occurrence functions. We use Fmax and AUPR
to evaluate the performance of DeepPFP-CO and compare DeepPFP-CO with state-of-the-art methods such as DeepGOPIlus and
DeepGOA. The computational results show that DeepPFP-CO outperforms DeepGOPIus and other methods. Moreover, we further
analyze our model at the protein level. The results have demonstrated that DeepPFP-CO improves the performance of protein function
prediction. DeepPFP-CO is available at https://csuligroup.com/DeepPFP/.

Index Terms—Protein function prediction, deep learning, graph convolutional network, co-occurrence

1 INTRODUCTION

ROTEINS play an important role in biological processes,
Pe.g., gene regulation, metabolic regulation, and body
movement [1]. The discovery of protein functions helps
understand biological activities at the molecular level and
the treatment of diseases. However, less than 1% of proteins
are annotated by the biological experiments in UniProt [2]
until January, 2021. Biological experiments in vitro and in
vivo are expensive and time-consuming. They are unable to
reduce the gap between annotations of protein functions
and the increasing number of protein sequence [3]. This
motivates the development of computational methods.

In the past decades, many computational methods have
been proposed for predicting protein functions. Many compu-
tational methods predict protein functions by using machine
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learning algorithms with protein se-quences [4], [5]. [6], [7],
protein-protein interaction (PPI) networks [8], [9], [10], [11],
[12], protein structures [13], [14], [15], [16], biomedical litera-
ture [17], [18], [19], and other features [20]. These methods
annotate protein functions with Gene Ontology (GO) includ-
ing more than 40,000 terms [21]. In addition, the prediction of
protein functions is a multi-class, multi-label problem [22].
Thus, these methods need to learn an individual model for
each GO term. This means that machine learning methods
have to train tens of thousands of prediction models, one for
each GO term. Recently, deep learning techniques are used to
improve the performance of protein function prediction [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32] by learning indi-
vidual model for Biological Processes Ontology (BPO), Molec-
ular Functions Ontology (MFO), and Cellular Components
Ontology (CCO), instead of learning a model for each GO
term. DeepGO [25] combined a PPI network and sequence
data for predicting protein functions. DeepGOA [28]
improved the performance of protein function prediction
with sequences, sub-sequences, and PPI network data. Deep-
GOPlus [24] is a sequence-based method that used Convolu-
tional Neural Network (CNN) to capture sequence local
features for protein function prediction. DeepText2GO [29]
retrieved protein-related citations and extracted deep seman-
tic information to predict protein functions. DeepFRI [32]
used protein structure and sequence to predict protein func-
tions. GONET [30] constructed the PPI network of human and
mouse and extracted protein sequence features by CNN-
RNN-Attention model to predict protein functions.

Although compared with the machine learning methods,
the existing deep learning methods improve the perfor-
mance of protein function prediction, these methods ignore
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Fig. 1. The relationship of GO terms. Each cell in the picture has two
lines, where the first line denotes the GO term id, and the second line is
the count frequency of the GO term in training set. “ G; G;” means
G; has relationship with G;. “ G; G;” means the probability of G;
when G; appears and the probability is on the dashed arrow.

the co-occurrence between GO terms at the training process.
The structure of Gene Ontology is a hierarchical graph,
where a term is a node, the relationships between child
terms and parent terms are represented as the edges. In
order to improve the prediction of protein functions, we
analyze the training set and observe some interesting
results. We take GO:0043062 (extracellular structure organi-
zation), GO:0030198 (extracellular matrix organization), and
GO:0043063 (intercellular bridge organization) as an exam-
ple. As shown in Fig. 1A, both GO:0030198 and GO:0043063
terms are the children of GO:0043062 term based on the is-a
relationship. If protein P is annotated with GO:0030198
term or GO:0043063 term, P must also be annotated with
GO:0043062 term. Moreover, we find that the numbers of
proteins that are annotated with GO:0030198, GO:0043063,
or GO:0043062 terms are 494, 12, and 507, respectively. It
means that if GO:0043062 appears, GO:0030198 will also
appear with a very high probability (0.974), but GO:0043063
does not (0.024). Then, we can deduce that if a protein has
GO:0043062 term, this protein is also annotated by
GO:0030198 term with high probability. Although the par-
ent terms can be safely inferred by child terms based on is-a
or part-of relationship, we can see parent terms may be
helpful to predict child terms according to the probability
from the phenomenon. And the appearance probabilities of
child terms are obviously different when parent terms
appear. Another example is GO:0009126 (purine nucleoside
monophosphate metabolic process) and GO:0009161 (ribo-
nucleoside monophosphate metabolic process). There is
no is-a or part-of relationship between GO:0009126 and
GO:0009161 terms. However, the count frequencies of
GO:0009126 term, GO:0009161 term, and combination of
GO:0009126 and GO:0009161 terms in training set are 426,
441, and 424, respectively. According to the Bayesian equa-
tion, the probability of GO:0009161 term when GO:0009126
term appears is 0.995. This means although two GO terms
do not have any relationships, a term can be helpful to pre-
dict another one. From previous analysis, we see some GO
terms normally co-occur on a protein. We call the combina-
tion of two GO terms as co-occurrence. Co-occurrence of
GO terms is useful in protein function prediction, which
can reveal the dependence between the two GO terms.
However, previous deep learning studies ignore this.

In this study, we present a deep learning framework,
named DeepPFP-CO, which predicts protein functions with
co-occurence of GO terms. DeepPFP-CO consists of two com-
ponents: a feature combination component and a function

TABLE 1
Summary of Datasets
Dataset BPO CCO MFO ALL
Training set 51503 48204 33335 64810
2016 test set 1432 1094 658 1782
CAFAS3 challenge set 2388 1092 1084 3323

prediction component. In the feature combination compo-
nent, we extract and combine sequence/subsequence-based
and PPI network data. Then, we use these data to score pro-
tein functions. In function prediction component, we use a
Graph Convolutional Network (GCN) module to improve
the accuracy of prediction with an effective correlation
matrix based on the co-occurrences of GO terms.

In our evaluation, we first evaluate DeepPFP-CO in com-
parison with the other five methods (one official baseline
method in CAFAS3, one classical machine learning method,
and three deep learning methods) on a test set. Then we fur-
ther analyze the generalization of DeepPFP-CO and five
competing methods on another dataset. Our computational
results indicate that DeepPFP-CO outperforms all compet-
ing methods, demonstrating the effectiveness of features
extracted from co-occurrence GO terms. In particular, we
analyze the distribution of each method’s predictive perfor-
mance at the protein level. Finally, we present a case study
to verify the effectiveness of DeepPFP-CO in positive
annotations.

2 DATASETS

The datasets for training and evaluation are downloaded
from UniProt. In our study, proteins are from SwissProt
whose version is published on January, 2016 and October,
2016. The annotations with experimental evidence codes
(EXP, MP, TAS, IGI, IDA, IEP, and IC) are considered to be
experimental. We select proteins with experimental annota-
tions and ignore proteins with ambiguous amino acid codes
(J, U, X, B, O, Z2) in their sequences. Inspired by Critical
Assessment of Functional Annotation (CAFA) [33], the pro-
tein datas is divided into training dataset and test dataset
according to the annotation time stamps. We use all proteins
selected before January, 2016 as the training dataset. The
2016 test set includes all proteins collected between January,
2016 and October, 2016 and we use 23 target species that are
in CAFAS3 evaluation set to filter the 2016 test set. We also
use the CAFAS3 challenge dataset to evaluate the generaliza-
tion performance of DeepPFP-CO. The number of proteins
in each dataset is shown in Table 1. To validate the perfor-
mance of the model on the most recent dataset, we collated
the most recent data since January, 2022 and use it to train a
new model. The predictive performance is shown in Sup-
plementary Table S1 and Table 52, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2022.3170719.

In our experiments, the version of GO released on Janu-
ary, 2016 are used. This version of GO has 29,265 biological
process classes, 4,035 cellular component classes, and 10,694
molecular function classes. While propagating protein func-
tions, we only consider the relationships of is-a and part-of.
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Fig. 2. The architecture of DeepPFP-CO. In feature combination component, we extract protein sequence features, subsequence-based features
including motifs and domains, and PPI network features. Then we use these features to score the selected functions. In function prediction compo-
nent, we use GCN module based on GO terms’ co-occurrence to further deduce the protein functions.

Only these two relationships can reliably group annota-
tions. For a protein, we look for the functions in UniProt
and their ancestor nodes through these two relationships.
All these found functions are annotated to the protein. After
this step, we count the occurence of each GO term in the
training dataset. We use the features from feature combina-
tion component to score all terms with numbers >50, >40,
and >30 for BPO, MFO, and CCO, respectively. In function
prediction component, we predict all terms, that appear in
the training set.

We use the PPI data from STRING database [34] to con-
struct a PPI network. In addition, we supplement the PPI
network with orthology relations obtained from EggNOG
database [35].

3 METHODS

DeepPFP-CO predicts protein functions with a two-compo-
nent design. The feature combination component integrates
various protein features to predict protein functions. Firstly,
we use multi-CNN [36], [37] and Bi-LSTM [38] to extract
local and global sequence-based features. Then, we obtain
PPI networks features and subsequence-based features
including motifs and domains. The combination of the
above three features is fed to two fully connected layers. In
function prediction component, we use GCN module to fur-
ther improve the predicted quality of protein function pre-
diction with co-occurrence of GO terms. Fig. 2 shows the
architecture of DeepPFP-CO.

3.1 Notation

Let D be a training set with Np proteins, P; be the ith
protein, G; be the ith GO term, and Ng, be the number
of proteins annotated by G; in D. Denote I(G;, P;) as a
binary indicator, showing if P; is associated with G;.
That is, if protein P; is annotated by G;, I(G;, P;) is 1,
otherwise 0.

3.2 Sequence Features

In the past decades, a large number of protein sequences
have been obtained [39]. Protein sequences are composed of
various amino acids. We regard the sequence of protein as
sentence where different amino acids represent various
words. We use the word2vec algorithm [40] to represent
amino acids. Fragments of sequences that contain functional
information have different numbers of amino acids. It is dif-
ficult to design a specific convolution kernel that obtains the
complete local protein sequences features. Multi-scale CNN
[41], [42], [43] is one of the classic deep learning models that
extracts various local features with different kernel sizes.
Thus, we use multi-scale CNN to capture local features of
protein sequences. The global information of protein
sequences is important to identify protein functions. The
Long and Short Term Memory (LSTM) is suitable for cap-
turing the long-range information in a sequence. Bi-LSTM
structure is composed of a forward LSTM and backward
LSTM, and captures bi-directional contextual features. We
use Bi-LSTM structure to extract global features of protein
sequences.

3.3 Subsequence-Based Features

Different from GONET [30], we also use subsequence-based
features to predict protein functions. Subsequence-based
features are important for protein function prediction. We
use InterPro to get subsequence-based features including
protein domains and motifs. InterPro offers a tool, named
InterProScan, which provides functional analysis of protein
sequences [44]. The subsequence-based features created by
InterProScan are encoded into a 35020-dimensional binary
vector. Since this vector is sparse, it is put into two fully con-
nected layers to obtain its low-dimensional representation.

3.4 PPI Network Topological Features

Many proteins perform biological functions by interacting
with other protein partners [45]. Therefore, PPI network
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information plays an important role in protein function pre-
diction [46], [47], [48]. We use the same datasets from our
previous protein function prediction work [28]. We down-
load these proteins and their interaction data from STRING.
The proteins are mapped to SwissProt. We also add the
orthologous relations from EggNOG to the network. The
network consists of 354,687 nodes and 54,552,077 edges.
We use Deepwalk [49] to capture the topological features of
each protein in the PPI network.

3.5 Function Deduction

In function prediction component, we deduce the protein
functions based on the co-occurrence of GO terms. From
previous analysis, we know that the appearance of one term
is often accompanied by another one, even they do not have
the relationships of is-a or part-of. This provides useful
information to further enhance protein function prediction.
To improve the predicted quality of protein function predic-
tion, we use the GCN module to explore and capture such
important dependencies. GCN [50] performs semi-super-
vised classification based on a topological graph. The key
idea of GCN is to update the representations of nodes
through information dissemination between nodes. Differ-
ent from the convolution operation in CNN, the goal of
GCN is to learn the function f(-,-) on the graph G. It can be
written as:

H" = f(H', A) 1

where H' represents the feature description of each GO
term and A is the corresponding correlation matrix. After
the convolutional operation, f(.,.) can be represented as:

H = h(AHlW[) ©)

where A normalizes correlation matrix 4 and W' is a trans-
formation matrix that updates weights in the training
process.

We use GCN [50], [51] to improve the performance of
protein function prediction based on co-occurrence relations
of GO terms. We represent the co-occurrence of GO terms
by an effective correlation matrix. The details of the correla-
tion matrix are described below.

First of all, for a term G; , we compute Ng, that repre-
sents the number of proteins annotated with the G, in the
training dataset. We compute co-occurrence number of pro-
teins both annotated with the functions G; and G; in the
training dataset. And we represent all these co-occurrence
numbers of G; with the matrix M;eR“C, where C is
the number of functions in the training dataset. Then, we
compute the conditional probability matrix with the follow-
ing formulas as:

P; = M;/Ng, 3)

where P;; = P(G,|G;) and P(G,|G;) denotes the probability
of occurrence of function G; when function G; appears.
Since P;; != Pj;, this matrix is asymmetric. Constructing the
matrix may result in a long-tailed distribution. We use a
threshold ¢ to filter noise, and the operation can be written
as:

Zf P7] <t

if Py >t @

Aij = 0,
(¥ 1’

where A is a binary correlation matrix.

Through the above formula, we know that the score of a
node will be added by the score of itself and its neighbors,
which may result in over-smoothing. And to alleviate this
problem, we use the following reweighted scheme:

Aij = { ZJ(’:I il=j AU ) ) ) (5)
1-0, ifi=j

where A’ is the reweighted correlation matrix and b deter-
mines the weights assigned to a node itself and other corre-
lated nodes. When b approaches 1, the neighbor nodes of
the center node contribute more. On the other hand, when b
approaches 0, the features of the center node are more
relevant.

3.6 Implemental Details

DeepPFP-CO has many hyperparameters such as convolu-
tional kernel size and types of activation functions to be
used. The loss function and optimizer of our model are
binary cross-entropy loss and Adam, respectively. In
the first part, we use multi-scale CNN to capture local fea-
tures of protein sequences. Kernel sizes of multi-CNN are
[3,5,7,9, 11, ..., 31], the number of channels is 64. The
stride is 1. And the activation function is ReLU, and
the max-pooling layer size is 1,000. For Bi-LSTM structure,
the hidden size is 256 and the number of recurrent layers
is 2. Then, the output of Bi-LSTM is fed to the max-pool-
ing layer with the size of 512"1. The subsequence-based
features, represented as a 35,020-dimensional binary vec-
tor, are fed to a fully connected layer with 512 neurons.
The dimension of the features of PPI network is 256. In
the second part, the input contains all GO terms that
appear in the training dataset. There are some unpredict-
able functions by feature combination component. To
solve this cold start problem, we use the Diamond tool
[52] to supplement. The output of two GCN layers is a 64-
dimensional vector and is fed to the max-pooling layer
that outputs the propensity of functions.

4 RESULTS

4.1 Competing Methods
4.1.1 Naive Method

The naive method is the official baseline method in CAFA3.
The naive method annotates all proteins with the same
terms based on the relative frequency of GO terms in train-
ing dataset D. The propensity of a protein P; with G; is cal-
culated as follows:

Ng,
N (6)

(G, Py) =

where N¢, is the number of proteins with G; in D and Np is
the number of proteins in the training set. S(G;, P;) is the
rediction scores.
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4.1.2 BlastKnn

For a given protein P;, we use BLAST [53] to find homolo-
gous proteins in the training dataset based on specified
sequence similarity score. Then, we use all functions of
homologous proteins to annotate P;. H represents the set of
similar proteins of P; in D, and bitscore(P;, s) is the similar-
ity score between proteins P; and s, where s is one of similar
proteins in set H. We set the evalue to 0.001. S(G;, P;) is cal-
culated as follows:

> eep bitscore (Pj7 s) * I(Gi, P{,»)

> en bitscore(Pj, ) @

S(Gi, Pj) =

4.1.3 DeepGOA

Zhang et al. developed DeepGOA which fuses different fea-
tures of proteins to predict protein functions. Firstly, Deep-
GOA utilizes Bi-LSTM and CNNs with different filters to
extract sequence features. Secondly, DeepGOA combines
sequence features with the protein subsequence-based fea-
tures including protein domains and motifs and generates
sequence-based features. Then, DeepGOA extracts topologi-
cal features of the PPI network. Finally, subsequence-based
features and topological features are concatenated together
to predict protein functions.

4.1.4 DeepGO and DeepGOPIlus

M. Kulmanov et al. developed two deep learning-based
models: DeepGO and DeepGOPlus. DeepGO firstly uses
deep learning techniques to predict protein functions.
DeepGO combines sequence and topological features of PPI
networks to predict protein functions by using hierarchical
classifier. In the training process, DeepGO trained three
individual models for BPO, CCO, and MFO. Compared
with DeepGO, DeepGOPlus represents the input sequence
with one-hot coding and uses a set of CNN layers with dif-
ferent filters to learn specific sequence features.

4.2 Evaluation Metrics

We use two evaluation metrics to evaluate the performance
of DeepPFP-CO. F,,,, is maximum protein-centric F-mea-
sure computing overall prediction thresholds and AUPR is
a metric for evaluating predictions with imbalanced data-
sets [54]. The formulas are as follows:

L SN ) ®
o i L(S(GiL Py 2 1)+ I(Gi, Py)
TCJ(t) - ZLI<GL,P]) (9)
m(t)
AvgPr(t) = b * Zprj(t) (10)
m(t) =
AvgRe(t) = % * i rc;(t) (11)

i=1

where m(t) is the quantity of predicted proteins with at least
one GO term, n is the total quantity of proteins, and 1(.) is 1
if the condition is true, otherwise 0.

TABLE 2
The Comparison Performance of on 2016 Test Set Which Is
Generated by a Time-Based Split

Method Fma'z AUPR
MFO BPO CCO MFO BPO CcCoO
Naive 0.274 029 0.588 0.147 0.192 0.503
BlastKnn 0.579 0434 0.646 0477 0.299 0.500
DeepGO 0.425 0.362 0.618 0.375 0.286 0.660
DeepGOA 0.559 0.410 0.684 0.531 0.343 0.697
DeepGOPlus 0576 0439 0.690 0.531 0.360 0.715
DeepPFP 0.569 0.422 0.680 0.557 0.367 0.726
DeepPFP-CO 0.613 0.463 0.703 0.593 0.419 0.731
2% A A
Fo— max x AvgPr(t) x AvgRc(t) (12)
t AvgPr(t) + AvgRc(t)

4.3 Evaluation and Comparison
4.3.1  Comparison With Other Methods

We evaluate DeepPFP-CO and other computational meth-
ods on the two test sets: the 2016 test set and CAFA3 chal-
lenge dataset. The details of test sets are shown in Table 1.
Naive is a baseline comparison method. BlastKnn is a
machine learning method. DeepGO, DeepGOA, and Deep-
GOPlus predict protein functions by using deep learning
techniques. As mentioned above, DeepGO and DeepGOA
both combine protein sequences and PPI network infor-
mation to predict protein functions. DeepGOPlus is a
sequence-based method that uses the combination of pre-
dictions of deep learning techniques and predictions by
using Diamond to predict protein functions. Compared
with DeepPFP-CO, DeepPFP offers the prediction results
by the features generated from feature combination
component.

Table 2 shows the performance of DeepPFP-CO and
other computational methods on the 2016 test set. We
observe that DeepPFP-CO achieves the best performance
when being quantified with F',,, and AUPR. DeepPFP-CO
achieves F,,,, of 0.463, 0.613, and 0.703 for BPO, MFO, and
CCO, respectively, which is better than DeepGOPlus (0.439,
0.576, 0.69). Compared with DeepGO that is the first deep
learning model of protein function prediction, DeepPFP-CO
improves F,,, about 44.2%(MFO), 27.9%(BPO), and 13.8%
(CCO). From the table, we can see DeepPFP achieved F,q,
of 0.569 over MFO, 0.422 over BPO, and 0.68 over CCO,
which performed a little better than DeepGOA in most cases
and worse than DeepPFP-CO. It also indicates the advan-
tage of DeepPFP-CO with the GCN component.

In order to evaluate the generalization performance of
DeepPFP-CO, we use the CAFA3 challenge dataset to test.
Table 3 compares the evaluation results of each method.
The table shows that DeepPFP-CO performs better than
other comparison methods in most cases. For example, in
the MFO, F,,, and AUPR of DeepPFP-CO are 0.57 and
0.542, respectively. It improves about 4.8% (F,.,) and
12.2% (AUPR) than DeepGOPlus. But in terms of AUPR,
DeepPFP-CO achieves 0.603 in the CCO, which is slightly
lower than that of DeepGOPlus (0.605).
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TABLE 3
The Comparison Performance of on CAFA3 Challenge Dataset

Method Fmar AUPR

MFO BPO CCO MFO BPO CCO
Naive 0293 0332 0.542 0.153 0.229 0.448
BlastKnn 0549 0423 0580 0430 0.299 0.463
DeepGO 0.375 0416 0564 0.278 0.327 0.578
DeepGOA 0470 0467 0.604 0390 0.397 0.594
DeepGOPlus 0544 0.431 0.606 0.483 0.336 0.605
DeepPFP 0.544 0486 0.605 0.508 0.421 0.588
DeepPFP-CO 0.570 0.503 0.616 0.542 0.425 0.603

To validate the performance of DeepPFP-CO on the most
recent dataset, we collated the most recent data since Janu-
ary, 2022 to train the model. All results are shown in Sup-
plementary Table S2, available online. We observe that
DeepPFP-CO achieves F),,, of 0.486, 0.679, and 0.643 for
BPO, MFO, and CCO, respectively, which is better than
other compared methods. The observation is the same as
the results in Table 2. This indicates that DeepPFP-CO per-
forms better across different datasets. In addition, we com-
pared the DeepPFP-CO with the ablation model (DeepPFP-
CO_R) trained without is-a and part-of relationships. This
aims to analyze influence of nodes in GO term graph with-
out the edges which the co-occurrences equal 1. The results
are shown in Supplementary Table S2, available online.
From the table, we can see that the Fmax and AUPR of
DeepPFP-CO_R are lower than that of DeepPFP-CO which
indicates that the relationships of is-a and part-of maintain
the connectivity and information which is helpful to the
final prediction. Supplementary Fig. S3, available online,
shows the precision-recall curves of DeepPFP-CO_R and
DeepFPF-CO. The results on most recent dataset indicate
that DeepPFP-CO is an effective method.

4.3.2 Comparison at the Protein Level

We further analyze the poor, median, and good perfor-
mance of DeepPFP-CO and other compared methods at the

The Distributions of Each M
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protein level. The F,,,, content that is binned into three
ranges. The first range where the F),,, is between 0.0 and
0.4 denotes that methods perform poorly. The second
(0.4<=F,4;<0.7) and third ranges (0.7<=F,q,<=1) indi-
cate that methods achieve median and good predictive per-
formance, r espectively. Fig. 3 shows the number of proteins
for which a given method obtains poor, median, good pre-
dictive performance in MFO. We also report the distribu-
tions of each method in BPO and CCO in Supplementary
Figs. S1 and S2, available online. The F',,,, performance of
predictions with the use of Naive method is less than 0.7 for
the whole 2016 test set. For DeepGO, the number of proteins
with the best predictive performance is lower than poor and
median predictive performance. DeepPFP-CO, DeepGOA,
DeepPFP, and DeepGOPlus demonstrate good F',,, perfor-
mance for more than 50% of proteins. Moreover, DeepPFP-
CO shows good predictive performance (0.7<=F},,,<=1)
for 379 proteins, which is about 14.5%, 8%, and 12.1% higher
than DeepGOPlus, DeepPFP, and DeepGOA, respectively.
When quantifying the number of proteins with poor predic-
tive performance (0<=F),,;<0.4), 134 predictions of
DeepPFP-CO fall into this category, which is also less than
DeepGOPlus, DeepPFP, and DeepGOA.

In addition to comparing the distribution of each meth-
od’s predictive performance, we count the number of the
methods predicting best for each protein according to F,,
on the whole 2016 test set. First, we calculate F,,,, of each
method on a protein. Then, we rank the best method on this
protein and calculate the statistics in all proteins in the 2016
test set, which is shown in Fig. 4. In BPO, CCO, and MFO,
DeepPFP-CO is the best prediction method in more protein
cases than the other methods. Specifically, DeepPFP-CO is
about 26.5%, 26.3%, and 14.4% higher than DeepGOPlus
about 52.4%, 35.2%, and 47.1% higher than DeepPFP for
BPO, CCO and MFO, respectively. This indicates that
DeepPFP-CO is an effective method.

4.3.3 Case Study

To gain further insight into why DeepPFP-CO is able to
improve protein function prediction, we choose one protein

ethod's Predictive Performance

379

351
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170
157 146161
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134145
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her compared methods at the protein level when quantified with F',,,.. The

blue bar, orange bar and gray bar denote the number of proteins with bad (0<=F,,,<0.4), median (0.4<=F,,.<0.7), best (0.7<=F .. <=1) predic-

tive performance, respectively.
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(name: PLPR4_RAT) from the 2016 test set to explore effects
in the CCO. As shown in Table 4, PLPR4 RAT is annotated
with 14 native GO terms. Although the Naive method pre-
dicts 11 GO terms, there are only three correctly predictive
GO terms. In contrast, the predictive GO terms of DeepPFP-
CO and DeepGOPlus are all correct. Moreover, we have the
following interesting observations in Table 4. First, although
the GO:0005622 and GO:0044424 terms are not native
annotated GO terms, they are annotated as positive GO
terms by Naive, DeepGO, DeepGOA, and DeepPFP. Sec-
ond, GO:0005623 and GO:0044464 terms are correctly anno-
tated by DeepPFP-CO as well as the competing methods.
Finally, we observe that DeepPFP-CO is the only method
that correctly annotates the GO:0016021 and GO:0031224
terms. The above observations indicate that DeepPFP-CO
provides accurate predictions and offers correct annotations
for specific terms that are not easily annotated by other
methods.

We further explore the important aspect by comparing
the difference of the predictive propensity between
DeepPFP and DeepPFP-CO in Fig. 5. DeepPFP offers the
predictions without GCN component of DeepPFP-CO.
Fig. 5A not only shows the predicted score of GO:0005622
term and GO:0044424 term by DeepPFP but also the rela-
tions with their neighborhood terms. And Fig. 5A shows
that DeepPFP correctly annotates the GO:0005623 and the
GO:0044464 terms. Compared Figs. 5A with 5B, we observe
that DeepPFP-CO eliminates these wrong annotations
(GO:0005622 term, GO:0044424 term). From Figs. 5C and
5D, we can find that DeepPFP-CO correctly annotates the
GO:0016021 and GO:0031224 terms. Although DeepPFP-CO
incorrectly annotates the GO:0005887 and GO:0031226
terms, DeepPFP-CO improves the predictive propensity.
The above observations support that DeepPFP-CO signifi-
cantly improves the performance of protein function predic-
tion based on co-occurrence information.

TABLE 4
The Prediction of the Protein (PLPR4_RAT) With Different Methods

Labels Naive DeepGO DeepGOA DeepGOPlus DeepPFP DeepPFP-CO
GO:0005623 GO:0005623 GO:0005623 GO:0005623 GO:0005623 GO:0005623 GO:0005623
GO:0044464 GO:0044464 GO:0044464 GO:0044464 GO:0044464 GO:0044464 GO:0044464
GO:0016020 GO:0016020 GO:0016020 ¥ GO:0016020 GO:0016020 GO:0016020
GO:0005886 * - * GO:0005886 GO:0005886 GO:0005886
GO:0044425 - ) ¥ GO:0044425 GO:0044425 GO:0044425
GO:0071944 * * ¥ GO:0071944 GO:0071944 GO:0071944
GO:0044459 * * ¥ GO:0044459 - GO:0044459
GO:0016021 * * * ) * GO:0016021
GO:0031224 - * ¥ * - GO:0031224
GO:0005887 * * * * * *
GO:0009897 * * ¥ * - *
GO:0009986 * * * * * *
GO:0031226 * * * * - *
GO:0098552 * * * * * *

GO:0005622 GO:0005622 GO:0005622 GO:0005622

GO:0044424 GO:0044424 GO:0044424 GO:0044424

GO:0005737 GO:0005737 GO:0005737

GO:0044444 GO:0044444 GO:0044444

GO:0043229

GO:0043231

GO:0043226

GO:0043227
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Fig. 5. Figures A, B, C and D show the relationships of GO terms. “G; — G” describes the used co-occurrence of G; to G;. Each cell in the picture
has two lines, where the first line is GO term id, the second line is the predicted score by each method. Figures A and C show the predicted score of
GO terms by DeepPFP Figure B and D show the predicted scores of GO terms by DeepPFP-CO.

5 CONCLUSION

Protein function prediction is a multi-label problem. In this
study, we propose DeepPFP-CO to predict protein func-
tions by taking advantage of co-occurrence of GO terms.
DeepPFP-CO consists of two parts. In feature combination
component, DeepPFP-CO uses multi-source protein fea-
tures to score GO terms. In function prediction component,
DeepPFP-CO constructs an effective correlation matrix
based on the co-occurrence of GO terms to improve the pre-
diction performance. With the help of co-occurrence GO
terms, our computational results show that DeepPFP-CO is
an effective method in predicting protein functions. A web-
server implementation is freely available at https://
csuligroup.com/DeepPFP/. Since GO annotations and Uni-
Prot data will be updated regularly, models trained on older
data set have limited predictions on the new data set. We
will train models using the latest datasets every few months
and publish them on our website.
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