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Abstract

The functional study of proteins is a critical task in modern biology, playing a pivotal role in understanding the mechanisms of pathogen-
esis, developing new drugs, and discovering novel drug targets. However, existing computational models for subcellular localization face
significant challenges, such as reliance on known Gene Ontology (GO) annotation databases or overlooking the relationship between GO
annotations and subcellular localization. To address these issues, we propose DeepMTC, an end-to-end deep learning-based multi-task
collaborative training model. DeepMTC integrates the interrelationship between subcellular localization and the functional annotation
of proteins, leveraging multi-task collaborative training to eliminate dependence on known GO databases. This strategy gives DeepMTC a
distinct advantage in predicting newly discovered proteins without prior functional annotations. First, DeepMTC leverages pre-trained
language model with high accuracy to obtain the 3D structure and sequence features of proteins. Additionally, it employs a graph
transformer module to encode protein sequence features, addressing the problem of long-range dependencies in graph neural networks.
Finally, DeepMTC uses a functional cross-attention mechanism to efficiently combine upstream learned functional features to perform
the subcellular localization task. The experimental results demonstrate that DeepMTC outperforms state-of-the-art models in both
protein function prediction and subcellular localization. Moreover, interpretability experiments revealed that DeepMTC can accurately
identify the key residues and functional domains of proteins, confirming its superior performance. The code and dataset of DeepMTC
are freely available at https://github.com/ghli16/DeepMTC.

Keywords: subcellular localization; protein function prediction; graph transformer; pre-trained language model;
multi-task collaborative training

Introduction
Proteins are crucial molecules in living organisms, which play
key roles in biological processes such as signaling, gene regula-
tion, substance transport, and biochemical catalysis [1–3]. Con-
sequently, the study of protein function has become popular.
This research has not only advanced our understanding of bio-
logical macrogenomics and pathogenic mechanisms [4, 5] but
has also accelerated the discovery of new drug targets and the
development of new drugs [6]. Current protein function studies
encompass a range of approaches, including Gene Ontology (GO)
annotation and subcellular localization. Many wet-lab methods
are available for protein function studies. For example, protein
function can be determined through biochemical assays and
enzyme analyses, and subcellular localization can be identified
via fluorescent biomarker tags [7]; however, these methods often
require considerable time and costly equipment. Therefore, the
emergence of computational methods is crucial and inevitable for
large-scale protein function studies.

GO annotation contains three sub-ontologies: biological pro-
cess (BP), cellular component (CC), and molecular function (MF).
These existing methods can be categorized into four main types
of protein function prediction: sequence-based protein function
prediction, structure-based protein function prediction, protein–
protein interaction (PPI)-based protein function prediction, and
ensemble-based protein function prediction [8]. With respect to
sequence-based protein function prediction models, the tools
BLAST [9] and Diamond [10] were initially employed to func-
tionally annotate target proteins. With the development of deep
learning, many models have emerged that use deep learning to
extract sequence features. DEEPred [11] uses deep neural net-
works (DNNs) for multi-group GO annotation prediction by stack-
ing multiple layers of feed-forward DNNs. PANDA2 [12] uses a pro-
tein pre-trained language model to extract features of sequences
and a graph neural network to combine different features to
predict GO terms at different levels. ATGO [13] also employs a
protein language model to extract sequence features and incor-
porates a comparative learning strategy into a triple network to
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extract potential protein functional features. With the emergence
of tools such as AlphaFold2 [14], which enables accurate protein
structure prediction, protein structure is beginning to be widely
used in functional prediction tasks. For example, DeepFRI [15]
utilizes graph convolutional neural networks (GNNs) to predict
protein function, employs deep learning technology to extract
residue-level protein features. TransFun [16] uses a transformer-
based protein language model and equivariant graph neural net-
work [17] to extract the feature information of proteins. Unlike
the above two approaches, GAT-GO [18] uses a trained protein
language model to extract sequence features, Raptor X [19] to
predict the 3D structure of proteins. The PPI-based protein func-
tion prediction method [20–22] utilize the interaction information
between proteins to annotate the protein functions. For example,
DeepGO [20] uses 3-mers to encode the protein sequence, and
DeepWalk [23] generates feature information of the protein in the
PPI network. deepNF [21] utilizes the random walk with restart
algorithm to learn feature embeddings of proteins on different
heterogeneous PPI networks and uses an autoencoder to learn
information about latent features of proteins. MSF-PFP [22] pre-
dicts protein function by combining multi-source protein fea-
ture information. Since then, developers have created ensemble
prediction methods [24, 25] that leverage multi-source informa-
tion and multiple predictors. GOLabeler [24] predicts protein fea-
tures by integrating multiple sequence-based classifiers includ-
ing Naive, BlastKNN, LR-3mer, LRInterPro, and LR-ProFET and
improves prediction performance by integrating features from
different methods using the learning-to-rank paradigm. Deep-
GraphGO [25] utilizes multi-species proteins to construct a large
PPI network. The initial features of the nodes combine protein
structural domain information and family information. GNNs are
then used to update the node features.

However, these four methods have certain limitations as fol-
lows: (i) sequence-based protein function prediction methods
ignore structural information, limiting the model’s ability to cap-
ture comprehensive protein details. (ii) Structure-based prediction
methods often use graph neural networks to learn structural
information; however, they suffer from over-smoothing and can-
not address the long-range dependency problem. (iii) PPI network-
based prediction methods rely heavily on known protein inter-
actions, making them ineffective for predicting newly discovered
proteins. (iv) Effective combination of different types of feature
information remains a key challenge for ensemble-based predic-
tion methods.

In recent years, computational approaches have made
significant progress in determining the subcellular localization of
proteins. Several researchers [26–28] have proposed using protein
sequences for subcellular localization. SCLpred-EMS [26] employs
an N-to-1 convolutional neural network to predict subcellular
localization, by processing vector representations derived from
homologous sequence comparison results. MULocDeep [27]
utilizes two-layer bidirectional long short-term memory (LSTM)
to process amino acid embeddings of protein sequences and
the multi-head self-attention layer and LSTM output for context
matrix derivation. DaDL-SChlo [28] uses a protein language model
to learn protein sequence features and combines them with
handcrafted features. In addition to the use of protein sequence
information, several researchers have developed knowledge-
based prediction models [29–31]. ML-locMLFE [29] adopts various
feature extraction methods to obtain multi-source information,
including pseudo amino acid composition, encoding on based
the basis of grouped weights, GO and so on. ML-FGAT [30]
extracts multi-source information, including sequence data,

chemical–physical properties, evolutionary information, and
structural information of a protein. GPSFun [31] is a multitask
learning model that uses a high-precision large language model
to predict structural information and extract sequence features,
and finally utilizes the graph neural network to update protein
features for prediction.

Although the aforementioned advanced computational models
have made significant strides in subcellular localization tasks
[32], they still possess the following shortcomings: (i) sequence-
based computational models ignore the structural information of
proteins; (ii) knowledge-based computational models rely heavily
on known GO annotation databases, making them unable to
predict newly discovered proteins with no known annotations;
and (iii) structure-based computational models, although they
combine sequence features and structural information, overlook
the impact of GO annotations on protein subcellular localization.

To address the shortcomings in computational models for pro-
tein function prediction and subcellular localization, we propose
DeepMTC, an end-to-end deep learning-based computational
model, that employs a multi-task collaborative training strategy
for three sub-ontology predictions and multi-label subcellular
localization predictions. First, a pre-trained language model is
employed to determine the 3D structure of the protein, and a
protein language model is used to extract features from the
protein sequence. A graph transformer (GT) is subsequently
used to update the protein embedding features, and a multi-
channel graph autoencoder captures various GO features of
the proteins. Finally, self-attention pooling is applied to predict
protein functions, and an attention mechanism integrates the
learned protein functional features for multi-label subcellular
localization of the predicted proteins.

Materials and methods
Datasets
The multi-label subcellular localization information of the pro-
teins was downloaded from SwissProt and TrEMBL in the UniProt
[33] database, and the GO annotations of the proteins were down-
loaded from EMBL-EBI [34]. First, we selected proteins from two
species (human and mouse). Next, we focused on proteins whose
amino acid sequences did not exceed 1200 amino acids. Finally, we
co-screened the proteins for multi-label subcellular localization
and GO annotations (selected GO annotations with a frequency
of ≥20 occurrences and 10 subcellular localization labels). As a
result, the dataset contains 6083 protein sequences and the corre-
sponding GO annotations and multi-label subcellular localization,
as shown in Tables S1 and S2. This dataset was randomly divided
into a training set (80% of the dataset), a validation set (10% of the
dataset), and a test set (10% of the dataset).

Graph representation and feature processing
Protein function is closely associated with the interactions
between atoms. However, computing the association maps
between all atoms in a substantial amount of protein data is a
time-consuming and resource-intensive undertaking. Therefore,
we opted to use residues to construct 2D representations of
proteins to study the interactions between residue pairs.

In this study, we used the pre-trained model ESM-Fold [35] to
obtain a reliable 3D structure of the protein and constructed a
contact map based on the relative distances ≤4.5 Å between alpha
carbon atoms (Cα) in the 3D structure, calculated as G = [{V} , {E}].
{V} represents the set of nodes, the node features are initialized by
the protein pre-training language model ESM-2 [35]. By referring to
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the original sequence lengths in the input FASTA file, we truncate
the extracted features accordingly, thus maintaining consistency
between the sequence features and the actual sequence amino
acid lengths, and the features of each node are described as h ∈
Rdh×1. {E} denotes the set of edges in the residual contact map
and we integrate information from multiple sources to initialize
the following edge features: (i) Cα distances, (ii) sine and cosine
encoding of the Cα coordinates, (iii) coordinates of the five nearest
neighbors, and (iv) the sum of the neighbor distances, with the
edge between node i and node j described as eij ∈ Rde×1.

DeepMTC architecture overview
The overall process framework of DeepMTC is shown in Fig. 1.
The protein is represented as 2D residue contact maps G, with
residues as nodes and residue pair distances <4.5 Å as edges.
Feature coding of proteins is performed by learning interactions
between residue pairs.

To efficiently encode residues, we choose the GT block to
update the residues and edges of proteins; the block cap-
tures residue interactions from the graph structure informa-
tion, obtains long-range dependency associations and extracts
global residue information of proteins. The graph autoencoder
(Gae_block) is then used as the extraction module for the
functional features.

Hl
p, El

p = GT
(
H(l−1)

p , E(l−1)
p

)
(1)

Hbp
p = Gae_blockbp

(
W2

bp

(
W1

bpHl
p + b1

bp

)
+ b2

bp, {E}
)

(2)

Similarly, we use Equation (2) to obtain the functional features
Hcc

p and Hmf
p . Where H and Ep represent the features of nodes and

edges, respectively, and {E} denotes the edge index of the residue
contact graph. The subscripts p, bp, cc, and mf represent protein,
BP, CC, and MF, respectively.

By obtaining the features Hbp
p , Hcc

p , and Hmf
p of different

functional annotations of proteins, self-attention pooling [36]
(SAT_pool block detailed process in Note 1 and Fig. S1) can be used
to predict the three functional annotations of the most proteins.

Scorebp = MLPbp

(
SAT_poolbp

(
Hbp

p , {E}
))

(3)

Meanwhile, we use Equation (3) to obtain the functional
features Scorecc and Scoremf . Multi-label subcellular localization
is achieved by combining the three functional features of the
learned proteins (Fun_attention block, Equation (4)). Instead of
performing a search of a known GO annotation database to con-
vert the GO annotations of proteins into feature representations,
the model leverages the functional features of proteins learned
upstream of the model for subcellular localization.

Hsl
p = Fun_attention

(
nLinear

bp
sl

(
H

bp
p

)
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sl

(
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p

)
, nLinear

mf
sl

(
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(4)

Scoresl = MLPsl

(
SAT_pool

(
Hsl

p , {E}
))

(5)

where Hsl
p represents node features and the nLinear (·) is a nonlin-

ear transformation layer with two MLP layers. {E} denotes the edge
index of the residue contact graph. We use a self-attention pooling
layer to transform the protein feature representation into a vector
representation, which is then passed through the MLP layer to
obtain the subcellular localization scores for each protein class.
We provide a succinct and systematic exposition of our proposed
model, as shown in Algorithm S1.

Graph transformer block
The GT combines the strengths of both GNNs and traditional
transformer models, which leverages the graph’s topology for
more effective learning of graph-structured data. Furthermore,
the GT is computationally more efficient than the ordinary trans-
former. Instead of calculating attention scores between all possi-
ble pairs of nodes, it restricts these computations to node pairs
connected by edges, as indicated by the graph edge index. Thus,
the GT stands out as an exceptionally effective encoder for graph-
structured data.

The node embedding hi ∈ Rdh×1 of the ith node and the edge
embedding eij ∈ Rde×1 between nodes i and j are initialized to
obtain the initial h0

p_i and e0
p_ij with dp dimensions by leveraging

two linear layers as follows:

h0
p_i = W0

hhi + b0
h (6)

e0
p_ij = W0

e eij + b0
e (7)

where W0
h ∈ Rdp×dh , and W0

e ∈ Rdp×de are learnable parameters in
the linear layer, and b0

e , b0
h ∈ Rdp are learnable biases in the linear

layer. The subscript p represents the protein. The feature update
process for the lth layer of the GT is as follows:
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where Wk,l
Q , Wk,l

K , Wk,l
V , Wk,l

E ∈ Rdk×dp ; Wl
h,0, Wl

e,0 ∈ Rdp×dp ; Wl
h1, W1

e1 ∈
R2dp×dp ; and Wl

h2, Wl
e2 ∈ Rdp×2dp are learnable model parameter

matrices. Norm(·) indicates batch normalization. hd and dk denote
the number of heads and the feature dimension of each head of
the multi-head attention mechanism, respectively. SiLU (·) denotes
a type of activation function. softmaxj∈N(i) indicates a softmax
operation on neighbor node j of node i. Aggregation_sumj∈N(i)

denotes the summation of the messages on the edge consisting of
node i and its neighboring node j. Concat|hd

k=1 represents the output
of concatenating multiple heads of the multi-head attention
mechanism.

Feature extraction block
In the protein function prediction task, Gae_block captures the
intricacy of the relationships and interdependencies between
nodes in a graph through the encoding and decoding process,
which aids in the analysis of the graph structure and node
relationships of the graph. The process of encoding the features
is as follows:

Hl
p = {

hp_1, hp_2, hp_3, · · · , hp_n
}

(15)

Hbp
p = Leaky_ Re LU

(
D̂−0.5AD̂−0.5Hl

pW1
f_bp

)
(16)
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Figure 1. The overview of DeepMTC framework. (a) Acquisition of 3D protein structure and construction of residue contact maps, initialization of node
features, and edge features of the contact map. (b) The node features and edge features of the residues are updated using the GT module and the
functional features of the protein are learned with Gae_block. (c) Collaborative training: multi-task collaborative training strategy. (d) Architecture of
the GT block, updating the node features and edge features of the residue contact graph. (e) Architecture of functional the cross-attention (Fun_attention)
block for efficient combination of protein functional features. (f) Architecture of the feature extraction (Gae_block) block for extracting the functional
features of proteins.
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where h represents the node features, Hl
p represents the node

feature matrix, and A = A+I represents the adjacency matrix with
self-loops. W1

f_bp ∈ Rde×dfe is a learnable parameter. D̂ denotes the
normalized diagonal matrix. The subscript n indicates the number
of nodes in the contact graph for each protein. We perform decod-
ing of features with inner products to reconstruct the adjacency
matrix of the graph and use the MSE loss function [37] on the
reconstructed adjacency matrix and the original computational
loss to learn latent features.

Â = σ

(
Hbp

p ·
(
Hbp

p

)T
)

(17)

Lbp_mse = 1
n

n∑
i=1

∣∣∣Ai − Âi

∣∣∣2 (18)

where σ (·) denotes the activation function. Lbp_mse indicates the
value of the reconstructed loss. We repeat the learning process
above to obtain the identity representations of the MF and CC as
Hcc

p and Hmf
p ∈ Rn×dfe , as well as their respective losses Lcc_mse and

Lmf_mse. dfe denotes the dimension of the feature.

Functional cross-attention block
The Fun_attention block implements an adaptive and efficient
combination of multiple functional annotation features of pro-
teins, which include MF features Hmf

p ∈ Rn×dfe , CC features Hcc
p ∈

Rn×dfe , and BP features Hbp
p ∈ Rn×dfe . The Fun_attention block

leverages multiple attention fusion mechanisms to adaptively
compute the weights of different functional features of proteins,
which can capture essential feature information to facilitate sub-
cellular localization. The functional features use the multi-head
attention mechanism as follows:

Qk1
1 , Qk2

2 , Qk3
3 =

(
Wk

i,QHbp
p

)∣∣∣3
i=1

, Kk1
1 , Kk2

2 , Kk3
3 =

(
Wk

i,KHmf
p

) ∣∣∣3i=1, Vk1
1 , Vk2

2 , Vk3
3 =

(
Wk

i,VHcc
p

)∣∣∣3
i=1

(19)

H1
p, H2

p, H3
p =

[
Concat

∣∣∣∣∣hki
ki=1

(
softmax

(
Qki

i · Kki
i√

dki

)
Vki

i

) ]∣∣∣∣∣
3

i=1

(20)

HF = ψ
(
Ot · mean

(
H1

p, H2
p, H3

p

))
(21)

HSL = HF + ψ
(
W2

F

(
ψ

(
W1

FHF
)))

(22)

where Wk
i,Q ∈ Rdki×dfe , Wk

i,Q ∈ Rdki×dfe , and Wk
i,Q ∈ Rdki×dfe are learnable

model parameters. ki denotes the number of heads of the multi-
head attention mechanism, and Ot ∈ RdF×dfe , W1

F ∈ RdF×2dF and
W2

F ∈ R2dF×dF are learnable parameters. dk1, dk2 and dk3 indicate
the dimensions of each multi-attention mechanism, respectively.
Concat denotes the concatenation operation. mean denotes the
averaging operation for node features. ψ (·) represents an activa-
tion function (ReLU).

Training protocol
In the training stage, DeepMTC applies a multi-task collaborative
training model, using the three subtasks of protein function pre-
diction as auxiliary tasks. The features learned from the upstream
protein function prediction task were utilized in the subcellular
localization of proteins. Therefore, the loss of function predic-
tion was considered as part of the overall loss during training,
and DeepMTC simultaneously supervises multi-task collaborative
training. We first calculate the losses for the three subtasks of
predicting protein function as Lbp_bce, Lcc_bce, and Lmf_bce. In learning
the functional features of proteins, the Gae_block employs a graph

autoencoder to update the graph structure and uses Lbp_mse, Lcc_mse,
and Lmf_mse to calculate the loss for the functional prediction
subtask:

Lbp_bce = 1
N × Mbp

N∑
i=1

Mbp∑
j=1

(
−pbp

ij log
(
p̂bp

ij

)
−

(
1 − pbp

ij

)
log

(
1 − p̂bp

ij

))
(23)

Lfun = Lbp_bce + Lcc_bce + Lmf_bce (24)

Lmse = Lbp_mse + Lcc_mse + Lmf_mse (25)

where N and M denote the number of proteins and the kinds of GO
terms used for function prediction, respectively. p and p̂ denote
the true and predicted labels, respectively. Lfun and Lmse denote
the overall loss of each of the function prediction and feature
extraction modules.

Lsl = 1
N × C

N∑
i=1

C∑
j=1

(
−psl

ij log
(
p̂sl

ij

)
−

(
1 − psl

ij

)
log

(
1 − p̂sl

ij

))
(26)

LDeepMTC = α · Lfun + β · Lmse + ω · Lsl (27)

where C denotes the number of categories for subcellular local-
ization. Lsl and LDeepMTC indicate the loss of protein subcellular
localization and the overall collaborative training loss of the
DeepMTC model, respectively. α, β and ω are hyperparameters
that determine the share of individual tasks in the collaborative
training total loss.

Results and discussion
Experimental settings and evaluation metrics
In this study, DeepMTC is implemented using PyTorch on an
Nvidia RTX 3090Ti GPU, which is trained using the Adam [38]
optimizer with a learning rate of 0.0001. The training process uses
alternating training and validation sets to search for effective
model parameters, and finally an independent test set is used
to evaluate the effectiveness of the model parameters, with the
number of epochs set to 50. We fine-tune the model to iden-
tify the appropriate hyperparameters for superior performance;
the critical parameter settings are shown in Table S3. Moreover,
to comprehensively evaluate the performance of DeepMTC, we
select a variety of metrics to evaluate the model from different
perspectives. Details of the metrics are shown in Note 2.

Performance of protein function prediction and
subcellular localization on DeepMTC
We test the performance of DeepMTC on both the validation and
independent test sets. For the protein subcellular localization task
as shown in Fig. 2a, we can directly compare the labels predicted
by DeepMTC with the corresponding subcellular localization of
proteins in the UniProt database on the validation set and inde-
pendent test set. A more detailed discussion of the results can be
found in Note 3. DeepMTC achieves AP, Acc, and AUROC values
on the validation set and test set of 81.14%, 78.41%, 91.86%, and
91.75%, 91.12%, 90.34%, respectively as shown in Fig. 2b. With
respect to protein function prediction, the AUROC is >80% for
all three sub-ontology predictions, and >90% for both BP and CC.
We use a heatmap to represent the correlation between protein
features learned by DeepMTC and protein subcellular localiza-
tion labels as shown in Fig. 2c. The results reveal correlations
between labels, as well as between features and labels, aiding in
the investigation of relationships between different subcellular
localizations. We analyse the relevance of labels in detail in Note 4.
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Figure 2. Performance of DeepMTC on an independent test set. (a) The predictions for 100 randomly selected samples from both the validation and
test sets were compared with the labels in the UniProt database. (b) Performance of DeepMTC on the independent test set and on the validation set. (c)
Correlation analysis between protein subcellular localization labels and features learned by DeepMTC.
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Table 1. Performance comparison of DeepMTC with state-of-the-art methods on the subcellular localization task (independent test set
with seven locations)

Method AP AUROC AUPR Acc Fmax Hloss (↓) RL (↓) Oerror (↓)

DeepLoc 2.0 0.6384 0.7916 0.7879 0.8655 0.8018 0.1344 0.6716 0.1688
GPSFun 0.7369 0.7278 0.7635 0.8593 0.7780 0.1407 0.7298 0.2175
DeepMTC 0.8426 0.8124 0.8415 0.8922 0.8377 0.1078 0.3878 0.1556

However, to effectively demonstrate the superiority of DeepMTC,
we compare it with state-of-the-art models. For a fair evaluation,
we process the independent test set by filtering the localizations
common to all three models, resulting in a new independent test
set containing cell membrane, cytoplasm, lysosome, endoplasmic
reticulum, Golgi apparatus, mitochondrion and Nucleus. We
directly employ state-of-the-art models from the original pub-
lications, applying them to the new independent test set (seven
localizations). State-of-the-art protein subcellular localization
tools DeepLoc 2.0 [39] and GPSFun [31] for multi-label prediction
(details shown in Note 5).

The experimental results on the new independent test set
are shown in Table 1, DeepMTC outperforms of DeepLoc 2.0 and
GPSFun, and the values of the three metrics, Hloss, RL, and Oerror
are lower than those of the other tools. To determine the perfor-
mance difference between the models, the new independent test
set was selected five times, with 80% of the samples randomly
chosen each time. These five sets of data are then subjected
to experiments as shown in Fig. 3a and c. The differences in the
AP, Acc, AUROC, and Fmax values for DeepMTC compared with
DeepLoc 2.0 and GPSFun are significant. To compare the perfor-
mance of these tools more comprehensively, we plot the precision-
recall curves for each model across all subcellular localizations,
as shown in Fig. 3b. The results demonstrate that DeepMTC out-
performs the other two tools in the cell membrane, cytoplasm,
endoplasmic reticulum, mitochondrion, and nucleus. We analyse
the reasons for the outstanding performance of DeepMTC in
detail in Note 6.

For the protein function prediction task, we use P01899 as
an example to compare DeepMTC with other state-of-the-art
models. The PredGO [40], SPROF-GO [41], NetGO 3.0 [42], DeepGO-
Plus [43], DeepFRI [15], and GPSFun [31] models are selected for
this comparison. The methods are described in detail in Note 7.
The primary goal of DeepMTC is to predict subcellular localiza-
tion of proteins, with protein function prediction as a secondary
task. Therefore, our independently constructed test set cannot be
directly compared with existing functional prediction models. To
address this, we use P01899 as an example in the experiments
to compare the prediction performance of DeepMTC with that
of other state-of-the-art models. We utilize other state-of-the-art
models trained in the original publication for our experiments
in the new test set. In Fig. 3d, the DAG plot shows the BP terms
of P01899 based on the dataset in this study and the results
correctly predicted by different methods. In Table S4, the correct
and incorrect BP terms predicted by different methods are shown,
and in Note 8, we analyse the case study of P01899 in detail.

Impact of multi-task collaborative training
strategy
During model training, it is widely believed that a single task can
ease the overall task of the model, thus allowing for superior per-
formance in model training. In this section, we explore the impact
of multi-task collaborative training on model performance. We

modify DeepMTC by removing the multi-task collaborative train-
ing strategy, creating a variant referred to as w/o colT. We train
the two models separately on the training set and conduct five
experiments on an independent test set, with each experiment
randomly using 80% of the samples in the test set. The results
are shown in Fig. 4a and b. Without the multi-task collaborative
training strategy, the performance of the models on the subcel-
lular localization task is significantly decreased, with statistically
significant differences in model performance. On the independent
test set, DeepMTC outperforms colT across all the metrics, as
shown in Fig. 4c. DeepMTC achieves an AP of 78.40%, which is 23%
higher than that of colT. Additionally, the minimization metrics
Hloss, RL, and Oerror for DeepMTC exceed 90%.

We further explore the effect of the multi-task collaborative
training strategy on the subcellular localization of each class
separately. As shown in Fig. 4d. DeepMTC outperforms w/o colT
in all seven localizations: cell junction, cell membrane, cytoplasm,
mitochondrion, secreted, endoplasmic reticulum, and Golgi appa-
ratus. These results correspond with those shown in Fig. 4c (upper
panel), which show that DeepMTC consistently demonstrates
higher performance across these localizations. Moreover, we visu-
alized the protein features learned by DeepMTC and colT using
t-SNE, as shown in Fig. 4e. We find that the coefficients of deter-
mination (R2) of DeepMTC are much greater than those of w/o
colT in the six localizations of cell junctions, cell membrane,
cytoplasm, secreted, endoplasmic reticulum, and Golgi apparatus,
which indicates a greater degree of interpretation among the
features learned by DeepMTC. In Fig. 4e (nucleus), the protein fea-
tures learned by DeepMTC are distinctly divided into two regions
based on their association with the nucleus, clearly showing a sep-
aration between nuclear-associated and non-nuclear-associated
features.

Ablation experiments
To assess the impact of the various modules of DeepMTC on the
performance of the model, we conduct ablation experiments. We
design three variants of the DeepMTC model:

• DeepMTC w/o GT removes the GT feature learning module.
• DeepMTC w/o FunA removes the functional across-attention

module.
• DeepMTC w/o FeaE removes the functional feature extraction

module.

The performances of DeepMTC and its variant models on the
validation set for multitasking are shown in Fig. 5a and b. We find
that removing the GT module had the most significant impact on
the performance of the model in the subcellular localization task
and the BP annotation prediction task. This result may be because
the number of BP annotations in our dataset is relatively low,
necessitating the GT module to extract more protein information
to compensate for the lack of BP annotations. Additionally, the
results for protein function prediction and subcellular localiza-
tion on the independent test set are summarized in Tables S5
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Figure 3. Performance comparison with existing methods and tools on the new independent test set. (a) Significance analysis of the four metrics—AP,
Acc, AUROC, and Fmax—between DeepMTC and state-of-the-art models on the subcellular localization task. (b) Precision-recall curves showing the
different methods at each location. (c) Comparison of DeepMTC and state-of-the-art methods on three metrics: Hloss (↓), RL and Oerror (↓). (d) DAG
diagram of correctly predicted MF terms of P01899 using different methods.

Table S6. The GT module has the greatest impact on the perfor-
mance of the model, which is consistent with our design, which
uses the GT module as a core component.

To explore the impact of different pooling strategies on the
task of protein subcellular localization prediction, we compare
the results of self-attention pooling with those of max pooling
and mean pooling, as shown in Fig. 5c, and we analyse the effect
of pooling rate on the performance of the model as shown in
Fig. 5d and e. We discuss in detail the impact of different pooling
strategies and pooling rates on the model in Note 9. Additionally,
we established a threshold composition based on the distance
between the Cα during the construction of the residual maps.
We then examined the impact of varying threshold levels on the
model’s performance, with the experimental results presented in
Tables S7 and S8. A detailed discussion of these results is provided
in Supplementary Note 10.

Gene Ontology enrichment analysis
To explore the correlation between the subcellular localization of
proteins and their functions, we perform GO enrichment analysis

on proteins to analyse their BPs, CCs, and MFs. We perform GO
enrichment analysis separately for all proteins localized in the 10
compartments (All-ten) and for proteins localized in Cytoplasm,
respectively as shown in Fig. 6. Due to space limitations, we will
discuss the GO enrichment results and the DeepMTC predictions
for key GO terms in Note 11.

Interpretation of models by residue attention
visualization
In previous experiments, we evaluated the performance of the
model to determine the effectiveness of DeepMTC. However, it
remains unclear whether the results of the model on the val-
idation set proteins are solely based on the proteins from the
training set or if it genuinely learns the deep biological prop-
erties of the proteins. To clearly explain the decision-making
mechanism DeepMTC uses for prediction, we select three pro-
teins from the MF prediction (UniProt ID): P10899, Q8N3Y1, and
Q3TH01. We then extract the importance scores of the corre-
sponding sequence residues as learned by DeepMTC. Simulta-
neously, we use InterProScan to search for InterPro domains
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Figure 4. Multi-task collaborative training strategy effectively improves model performance. (a and b) Performance and minimization metrics comparison
of DeepMTC and the model without the collaborative training strategy. Significance was tested using t-test. P values <.05, .01, and .001 are denoted by
one to three asterisks, respectively. (c) DeepMTC achieves superior performance on the independent test set. (d) Precision-recall curves showing the
different strategies at each location. (e) Feature visualization and correlation analysis (t-SNE algorithm).
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Figure 5. Ablation study of DeepMTC. (a) Performance comparison of DeepMTC and its variants on the validation set, with 10 experiments on a randomly
selected 80% of the validation set. (b) Comparison of the AP of DeepMTC and its three variant models in the validation set. (c) Performance impact of
different pooling strategies on model performance. (d and e) The impact of the pooling ratio of the node masking strategy in self-attention pooling
algorithms on model performance.

corresponding to the sequences in the InterPro database [44]. We
use the functional domains identified by InterProScan and the
residue importance scores learned by DeepMTC to validate the
decision-making mechanism of DeepMTC. As shown in Fig. 7a,
the H-2 class I histocompatibility antigen, D-B alpha chain residue
importance scores and corresponding InterPro domains are visu-
alized on the left. P01899 contains an Immunoglobulin C1-test
domain [45], which ranges from residues 220–293 in the sequence,
and residues in this range have high importance scores. The
protein has six GO terms, and DeepMTC successfully predicts
five of them, achieving the highest prediction score of 92.94%. F-
box/WD repeat-containing protein 8 (Q8N3Y1) contains an F-box
domain [46] at residue positions 113–162 in the sequence, and
residues within this range have the highest importance scores

as shown in Fig. 7b. The F-box domain associates the protein
with ‘protein binding’, and DeepMTC correctly predicts this term.
Another case is Histocompatibility 2, K1, K region (Q3TH01), which
contains an Immunoglobulin-like (Ig-like) domain [47]. The posi-
tion of this InterPro domain in the sequence residues is 206–294,
and residues in this range also have a high importance score,
as shown in Fig. 7c. The Ig-like domain is involved in a variety
of functions, including cell recognition and interaction with cell
surface receptors [48]. This association links the protein to terms
such as ‘peptide antigen binding’ and ‘signaling receptor binding’.
DeepMTC correctly predicts both terms, with the prediction prob-
ability for ‘peptide antigen binding’ reaching 92.33%. By studying
the importance of residues and sequence functional domains, we
can conclude that DeepMTC not only performs exceptionally well
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Figure 6. The top 20 enrichment terms for proteins localized to all compartments and Cytoplasm, and DeepMTC predictions. (a and b) The left panel
shows a bubble plot of the top 20 GO terms for all the compartments and Cypolasm. The right panel presents DeepMTC predictions for these key terms.
The accompanying ROC curves and bar charts highlight the model’s superior predictive performance for these terms.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/6/bbae568/7863771 by guest on 17 April 2025



12 | Bai et al.

Figure 7. Interpretability of DeepMTC models by attention scores of residues. (a–c) Visualization of MF attention scores for three test set samples (UniProt
ID: P01899, Q8N3Y1, and Q3TH01).

in predicting protein functions and subcellular localization tasks
but also excels in learning the biological properties of proteins.
Therefore, it has outstanding accuracy in identifying key residues
and functional domains.

Discussion
The prediction of the subcellular localization of proteins is
typically influenced by their functional information. Considering
both factors together not only enhances model performance
but also allows the model to learn more comprehensive
information about the proteins. However, most existing methods

for predicting subcellular localization suffer from low accuracy
or require additional costs to search known databases, and
some overlook the relationship between GO annotations and
subcellular localization. Therefore, we propose DeepMTC, a
model that fundamentally integrates subcellular localization
with protein functional information while bypassing the need
for expensive database searches. DeepMTC offers the following
five remarkable features: (i) DeepMTC combines multi-source
information, including sequence features, structural information,
and GO, without requiring searches of known databases for
GO annotations; (ii) it combines GT and graph auto-encoder
techniques to deeply mine protein structural information; (iii)
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it uses a functional cross-attention module to efficiently combine
functional features; (iv) it employs a multi-task collaborative
training strategy to achieve excellent performance in both protein
function prediction and subcellular localization tasks; and (v)
it utilizes self-attention pooling to adaptively obtain protein
embeddings, enhancing model interpretability.

However, DeepMTC also has limitations and room for further
improvement. Our model relies on accurate 3D structures of
proteins, as the results generated by the large language model
directly impact the performance of DeepMTC. In the future, we
plan to use only the 3D structures of proteins during the training
phase to maximize the efficiency of model testing. Additionally,
we will incorporate PPIs into the model to integrate information
on protein interactions, facilitating a more comprehensive study
of protein function. In future GO annotation prediction tasks, we
will focus on less frequent and more challenging annotations to
increase the model’s generalizability. In future studies, we aim to
design a generalized computational model that integrates func-
tional prediction, subcellular localization, ligand binding sites,
solubility, and protein dynamics for a more in-depth analysis of
proteins.

Key Points

• DeepMTC is a fully end-to-end deep learning approach
that employs a multi-task collaborative training strategy
to simultaneously and efficiently predict protein func-
tion and multi-label subcellular localization.

• DeepMTC employs a functional cross-attention mod-
ule to efficiently combine protein functional features,
enhancing prediction performance.

• DeepMTC uses GO features for predicting multi-label
subcellular localization, without relying on established
GO annotation databases.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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