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ABSTRACT: Proteins, as the fundamental macromolecules of life,
play critical roles in various biological processes. Recent advancements
in intelligent protein function prediction methods leverage sequences,
structures, and biomedical literature data. Among them, function
prediction methods for protein sequences remain an enduring and
popular research direction. Existing studies have failed to effectively
utilize the multilevel attribute features reflected in protein sequences.
This limitation hinders the enrichment of protein descriptions needed
for high-precision prediction of protein functions. To address this, we
propose DeepMVD, a novel deep learning model that enhances
prediction accuracy by dynamically fusing multiview features.
DeepMVD employs specialized modules to extract unique features
from each view and utilizes an adaptive fusion mechanism for optimal
integration. Evaluation of the CAFA4 data set shows that DeepMVD significantly outperforms existing state-of-the-art models in
terms of BP, MF, and CC terminology, all obtaining the highest Fmax (0.523, 0.712, 0.740). Ablation studies confirm the model’s
robustness. Source code and data sets are available at http://swanhub.co/scl/DeepMVD.

■ INTRODUCTION
Protein, formed by specific amino acid sequences and complex
three-dimensional folded structures, is crucial biomolecule for
all living organisms.1 Proteins play a central role in the complex
activities of life, and the multiple functions determined by
sequence and structure are essential for maintaining the
homeostasis of living organisms, making proteins the center-
piece of life sciences and biomedicine.2 Recently, the intricate
link between protein function and cancer therapy mechanisms
has increasingly emerged as a research hotspot. The develop-
ment of protein functions can accurately pinpoint target
proteins for cancer therapy and significantly aid the research of
more effective anticancer drugs.3 Meanwhile, it will lay a
crucial theoretical foundation for curing cancer and accelerates
bioinformatics’s progress.
Sequence, as the information that determines protein

function, has reached an unprecedented scale and depth with
the application of high-throughput technologies. This technol-
ogy has expanded the UniProt database to over 356 million
protein sequences.4 However, the high cost and time-
consuming nature of experimental validation has left a large
number of proteins without corresponding functional
annotations.5 To address this situation, initial protein function
prediction relied on sequence homology similarity, where
known protein functional information is migrated to unknown
proteins with highly similar sequences by calculating sequence
similarity.6 With methods BLAST,7 Diamond,8 and Hhblits.9

However, some proteins with similar sequences exhibit

different functions due to the diversity of amino acid positions
and structural constraints. Consequently, these methods are
only suitable for certain proteins.
To overcome the limitations of earlier approaches, machine

learning methods introduced the concept of transforming
biological evidence into feature vectors for prediction. Models
like PoGO10 and PANNZER211 utilized sequence similarity
and structure to construct feature vectors to improve
prediction accuracy. However, these feature extraction
methods cannot fully capture the complexity and diversity of
protein sequences due to difficulties in dealing with complex
nonlinear data, which significantly limits the model’s predictive
ability.12,13 Fortunately, deep learning methods address these
challenges by effectively processing intricate protein sequences.
Deep_CNN_LSTM_GO14 and MSFPFP15 utilized neural
network architectures to effectively enhancing prediction
performance by mapping the nonlinear and complex sequential
data into high-dimensional vector spaces.
Deep learning models widely use traditional one-shot

encoding methods but cannot capture the deep semantic
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relationships between amino acidscite.16 Recently, pretrained
language models in natural language processing, such as ESM17

and ProtTrans,18 have achieved successful applications in some
fields. Through in-depth comparative analysis of the
experimental results, protein language models that generate
rich contextual representations from large-scale data have
significant advantages in improving the accuracy and depth of
protein function prediction tasks, providing a new perspective
on protein sequences.19 DeepAF20 and ATGO21 use
pretrained models to deeply parse protein sequences for
deep semantic features and integrate different protein data to
improve the accuracy of functional predictions.
It is not difficult to find that these automated methods are

inevitably constrained by challenges in data acquisition, the
reliance on single feature descriptors, and limitations in
extracting deeper sequence features. Data such as structures
or biomedical literature are often cumbersome and costly to
obtain compared to sequence data, making sequence-based
methods the mainstay of automated function prediction.
Researchers are increasingly acknowledging that protein
sequences are not merely simple arrangements of characters
but complex entities rich with biological information and
structural insights. Sequences are transformed into multi-
featured views, including physicochemical properties, evolu-
tionary conservation, and spatial conformational trends, and
the models constructed on these feature views are rational and
efficient.22,23 Selecting appropriate sequence feature views
simultaneously is crucial for achieving complementarity and
enhancing model performance.
This paper focuses on a novel multiview dynamic feature

fusion model for accurate protein function prediction

(DeepMVD) to deeply capture sequence properties and
address the challenges of a single-view protein description
and inadequate feature extraction. The main contributions of
this work are summarized as follows:

• A novel model named as DeepMVD was designed to
comprehensively understand sequence characteristics by
dynamically fusing multiview features.

• A multifeatured views model is constructed to character-
ize sequence properties including mapping of phys-
icochemical features (Smap), deep semantic features
(Sseq), and evolutionary features (Spssm), and designed
unique feature extraction models.

• To achieve optimal aggregation of multiple features, an
adaptive feature fusion mechanism is introduced to
balance the contribution of each feature to ensure
effective fusion of multiple views and improve prediction
accuracy.

In conclusion, DeepMVD was constructed by pioneering the
accurate extraction of features from complex sequence data in
this paper. DeepMVD enriches our understanding of protein
sequence-function relationships, dramatically improves the
accuracy and reliability of predictions, and provides strong
technical support for future proteomics development.

■ METHOD
DeepMVD consists of two stages for fusing multiview features
of proteins, as illustrated in Figure 1. In the first stage, to
enhance the feature expression capability, a novel multiview
construction strategy is designed to convert a single protein
sequence into three feature views that harbor different
properties of the protein: Smap, Sseq, and Spssm. Meanwhile,

Figure 1. Overview of DeepMVD: This model begins by taking a sequence of proteins as input and constructing three distinct feature views: Smap,
Sseq, and Spssm. Each view is processed through specialized modules�MDP, DCP, and PFV. The outputs are then integrated and classified within
an adaptive fusion module, ensuring precise and dynamic analysis.
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unique processing module is designed respectively for each
view - multidimensional perception extraction module (MDP),
dual core pooling extraction module (DCP) and panoramic
field-of-view extraction module (PVF). The second stage is
feature fusion, which fuses three-view features to predict
protein function efficiently. It connects the feature representa-
tions from the previous stage with an adaptive fusion module,
which fuses them with different weights to achieve the optimal
feature combination.

Multi-Dimensional Perception Extraction Module. To
fully reflect the physicochemical characteristics of protein
sequences, multidimensional perception extraction module
(MDP) is introduced in this research. The MDP module
transforms complex protein macromolecules into representa-
tive and information-intensive protein descriptors. This
encoding approach not only quantifies the complex phys-
icochemical properties, three-dimensional conformation, and
biological functions of proteins, but also simplifies the inherent
complexity of these molecules into intuitive and manageable
parameters.24

In MDP, protein descriptor technology generates similarity
maps to extract essential information from protein sequences,
such as physicochemical properties and structural descriptions.
This module seeks to deeply mine the implicit features within
sequences, addressing gaps in current feature characterization.
As depicted in Figure 2, we employ the PROFEAT software25

to compute the protein descriptors in our data set, which
includes 1484 descriptors across seven categories: amphiphilic
pseudo amino acid composition, amino acid composition,
molecular interaction, amino acid autocorrelation, quasi-
sequence-order, physicochemical properties, and pseudo
amino acid composition. This encoding approach enabled
the construction of a comprehensive protein descriptor matrix.
To ensure data consistency and comparability, the descriptor
matrices are normalized using the following formula

=
r

r r

min

max minij
ij i

i i

norm

(1)

In the formula, ij the original descriptor data, ij
norm is the

normalized data, and ri denotes the i-th feature. Additionally,

max ri and min ri represent the maximum and minimum values
of the i-th feature across all proteins, respectively.
This module utilizes the protein descriptor matrix to

generate a feature similarity matrix by calculating pairwise
distances between descriptor features. The original 1484-
dimensional feature space is compressed to two dimensions for
visualization and analysis using PCA26 and UMAP27

techniques to reduce the feature dimensionality. The J−V
algorithm28 is subsequently employed to assign spatial
locations to each feature, precisely mapping them onto a
blank coordinate system and applying color rendering to
produce a localized base map. The distinct features of each
protein are integrated with this localization base map to create
a mapping of physicochemical features (Smap) for each
protein. The precise methodology for distance calculation is as
follows

= ·
×

r r
r r

r r
distance( , ) 1a b

a b

a b (2)

Taking one feature ra as an example, it is originally
represented as a 1484-dimensional vector (Ra)

= [ ··· ··· ]R d d d d, , , , ,r r r ra a,1 a,2 a,b a,1484 (3)

where drda,b
represents the pairwise distance between features ra

and rb. Next, the feature vector Ra was transformed into a more
interpretable and visually presentable 2D vector Ua by
computing the interrelationships on the manifold surface
using UMAP

= [ ]U x y,r ra a a (4)

xrda
and yrda

represent the coordinate values of the feature ra on a
two-dimensional plane. To allocate these 2D vectors of protein
features (Ra) to a localized base map, a map (M) was defined
to store the allocation results of the protein features. For
instance, the feature ra would be represented as a grid (Ma) in
this localized base map

= [ ]M m m,r ra a a (5)

Figure 2. Process of generating Smap feature view for each protein.
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mr da
and nrda

are integers ranging from 0 to 38, representing the
coordinates of the feature ra. Finally, the grid locations of these
features were determined by minimizing the total cost between
Ua and Ma using the J−V algorithm�an optimal task
allocation method that achieves overall minimal cost while
ensuring each value is assigned only once

[ ] [ ]
=

U i M imin d( , )
M

i

N

1
a a

a

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (6)

In the MDP module, to fully utilize the intrinsic spatial
relationships and information in the similarity mapping graph,
the superior ability of Convolutional Neural Networks
(CNNs)29 in processing image location information is
considered. Therefore, the MDP module employs a multilayer
CNN architecture to thoroughly extract the location and
linkage features in the mapping graph. Subsequently, the
maximum pooling technique is utilized to aggregate its most
significant features. The calculations are detailed below

= +

×
=

i D D D k

X i k

OUT( , ) bias( ) weight( , )

( , )

k

D

out out
0

out

map

in

(7)

where Dout represents the output dimension of the
convolution, Din is the embedding dimension of Xmap, which
is the RGB feature matrix derived from the Smap, and ×
denotes the convolution cross-correlation operation.
To emphasize the physicochemical properties and spatial

localization features embedded within protein sequences, the
MDP module has been designed to substantially improve the
accuracy of protein function prediction. By rendering the
similarity mapping in a fine-grained manner and incorporating
a multilayer CNN architecture with MaxPooling to effectively
captures deep feature representations of sequences at multiple
scales. These innovative protein sequence coding strategies
uniquely reveal the intrinsic correlations between descriptor
features, and have the potential to be extended to existing
sequence analysis models to enhance overall prediction
accuracy and model performance.

Dual Core Pooling Extraction Module. In protein
sequence analysis, each protein is encoded by a unique set of
amino acids constituting its characteristic sequence. Nonethe-
less, amino acid sequences are not inherently amenable to
direct computational processing. Pretrained language models
based on treating amino acid sequences as “sentences”
significantly improve the learning and prediction of protein
sequence features.30−33 ESM,17 a pretrained language model
based on the Transformer architecture, provides a deep
understanding of the semantic information between amino
acids. It is trained on evolutionary diversity data covering 250
million sequences containing 86 billion amino acids.
In dual core pooling extraction module (DCP), the ESM17

algorithm is employed to extract high-level information from
protein sequences, aiming for accurate prediction of protein
functions. Specifically, for the input protein sequence {a1, a2,
a3,···, aL} (where L denotes the sequence length). ESM17

employs a masking strategy to process the amino acids. It
calculates the similarity between amino acid pairs using the
self-attention module, subsequently generating the feature
embedding { } ×x x x x, , , ..., L

L
1 2 3

1280. The standard em-
bedding dimension for ESM17 is set at 1280. Subsequently,

each element of the sequence is scored with an average weight,
and the sequence context information is computed using the
n o r m a l i z e d s c o r e s . T h i s i s e x p r e s s e d a s

= { }S x x x xmean( , , , ..., )Lseq 1 2 3
1280. The procedure for

extracting features from protein sequences is as follows

{ } = { } ×x x x x a a a a, , , ..., ESM( , , , ..., )L L
L

1 2 3 1 2 3
1280

(8)

= { }S x x x xmean( , , , ..., )Lseq 1 2 3
1280

(9)

As illustrated in Figure 1, within the DCP module, the
sequence feature Sseq is processed and directed separately to
the global average pooling and maximum pooling layers. And
pooling operations are performed on the embedded
dimensions to compress the features and extract the basic
information from the compressed dimensions. These are
subsequently concatenated and iteratively processed to
construct the comprehensive feature matrix of the sequence.
Furthermore, a dynamic adjustment strategy is employed to
capture local positional features more efficiently, where the
sensory field is proportionally tailored to the dimension. The
relevant calculation process can be expressed as follows

=P Savg pool( )avg seq (10)

=P Smax pool( )max seq (11)

Where the shape of P after pooling is represented as
(batch_size,embed_dim)

=
+

k
Dlog ( ) 1

2
2

(12)

= + + ×P P kOUT bias(Dt) (( ) )avg max (13)

where k represents the convolution kernel, D denotes the
embedding dimension, Dt is the output dimension of the one-
dimensional dynamic convolution, and × signifies the one-
dimensional convolutional cross-correlation operation.
In order to enhance the stability of the feature

representation, the strategy substantially improves the accuracy
of feature extraction by effectively capturing the global
structure and local fine-grained features of the sequence
while organically combining global and local features. This
comprehensive feature extraction tool not only enhances the
understanding of the complexity of protein sequences but also
promises to provide valuable insights for other feature
extraction tasks.

Panoramic Field-of-View Extraction Model. Protein
sequences are amino acid residues that vary under specific
environmental conditions and possess the potential for
mutation. They form the foundation of protein evolution,
and therefore, evolutionary information is indispensable for
predicting protein function.5

Panoramic field-of-view extraction module (PVF) analyzed
target proteins against the SwissProt database using the PSI-
BLAST to assign each amino acid residue a vector set of 20
scores. These scores measure the conservation of amino acids
across evolutionary periods, offering insights into proteins’
functional and structural analysis. As a result, a Position-
Specific Scoring Matrix (PSSM) with dimensions of 20 × L
was constructed for any protein sequence of length L,
facilitating further analyses using this matrix.
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To ensure PSSM data consistency and enhance subsequent
analysis, the PVF module applies seven advanced trans-
formation algorithms to generate refined 400-dimensional
feature vectors. These algorithms capture various aspects of
PSSM information: global sequence patterns (AB-PSSM34),
functional loci conservation (PSSM-position35), reduced
redundancy (RPM-PSSM34), structure−function relationships
(S-FPSSM36), local correlations (DPC-PSSM37), long-distance
dependencies (k-separated-bigrams-PSSM38), and evolutionary
importance (EEDP39). The resulting structured Spssm feature
matrix preserves evolutionary information, optimizes data
structure, and facilitates efficient protein function prediction
and structural analysis.
After an in-depth exploration of PSSM data transformation

characteristics, this module further focuses on optimizing data
representation to enhance the efficiency of protein function
prediction and structural analysis. Considering the variations in
details embedded within the same semantic information at
different scales,40 this PVF module meticulously designs and
implements a module called PMFBlock (Figure 3). The
PMFBlock module aims to enhance evolutionary information
closely related to function prediction through fine-grained
feature processing. Specifically, the module takes as input
feature data processed through one-dimensional convolution
and normalization. First, 1 × 1 convolution is applied to
upsample the feature information at different scales, ensuring
that the feature matrices {M1, M2, M3} are consistent in size.
Subsequently, these matrices are concatenated into a
comprehensive feature matrix ×X d L

T
3 c . To broaden the

receptive field and capture a wider range of contextual
information, the module processes XT in parallel using four
separable convolutional layers with varying dilation rates. Each
convolutional layer performs fine-grained feature extraction
with its unique dilation rate, enriching feature diversity. The
features extracted from convolutional layers with different
dilation rates are sequentially concatenated to form a feature
matrix ×X d L

D
4 c , characterized by a rich hierarchical

structure. A final 1 × 1 convolution block is applied to
transform XD into the final multiscale deep feature

×X d L
F

c

.The complete calculation is presented below

=M X( )k k in (14)

where k represents different convolution scales, k denotes the
k-th multiscale convolution operation, and Xin is the input
feature

= | |× × ×X M M Mconcatenate( ( ) ( ) ( ))T 1 1 1 1 1 2 1 1 3 (15)

×1 1 represents a 1 × 1 convolution used for upsampling to
ensure all feature maps are of uniform size before
concatenation

=X XDConv ( )rD Tr (16)

where DConvr denotes a separable convolution with dilation
rate r and XDdr

represents the corresponding output feature

= | | |×X X X X X(concatenate( ))F 1 1 D D D Dr r r r1 2 3 4 (17)

The core of this module is to thoroughly explore evolutionary
information in protein sequences and optimize data structure
using advanced feature engineering techniques, thereby
enhancing the efficacy of protein function prediction and
structural analysis. The PMFBlock module was designed to
refine position-specific scoring matrix (PSSM) data, thereby
effectively reinforcing evolutionary information closely related
to functional prediction. The module employs separable
convolution to expand the receptive field of features and
capture more comprehensive contextual information, thereby
constructing deep multiscale features with complex hierarchical
structures. This strategy not only preserves the original
evolutionary information in PSSM but also reveals intrinsic
correlations between features, significantly enhancing the
prediction accuracy and performance of existing sequence
analysis models.

Multiview Adaptive Fusion Module. Upon in-depth
exploration of the characterization from the three perspectives,
it is found that each perspective encapsulates unique
information. Specifically, Smap reveals physicochemical
properties and spatial localization, Sseq captures the deeper
semantic attributes of the sequences, and Spssm reflects the
evolutionary characteristics of the sequences. An adaptive
multifeature view fusion network is constructed based on
feature extraction to integrate these three viewpoint features,
thereby complementing the sequential features and forming
the final decision output. The network automatically assigns
weight coefficients to different views and optimizes the weight
combination through iterative training, thereby balancing
feature redundancy and novelty to achieve optimal feature
fusion. The following formula represents the integrated
decision-making mechanism

= · =
=

F where 1 1, 0
M

1

T

(18)

Here M denotes the total number of feature views, is
the weight parameter of the -th view, represents the
initial prediction of the -th view, and is the final
prediction after fusion.

Figure 3. PMFBlock module overview.
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The DeepMVD approach mitigates issues related to model
overcomplexity while enhancing generalization, resulting in
more accurate predictions. Moreover, DeepMVD demon-
strates higher computational efficiency, making it a viable
choice for protein function prediction tasks. In summary,
DeepMVD addresses key challenges in multifeature fusion by
employing an adaptive fusion module as the core structure of
the feature fusion process. This design provides a robust
foundation for the final classification task, significantly
enhancing the computational efficiency and accuracy of the
traditional protein function prediction method.

■ EXPERIMENTS AND RESULTS
All comparison experiment data sets are divided into training,
validation, and test sets in a 7:2:1 ratio, and the models are
trained on the respective BP, MF, and CC labels. Fmax, AUC,
Recall, and Precision are used as evaluation metrics to assess
the model’s performance on the experimental data set. The
evaluation metrics are defined as follows

=
· ·

+
F

t t
t t

max
2 avg Pr( ) avg Rc( )
avg Pr( ) avg Rc( )t

max
(19)

= ·
=

t
k t

tavg Pr( )
1
( )

pr ( )
i

k t

i
1

( )

(20)

= ·
=

t
n

tavg Rc( )
1

rc ( )
i

n

i
1 (21)

=
·

t
T G p S p G t

S p G t
pr ( )

( , ) 1( ( , ) )

1( ( , ) )i
j j i i j

j i j (22)

=
·

t
T G p S p G t

T G p
rc ( )

( , ) 1( ( , ) )

( , )i
j j i i j

j j i (23)

Here t represents the prediction threshold with a step size of
0.1, J indicates whether the protein prediction is correct (1 if
true, 0 otherwise), and n is the total number of proteins.
Precision, Recall, and Fmax measure the accuracy of the

model’s predictions, while AUC evaluates the model’s
capability to identify relevant information. AUC is calculated
based on the confusion matrix. The formula is as follows

= t t tAUC TPR( )( FPR( ))d
(24)

=
+

t
t

t t
TPR( )

TP( )
TP( ) FN( ) (25)

=
+

t
t

t t
FPR( )

FP( )
FP( ) TN( ) (26)

Data Set. Three data sets were used in this experiment to
evaluate the method: the CAFA4 competition data set,
HUMAN, and the YEAST data set. Proteins with sequence
lengths in the range [50, 1500] are considered first. For
sequences longer than 1500, only the first 1500 amino acids
are retained. The CAFA4 competition data set, which includes
17 MOUSE, SCHPO, and Drosophila species. Meanwhile, the
HUMAN and YEAST data sets were selected as part of the
HUMAN and YEAST species data. The above data sets
retained entries that lacked labeling for some GO terms,

resulting in unequal amounts of data for BP, MF, and CC. The
specific data are presented in Table 1.

Experimental Setup. We implemented the model in
Pytorch and Pytorch Geometric library and trained our model
with binary cross-entropy as a loss function and AdamW
optimizer with a learning rate of 1 × 10−3. We set the dropout
rate to 0.2. We trained six models on the CAFA4, HUMAN
and YEAST data sets for Molecular Function Ontology
(MFO), Biological Process Ontology (BPO) and Cellular
Component Ontology (CCO), respectively. During the
training period, the model with the highest Fmax value on
the validation set is retained as the final model. The CAFA4
data set’s epoch and batch sizes of training MFO, BPO and
CCO models are 70, 100, 70 and 16, 16, 16. On the HUMAN
and YEAST data sets, the epoch and batch sizes of training
MFO, BPO and CCO models are 50, 70, 50 and 12, 16, 12.

Comparison Experiment. ATGO21 employs a Trans-
former-based pretrained model, extracting feature embeddings
from the last three Transformer layers and fusing them using a
multiview approach, combined with confidence scores from a
ternary network to predict protein function. ATGO effectively
extracts rich feature information from protein sequences for
accurate GO term prediction.
MSF-PFP15 utilizes sequences, structural domains, and

protein interaction networks as inputs, extracting features
through specific modules and sufficiently fusing them to
achieve complementary feature effects, thereby accomplishing
the prediction task.
Performance Evaluation. To comprehensively evaluate the

performance of the DeepMVD model, we systematically
compared it with seven mainstream protein function prediction
models on the CAFA4 data set. The results of the CAFA4 data
set are shown in Table 2 and Figure 4. The accuracy of the BP,
MF, and CC terms of the DeepMVD model were 0.547, 0.749,
and 0.777, respectively, and the Fmax was 0.523, 0.712 and
0.74, respectively. MF usually focuses on the specific molecular
functions of proteins, which are more directly and tightly
linked to sequences. This model aggregates the three-view
features together, making capturing the features related to MF
easier. In contrast, BP usually focuses on the hierarchical and
extensive nature of biological processes, which often involve
multiple intertwined and complex processes, which may lead to
a lower prediction accuracy relative to MF and CC. The above
results indicate that DeepMVD has excellent generalization
ability, validity and reliability in protein function prediction.
To explore the interspecies variability, we evaluated it on

two single-species collections, human and YEAST. As can be
seen from Table 3, on the single-species data set, DeepMVD
shows excellent performance compared to the four models,

Table 1. Experimental Data Details

data set ontology train valid test terms

CAFA4 BP 33392 9477 4768 4507
MF 23379 6528 3316 726
CC 34591 9880 4945 628

HUMAN BP 8321 2385 1194 491
MF 8218 2348 1174 321
CC 8783 2510 1254 240

YEAST BP 3691 1131 566 373
MF 3836 1166 603 171
CC 3955 1203 609 151
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naiv̈e, DeepGOplus, MSF-PFP, and ESM, by optimally
aggregating the three view features and thus achieving
complementarity among the features. There are some
differences in the performance of different species in the
results, which may be because yeast is higher than humans in
terms of the ratio of the number of annotations to the total
number of labels in the samples, and yeast features are more
straightforward, which in turn leads to the superior perform-
ance of the model on the yeast data set.
At the same time, to more intuitively reflect the contribution

of each input feature to the prediction results, some visual

analysis of the degree of contribution of each input feature to
the prediction results was done. The model adopts an adaptive
fusion mechanism, automatically assigning weights to each
feature to achieve optimal results. We selected the parameters
of the top ten optimal combinations and plotted the
contribution of each feature to make a comparison of the
contribution of each feature (as shown in Figure 5). The
performance of the combination on each data set also shows
that the ESM for predicting protein functions using pretrained
language models essentially achieves suboptimal performance.
Ultimately, it can be concluded that deep semantic features

Table 2. Comparison of DeepMVD with Seven Models on the CAFA4 Data Seta

BP MF CC

CAFA Fmax recall precision AUC Fmax recall precision AUC Fmax recall precision AUC

naive 0.168 0.102 0.477 0.551 0.263 0.315 0.226 0.652 0.508 0.459 0.569 0.726
PFmulFL 0.339 0.313 0.370 0.901 0.339 0.278 0.499 0.910 0.599 0.528 0.692 0.944
DeepGOplus 0.345 0.325 0.369 0.895 0.361 0.278 0.514 0.920 0.613 0.545 0.702 0.951
ESM 0.400 0.371 0.436 0.900 0.573 0.492 0.686 0.931 0.714 0.668 0.767 0.956
DCLG 0.315 0.309 0.322 0.881 0.289 0.232 0.383 0.871 0.569 0.519 0.630 0.916
ATGO 0.421 0.386 0.463 0.936 0.461 0.363 0.632 0.962 0.640 0.589 0.700 0.970
MSF-PFP 0.354 0.334 0.375 0.912 0.375 0.295 0.514 0.930 0.621 0.544 0.723 0.957
DeepMVD 0.523 0.510 0.547 0.952 0.712 0.682 0.749 0.969 0.740 0.716 0.777 0.978

aBold indicates optimal values, and underlining indicates suboptimal values.

Figure 4. Comparison of DeepMVD with Seven Correlation Models on the CAFA4 Data set.

Table 3. Comparison of DeepMVD with Seven Models on the HUMAN and YEAST Data Seta

Fmax AUC recall

method BP MF CC BP MF CC BP MF CC

HUMAN
naive 0.166 0.300 0.503 0.548 0.645 0.701 0.097 0.299 0.408
DeepGOplus 0.394 0.463 0.765 0.905 0.936 0.973 0.360 0.363 0.686
MSF-PFP 0.399 0.472 0.684 0.930 0.960 0.975 0.359 0.388 0.664
ESM 0.551 0.715 0.730 0.962 0.981 0.983 0.540 0.691 0.722
DeepMVD 0.588 0.801 0.769 0.971 0.986 0.987 0.563 0.796 0.772
YEAST
naive 0.211 0.291 0.578 0.565 0.673 0.738 0.131 0.355 0.481
DeepGOplus 0.399 0.435 0.799 0.912 0.928 0.967 0.376 0.337 0.722
MSF-PFP 0.393 0.418 0.722 0.936 0.954 0.978 0.354 0.346 0.671
ESM 0.608 0.777 0.788 0.981 0.989 0.990 0.586 0.745 0.773
DeepMVD 0.667 0.867 0.828 0.987 0.992 0.993 0.652 0.849 0.823

aBold indicates optimal values, and underlining indicates suboptimal values.
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play a crucial role in the performance of protein function
prediction.
In conclusion, the superior performance of the DeepMVD

method is attributed to its exceptional multiview feature fusion
capability. The model transforms the protein sequence into
three feature views to fully highlight the embedded information
and employs a fusion strategy to achieve complementary roles
among the features. Compared with single-view encoding
approaches, DeepMVD’s multiview encoding comprehensively
represents each sequence’s deep semantic, evolutionary,
materialization, and positional information, employing corre-
sponding modules to extract rich features from each feature

view. Introducing the PMFBlock module efficiently mines
abundant evolutionary features, surpassing traditional CNN-
based feature extraction methods and providing a more
accurate foundation for protein function prediction.

Ablation Experiment. In this research, we propose
DeepMVD, a deep learning model employing a multiview,
multifeature fusion strategy to transform a one-dimensional
protein sequence into a multidimensional feature representa-
tion. A series of meticulously designed ablation experiments
were conducted to thoroughly explore the complementarities
between feature views, verify the indispensability of the

Figure 5. Map of contribution of each feature.

Table 4. Ablation Experiment with Multiview Featuresa

BP MF CC

Sseq Smap Spssm Fmax recall precision AUC Fmax recall precision AUC Fmax recall precision AUC

√ 0.502 0.472 0.535 0.941 0.691 0.662 0.723 0.969 0.727 0.696 0.761 0.973
√ 0.333 0.305 0.367 0.897 0.321 0.260 0.418 0.893 0.595 0.531 0.679 0.945

√ 0.395 0.369 0.424 0.923 0.440 0.359 0.567 0.951 0.623 0.566 0.693 0.959
√ √ 0.519 0.500 0.538 0.952 0.702 0.662 0.746 0.966 0.737 0.702 0.767 0.977
√ √ 0.518 0.501 0.528 0.951 0.703 0.660 0.753 0.968 0.734 0.704 0.766 0.975

√ √ 0.468 0.440 0.500 0.933 0.648 0.600 0.705 0.952 0.704 0.677 0.734 0.963
√ √ √ 0.523 0.510 0.547 0.952 0.712 0.682 0.749 0.969 0.740 0.716 0.777 0.978

aBold indicates optimal values, and underlining indicates suboptimal values.

Figure 6. Ablation Experiment with Multiview Features.
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PMFBlock module in the PFV framework, and assess the
practical utility of the adaptive fusion module.
A comprehensive multiview encoding approach is adopted

to convert protein sequences into information-rich multi-
dimensional feature views, capturing different levels of
information through diverse technical means. Adaptively fusing
features extracted by different modules to achieve feature
complementarity and integration significantly enhances the
accuracy of protein function prediction. Through well-designed
experiments, the performance of each feature extraction
component was individually verified and analyzed in
combination to comprehensively assess the advantages of the
DeepMVD model. The experimental results are presented in
Table 4 and Figure 6.
As shown in Figure 6, the DeepMVD model aggregates each

feature view and demonstrates strong performance across all
evaluation metrics for BP, MF, and CC. The model was most
effective in classifying the BP and CC ontologies, but the

accuracy of the MF ontology decreased slightly, suggesting that
the link between the physical and chemical properties and the
molecular compositional function may be less strong.
The traditional CNN architecture struggles to effectively

capture the intrinsic correlation between protein function and
evolutionary information in the feature extraction module.
DeepMVD utilizes the number of PSSM encoding channels as
input and incorporates the PMFBlock module to fully explore
evolutionary features embedded in each encoding method,
deeply analyzing the complex correlation between function and
evolutionary information. In the second part of the ablation
experiments, DeepMVD compares Spssm across different
feature extractors, demonstrating the superior capabilities of
the PMFBlock module for this task.
Table 5 and Figure 7 presents the results of this experiment.

Compare PMFBlock with modules such as Multiscale Efficient
Attention (MSECA), Multiscale Channel Attention
(MSCHAT), and Multiscale Spatial Attention (MSSA). The

Table 5. Ablation Experiment of PMFBlock Modulea

BP MF CC

method Fmax recall precision AUC Fmax recall precision AUC Fmax recall precision AUC

MLP 0.352 0.325 0.384 0.890 0.375 0.298 0.505 0.921 0.602 0.546 0.670 0.938
MSCNN 0.374 0.355 0.394 0.910 0.402 0.321 0.538 0.945 0.612 0.558 0.677 0.954
MSCHAT 0.368 0.345 0.394 0.918 0.381 0.305 0.505 0.942 0.600 0.523 0.703 0.948
MSSA 0.363 0.341 0.389 0.917 0.382 0.297 0.536 0.944 0.613 0.544 0.703 0.959
MSECA 0.343 0.322 0.368 0.902 0.376 0.306 0.488 0.934 0.608 0.559 0.667 0.953
MSCBA 0.327 0.326 0.328 0.880 0.314 0.251 0.420 0.874 0.580 0.509 0.674 0.925
PMFBlock 0.395 0.369 0.424 0.923 0.440 0.359 0.567 0.951 0.623 0.566 0.693 0.959

aBold indicates optimal values, and underlining indicates suboptimal values.

Figure 7. Ablation Experiment of PMFBlock Module.

Table 6. Ablation Experiments with Encoding Approachesa,b

BP MF CC

method Fmax recall precision AUC Fmax recall precision AUC Fmax recall precision AUC

A 0.377 0.358 0.398 0.915 0.414 0.329 0.557 0.942 0.615 0.559 0.684 0.953
A_D 0.368 0.334 0.409 0.913 0.395 0.307 0.554 0.942 0.609 0.537 0.703 0.951
A_D_E 0.371 0.348 0.398 0.914 0.393 0.302 0.565 0.941 0.612 0.555 0.683 0.954
A_D_E_K 0.375 0.352 0.401 0.915 0.406 0.316 0.565 0.945 0.614 0.546 0.701 0.955
A_D_E_K_P 0.374 0.347 0.405 0.914 0.411 0.318 0.580 0.947 0.612 0.549 0.693 0.954
A_D_E_K_P_R 0.375 0.353 0.399 0.916 0.410 0.319 0.574 0.946 0.614 0.544 0.705 0.954
all type 0.395 0.369 0.424 0.923 0.440 0.359 0.567 0.951 0.623 0.566 0.693 0.959

aBold indicates optimal values, and underlining indicates suboptimal values. bA-(AB-PSSM),D-(DPC-PSSM),E-(EEDP),K-(k-separated-bigrams-
PSSM),P-(PSSM-position),R-(RPM-PSSM).
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results indicate that PMFBlock excels in evolutionary feature
extraction, proving that it can effectively capture fine-grained
features of evolutionary information.
To verify the significance of each encoding type during

PSSM matrix encoding, the seven encodings�AB-PSSM,
PSSM-position, RPM-PSSM, S-FPSSM, DPC-PSSM, k-sepa-
rated-bigrams-PSSM, and EEDP�were analyzed through
sequential combinatorial ablation. The results demonstrated
that each encoding reveals relevant PSSM information from
different dimensions, enhancing protein sequences’ feature
representation. However, all methods directly or indirectly rely
on the conservation and evolutionary information in PSSM.
Therefore, when using all types of encoding for functional
prediction, there may be some repetitive features, which in
turn leads to overfitting and suboptimal performance (e.g.,
both DPC-PSSM and k-separated-bigrams-PSSM capture local
amino acid relationships).The experimental results are
presented in Table 6.
The core objective of DeepMVD is to integrate multiview

feature information from protein sequences to accurately

predict protein functions, making effective aggregation of each
feature an essential aspect of this study. This experiment
compares the adaptive fusion module with traditional feature
fusion methods, such as concatenation and cross-fusion. The
experimental results are presented in Figure 8. Adaptive fusion
strategies effectively compensate for the limitations of
individual features, while multifeature fusion fully leverages
existing protein sequence data to achieve accurate protein
function prediction.

■ CORRELATION ANALYSIS
Comparison among the performances of DeepMVD using
different dimensionality reduction methods (PCA and
UMAP). The performances were represented using Fmax,
Recall and Precision values and the performances of Deep-
MVDPCA, and DeepMVDUMAP were highlighted in light
blue and red, respectively. As shown in the Figure 9, these two
models perform roughly the same in the three GO categories
(BP, CC, and MF). In particular, the predictive performance of
DeepMVDUMAP is slightly higher than that of Deep-

Figure 8. Ablation Experiments with Different Fusion Strategies.

Figure 9. Performance Comparison of DeepMVD under Different Dimensionality Reduction Methods.
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MVDPCA (Fmax of 0.5 − 0.7%; Recall of 1.1 − 1.3%; Precision
of 1 − 1.45%).
To fully demonstrate the relationship between the perform-

ance of DeepMVD and the features, this experiment was
performed by randomly selecting six functionally annotated
labels and the corresponding part of the protein data and
performing t-SNE visualization before and after feature fusion
(As shown in the Figure 10). As can be seen from the figure,
the original features lack sufficient representation ability to
distinguish different functional annotation tags well, while after
fusion, the local and global information on the features are
integrated, and the samples with different functional
annotation tags form a more precise grouping.

■ DISCUSSION AND CONCLUSIONS
Numerous studies have highlighted the importance of
resolving protein function to understand life processes and
biological mechanisms. With advancements in high-throughput
sequencing, automated protein function prediction has become
a key challenge in the postgenomic era. Sequence-based
methods offer improved efficiency and reduced costs for
protein function annotation; however, existing approaches
often fail to fully utilize protein sequence data for in-depth
physiological analysis.
To address these challenges, we propose a novel approach

named DeepMVD, which integrates natural language process-
ing and computer vision techniques to capture multiview
features of protein sequences. DeepMVD comprises three
channels�MDP, DCP, and PFV�to construct feature views
of different sequence characteristics, employing specialized
modules to extract relevant information. After adaptive fusion
of multiview features, DeepMVD effectively predicts protein
function.
Experimental results demonstrate that DeepMVD outper-

forms state-of-the-art models, with ablation studies validating
the contribution of each feature view, the necessity of each
module, and the strength of the fusion strategy. In conclusion,
DeepMVD represents a cutting-edge solution for protein
function prediction using deep learning.
In future studies, we plan to incorporate new protein-related

data (e.g., protein structure, biomedical literature) to further
optimize our model and enhance the accuracy of protein
function prediction. Additionally, we plan to adapt more

advanced large-scale language models to the bioinformatics
field to further advance science and technology in this domain.
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