
DeepMFFGO: A Protein Function Prediction Method for Large-Scale
Multifeature Fusion
Jingfu Wang, Jiaying Chen,* Yue Hu, Chaolin Song, Xinhui Li, Yurong Qian, and Lei Deng

Cite This: J. Chem. Inf. Model. 2025, 65, 3841−3853 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Protein functional studies are crucial in the fields of
drug target discovery and drug design. However, the existing methods
have significant bottlenecks in utilizing multisource data fusion and
Gene Ontology (GO) hierarchy. To this end, this study innovatively
proposes the DeepMFFGO model designed for protein function
prediction under large-scale multifeature fusion. A fine-tuning strategy
using intermediate-level feature selection is proposed to reduce
redundancy in protein sequences and mitigate distortion of the top-
level features. A hierarchical progressive fusion structure is designed
to explore feature connections, optimize complementarity through
dynamic weight allocation, and reduce redundant interference. On
the CAFA3 data set, the Fmax values of the DeepMFFGO model on
the MF, BP, and CC ontologies reach 0.702, 0.599, and 0.704,
respectively, which are improved by 4.2%, 2.4%, and 0.07%, respectively, compared with state-of-the-art multisource methods.

■ INTRODUCTION
Proteins, as the core molecules that construct the basic
framework of organisms and perform life functions, their
functional studies have irreplaceable importance in drug target
discovery, revealing disease mechanisms and guiding drug
design.1,2 With the rapid progress of biotechnology, especially
the popularization of high-throughput sequencing technology,
protein sequence data have shown unprecedented explosive
growth.3 However, this flood of data also presents
unprecedented challenges. Less than 0.1% of the proteins in
the Uniprot database have been experimentally annotated,4

making it an urgent challenge to accurately and efficiently
predict protein function from massive sequence data.

Traditional protein function prediction methods mainly rely
on sequence similarity analysis, such as FASTA,5 BLAST,6 and
diamond.7 These methods are grounded in the principle of
sequence homology. They predict the functions of unknown
proteins by comparing their sequences with those of proteins
whose functions are already known. However, the validity of
these methods relies heavily on the sequence similarity
threshold, and usually, the prediction results have high
confidence only when the similarity is 60% or higher.8 In
addition, prediction accuracy is often limited by the lack of
sufficient known functional proteins to serve as references for
newly discovered protein sequences.

In order to break through these limitations, researchers have
actively explored new methods to extract deep features from
protein sequences using deep learning techniques. Among
them, DeepGOPlus,9 as a classic in deep learning, employs a
convolutional neural network to extract sequence features and

significantly improves the performance of protein function
prediction by fusing sequence features with homology
information. MMSMAPlus10 utilizes multiscale separable
convolutional technology to deeply explore the deep semantic
features, evolutionary features, amino acid species features, and
physicochemical properties of protein sequences, which
provides richer information dimensions for function predic-
tion. PhiGnet11 uses a two-channel graph convolutional
network to learn pretrained feature embeddings and integrates
them with evolutionary couplings (EVC) and residue
communities (RC) to accurately infer protein functional
annotations, even without structural templates or low
homology sequences.

However, the above methods rely only on sequence
information and fail to fully mine and fully utilize the
multisource data of existing proteins. In order to compensate
for the limitation of single information and provide a more
comprehensive protein characterization, in recent years,
researchers have begun to explore protein function prediction
methods that integrate multiple types of data, including protein
3D structural information, GO hierarchies, protein−protein
interactions(PPI), and biomedical literature. These multi-
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source data integration methods significantly outperform
single-source function prediction methods using only sequence
information in effectiveness. For example, the GAT-GO12

method utilizes a pretrained protein language model to extract
features and dig deeper into the contact graph information
between residues through graph attention networks to learn
structure−function relationships. GNNGO3D13 uses four
graph convolutions to learn sequence-structure−function
relationships and uses a multistage feature fusion strategy to
improve the accuracy of function prediction significantly. The
DeepSS2GO14 method innovatively utilizes a multilayer
perceptron to extract features from secondary structures and
supplements the sequence and homology information, realizing
an organic combination of the sequencing efficiency and the
accuracy of partial spatial structure information. The MSF-
PFP15 method takes the sequence, structural domains, and PPI
of proteins as inputs and focuses on protein sequences,
structural domains, and interaction information through a
specialized feature extraction module, which is ultimately fed
into the multilayer fully connected network for fusion
classification.

While many contemporary protein function prediction
methods are capable of effectively incorporating protein
structure information, they frequently overlook the hierarchical
structure information on GO. As a result, they do not fully
harness the potential value of this hierarchy, leading to limited
improvements in performance. In addition, when the protein
language model is employed as an encoder, a common practice
is to utilize only the top-level representation of the model. This
representation is the output of the final layer. However, this

approach does not fully exploit the rich semantic information
that is embedded within the internal representations of the
model.16 This approach, which employs top-level character-
ization of the encoder, leads to overly complex coding
structures that trigger information distortion and may
introduce noise and feature errors, leading to feature loss
and biased attention mechanisms. Given this, there is an urgent
need to optimize how representations are used in protein
language models to improve the models’ performance and
accuracy. More importantly, the current trend in protein
function prediction is multifeature fusion, aiming to achieve
more comprehensive and accurate prediction results. Indeed,
the prevalent methodologies in current solutions often merely
superimpose data sources, overlooking the intricate relation-
ships of complementarity and redundancy among features.
This oversight produces a critical deficiency in feature selection
and weight distribution strategies. As data volumes swell and
feature dimensions expand, the challenge of executing feature
fusion efficiently becomes more pronounced, culminating in a
squandering of computational resources. This brings forth a
pivotal inquiry: How should we fully utilize the multisource
data of proteins, delve into the complementarity between data
for feature fusion, and thereby enhance the accuracy of protein
function prediction? To this end, we urgently need innovative
models to fully exploit the multisource information potential of
proteins and effectively utilize the advantages of feature fusion
in terms of information complementarity.

To systematically address the key shortcomings of the
existing methods in protein function prediction, this study
innovatively proposes the DeepMFFGO model to cope with

Figure 1. Overview of the DeepMFFGO method. First, the input features are encoded to encode the protein sequence, structure, GO hierarchy
information, and PSSM matrix into a feature matrix. Second, the feature matrix is fed into a well-designed feature extractor to obtain deep semantic
information (where l is the number of proteins), labeled semantic network information, and 3D structure information. Finally, the features of the
three channels are passed through the sequence−label interaction fusion layer and the self-learning weighted fusion module to obtain the final
prediction results. (a) Global linkage aggregation module and (b) structure-aware graph attention feature extractor.
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protein function prediction under large-scale multifeature
fusion. To address the problem of information distortion and
the introduction of noise caused by using only the top-layer
representation in protein language models, we propose a fine-
tuning strategy based on intermediate-layer feature selection,
which effectively reduces the redundant feature information on
protein sequences. In order to overcome the problem of
underutilization of linkages in protein data, we propose a
global linkage aggregation module in this research. This
module slices protein data into multiple linkages with
accessible information, mines features related to their functions
on each linkage, and finally performs the aggregation
operation. It empowers the model to capture the deep
semantic features of the sequences and labels. To address
the redundancy problem caused by the simple superposition of
multisource features, this study innovatively proposes a
hierarchical progressive fusion structure. Through this
structure, this research effectively integrates four key pieces
of information, namely, sequence information, structure
information, GO hierarchy, and PSSM, and realizes feature
information’s complementary and synergistic enhancement. By
deeply mining the intrinsic connection between the data, our
model can generate more accurate and reliable predictions of
functional annotations. Comparative experiments show that
the DeepMFFGO model significantly outperforms the existing
state-of-the-art models based on multisource protein informa-
tion. The ablation experiments strongly corroborate the
effectiveness of the modules in DeepMFFGO, with the
contributions of the three modules being 0.407, 0.179, and
0.414, respectively. These experiments fully demonstrate our
substantial progress in optimizing the utilization of the protein
language model representations, reducing the feature redun-
dancy and improving the prediction accuracy.

■ METHODS
Global Linkage Aggregation Module. In bioinformatics

and computational biology, feature extraction is critical in
protein structure prediction, functional analysis, and inter-
action studies. The existing feature extraction modules such as
CNN or RNN focus on capturing local features or short-range
dependencies. However, features such as protein, GO, and PPI,
whose functions are often determined by long-range depend-
encies, involve interactions between widely separated positions
in the feature vector. Due to the inherent limitations of
traditional feature extraction methods in extracting long-range
dependencies, they cannot adequately capture global features.
The absence of global features may mean that important
biological information is not utilized, thus affecting the
predictive power and interpretability of the model.

To address these challenges, this research proposes a global
linkage aggregation module (GLAM) based on the Encoder
part of Transformer,17 as shown in Figure 1a. The GLA
module endows the model with the ability to capture local
detailed features and long-range dependencies through its
surrounding information capture and integration properties.
The GLA module consists of linkage attention, residual
connectivity, normalization, and position feedforward net-
works, and these components work together to achieve a deep
understanding and feature extraction of complex interaction
patterns of protein and GO. The linkage attention mechanism
is capable of subdividing into multiple linkages in the
embedding dimension and capturing link information across
neighboring linkages. This ensures that the model can

effectively extract and utilize deeper connections between
nodes when dealing with complex network structures. In the
linkage attention mechanism, each feature vector is linearly
transformed to generate a multiset collection of vectors Q, K,
and V. Q and K are used to determine the fusion weights, and
V is the fused value. The linkage attention mechanism is
computed as follows

=

Q K V

W

Linkage attention ( , , )

concat (linkage , ..., linkage )H1
O
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×Wh
O d dk are projection weight parameter matrices. Here,

d is the dimension size of hidden embedding vectors and dk =
d/h = 1280. After the linkage attention mechanism layer, we
use a feed-forward neural network and layer normalization to
learn a hierarchical feature representation of the data and
stabilize the input distribution for each layer. The feed-forward
neural network is computed as follows

= · · + +h W W h b bFFN( ) ( )2 1 1 2 (4)

where σ is the nonlinear activation function, ×W d d
1

l and
×W d d

2
l are the weight parameter matrices of the feed-

forward network, b d
1

l and b d
2 are bias parameter

vectors, and dl = 1280.
In an in-depth exploration of the extraction process of

protein sequence features, this research utilizes the pretrained
protein language model ESM-1b18 as an encoder, which was
pretrained on the Uniref50 data set. To effectively reduce
redundant information and improve prediction accuracy and
efficiency, we designed a fine-tuning method to use the
optimally performing intermediate layer (layer 29) in the ESM-
1b model as the feature output layer. Proteins of length l are
encoded as ×E l

1
1280 residue-level features. The deep

semantic features obtained from the encoding include the
physicochemical properties of amino acids, residue direct
context information, and expression and regulatory feature
information. To further mine the long-range dependencies and
global information in these deep semantic features, we input
the encoded feature matrix into GLAM. When processing
sequence data, the GLAM can capture its long-range
dependencies and integrate self-attention and local features
to extract more compact and information-rich deep semantic
features, represented as Vs

1280. These features not only
reveal sequences in key regions that are closely related to
specific functions but also capture long-range interactions
within the sequence. As a result, this approach provides a more
comprehensive information base for protein function pre-
diction tasks.

The GLAM proposed in this research demonstrates
excellent protein feature extraction capabilities. It is designed
to be highly generalizable and equally suitable for extracting
GO term hierarchy features. To further validate the general-
ization and effectiveness of the module, this research generates
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embeddings of GO terms using the pretrained model
Anc2vec,19 an unsupervised neural network model for learning
GO term embeddings that embed GO terms into Euclidean
space, and these embeddings preserve the terms, their ancestral
terms, and ontological information uniquely. For GO terms Gi,
they are embedded into n-dimensional labeled representation
vectors Gi

n where n is the hidden dimension, which is set
to 128 dimensions to balance the complexity of the model and
the representation capability in this study. Next, we input these
encoded GO term features into the GLAM, which can capture
the vector representations of their parent and ancestor terms
when processing GO data and thus extract vectors that contain
richly annotated semantic network features, represented as
Vl

1280. These feature vectors capture the positions and
roles of GO terms in the hierarchical structure, thus providing
a robust feature representation for the function prediction task.

By successfully extracting deep semantic features of protein
sequences and deep associations between GO terms, we
demonstrate the promising and powerful potential of the
GLAM proposed in this research for various applications in
different bioinformatics fields.

Hierarchical Progressive Fusion Structure. In terms of
feature fusion, this research innovatively proposes a hier-
archical progressive fusion structure (HPFS) and designs
specialized fusion methods at three key feature fusion stages.
First, this research proposes the structure-aware graph
attention (SGAM), which skillfully integrates the 3D structural
features of proteins and PSSM information; then, this research
designs the sequence-label interactive fusion module (SIFM),
which effectively combines the deep semantic features of
sequences and GO hierarchical structure information. Finally,
this research innovatively proposes a self-learning weighted
fusion module (SWFM), which integrates the features of the
GLAM, SGAM, and SIFM, which fuses the features of three
channels. Through this structural design, this research
successfully integrates the four types of information, sequence
information, structure information, GO hierarchy, and PSSM,
with high efficiency and precision, and realizes the deep
complementarity and significant enhancement of feature
information.

Structure-Aware Graph Attention Module. The
AlphaFold database20 stores protein structure information in
3D atomic coordinates. In this research, we obtain the inter-
residue contact map from its 3D coordinates by setting a
distance threshold of 10 Å. That is, when the distance between
the atoms of two amino acids Cα is <10 Å, this research
recognizes that the two amino acids are in a contact state. In
this research, the contact graph of a protein is constructed as a
binary adjacency matrix, in which each amino acid is
represented as a node. The edges of the adjacency matrix
indicate whether two amino acids are in a contact state. Thus,
the spatial structure of the protein is represented as the
topological relationship of amino acids in space.

The evolutionary information on the primary structure can
be efficiently expressed with the help of PSSM. DeepMFFGO
uses the PSI-BLAST algorithm21 to match the target proteins
against the SwissProt database22 to generate PSSM. These raw
PSSM matrices were further processed by calculating the
frequency of occurrence of 20 amino acids at each amino acid
position and transforming this frequency information into
feature vectors for the obtained PSSM matrices, dipeptide
composition position specific scoring matrix (DPC-PSSM)

combining amino acid composition eigenvectors and dipeptide
composition eigenvectors were obtained. A protein sequence is
embedded into a 400-dimensional DPC-PSSM vector by
summing and averaging the product of the first amino acid and
the first amino acid in two adjacent rows. For a length L
protein, its DPC-PSSM feature vector is defined as

=Y
y y y y y y y y y( , , ..., , , , ..., , ..., , , ..., )T
1,1 1,2 1,20 2,1 2,2 2,20 20,1 20,2 20,20

(5)

= ×
=

+y
L

P P i j1
1

1 , 20i j
k

L

k i k j,
1

1

, 1,
(6)

We propose an SGAM feature extractor, as shown in Figure
1b. The extractor makes the first innovative use of the DPC-
PSSM matrix of proteins, which encodes the evolutionary
information on amino acid sequences and helps identify
conserved regions. At the same time, the contact map of the
protein is used to represent the spatial proximity between
amino acid residues in the 3D structure of the protein,
directing the model to focus on spatially neighboring residues.
The combination of the two enables the model to utilize both
sequence evolution and structural information to enhance the
accuracy of feature extraction. By introducing a graph attention
network (GAT), the dependencies between nodes can be
effectively captured, and the neighbor information can be
aggregated. In the feature extraction process, DPC-PSSM is
used as the initial feature of nodes, and the contact graph is the
initial feature of edges. At each layer of GAT, the attention
mechanism considers the similarity between node features and
edge features, thus adjusting the attention weights. This way,
high contact probability residues will have higher attention
weights to enhance the information flow between them. The
GAT network will aggregate and update the node features, thus
realizing the deep mining and utilization of protein structure
information. First, the attention coefficient is calculated

= [ · · ]W f W fLeakyReLU( e )ij
T

i j ij (7)

where ∥ denotes the splicing of feature vectors, f i and f j are the
features of nodes i and j, respectively, W is the weight matrix, α
is the learnable parameter, and LeakyReLU is the activation
function. The attention coefficients are then normalized

= =softmax ( )
exp( )

exp( )ij j ij
ij

k N i ik( ) (8)

Finally, the node features are updated using the normalized
attention coefficients

= · +h W f b( ( ))i
j N i

ij j
( ) (9)

where N(i) is the set of neighboring nodes of node i, σ is a
nonlinear activation function, and b is a bias term. In addition,
to reduce the graph size and extract the key structural
information, we introduce the global average pooling (gep
pooling) technique, which is applied to select the subset of
nodes with the most information. For each node v, the
information content of each node v is evaluated by an
importance scoring function s(v)
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=s v h( ) ( )
u N v

uv u
( ) (10)

Then, we select the top-k nodes to form a new set of nodes
V′

= { | }V v s v s V( ) top k( ( ))i i (11)

where top-k denotes the selection of the k nodes with the
highest importance score.

Sequence-Label Interactive Fusion Module. We
explore the best solution for GO hierarchy incorporation by
fusing sequence features with labeled semantic network
features through a cross-attention mechanism to form a
unique feature channel. This design fully considers the
hierarchical information on GO items, realizes the interactive
fusion of sequences and labels, and effectively avoids the
problem of poor results when label features are used alone. We
propose a SIFM to fuse vectors Xs

1280 containing deep
semantic features of sequences and vectors Xl

1280

containing semantic network features of labels. Different linear
projections are first applied to map the two matrices (Xs, Xt) to
the query (Qs, Qt), the keys (Ks, Kt), and the values (Vs, Vt),
which can be represented as follows

= · = · = ·Q W F K W F V W F, ,s Q
s

s K
s

s V
s

s (12)

= · = · = ·Q W F K W F V W F, ,l Q
l

l K
l

l V
l

l (13)

In order to interact the information between two different
features for two-way information fusion, the attention score is
calculated by exchanging the Qs, Qt matrix
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where **
×W d d, d = dk = the number of labels in the

ontology. Finally, the attention output is computed and spliced
to obtain a protein sequence feature containing the tagged
semantic network features

= ·
= ·

sl sl V ls

ls

Output attention scores , output

attention scores V
s

l (15)

=
=

sl ls

Concatenated output

cat(output , output , dim

1) (16)

Self-Learning Weighted Fusion Module. Based on our
previous work, this research successfully extracts three classes
of features: first, sequence deep semantic features obtained by
GLAM; second, 3D structural features embedded with
evolutionary information captured with the help of the
SGAM; and third, sequence information fused with label
hierarchical features using the sequence−label interaction
fusion module. Each type of information constitutes an
independent and complete channel feature, one that has
unique information and complements each other in order to

realize the organic fusion of these three channel features while
retaining the unique information contained in each feature and
avoiding the redundancy caused by direct fusion; we
innovatively propose a SWFM. The module adopts an
advanced decision-level fusion strategy, which can dynamically
adjust the weight allocation of each channel feature to achieve
the optimal fusion effect. During the fusion process, the feature
information on each channel is fully respected and effectively
utilized, ensuring that the uniqueness and importance of the
original features are retained after fusion. The following
equation is defined

= ·
=

F W F
i

m

i imerged
1 (17)

=
=

W 1
i

m

i
1 (18)

where Wi is the learned weight of the ith channel, Wi·Fi is
the initial prediction result of the ith channel, and Fmerged is the
prediction result of fusing all the channels.

The SWFM can realize the organic fusion of multiple
channel features, ensuring that the synergy between the
features is maximized while also accurately retaining the unique
information contained in the respective features, avoiding the
loss or dilution of key information in the fusion process. It can
show higher flexibility and adaptability when dealing with
complex data. In addition, it also provides a reference and a
lesson for multisource data fusion for other downstream tasks
in the field of bioinformatics.

■ EXPERIMENTS AND RESULTS
Assessment of Indicators. We use three evaluation

metrics: Fmax (maximum F-score), Smin, and AUPR (area
under the precision-recall curve); Fmax and Smin are used as the
primary evaluation metrics in CAFA.23 AUPR is widely used in
the evaluation of multilabel classification tasks. AUPR
penalizes false positives more than AUC and is therefore
more frequently used when a high cost of label acquisition is
required. Fmax is a protein-centered metric that measures the
accuracy of assigning GO terms to proteins

=
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where p and G represent proteins and GO terms, respectively,
and n is the total number of proteins. The threshold t varies
between 0 and 1 in steps of 0.01, and k(t) is the number of
proteins with at least one GO term score not lower than the
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queue. The function 1(S(pi,Gj) ≥ t) is an indicator function
that returns 1 or 0 depending on whether the score S(pi,Gj) is
greater than or equal to threshold t. The function 1(S(pi,Gj) ≥
t) is the number of proteins in the GO item that have scores
greater than or equal to the queue value.

Smin is a GO term-centered evaluation metric that calculates
the semantic distance between the actual and predicted
annotations

= +S t tmin ru( ) mi( )tmin
2 2

(24)

= · · <
=

t
N

G T G p S p G tru( )
1
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= |G G GIC( ) log Pr( parent( ))j j j2 (27)

where ru(t) is the residual uncertainty. mi(t) is the error
information. IC(Gj) denotes the information content of the
GO term Gj.

Data Set and Parameter. This study uses the PyTorch
2.0 deep learning framework to build a training environment
based on the NVIDIA A40 GPU hardware platform. The
model architecture is based on the ESM 1b pretraining model
(https://huggingface.co/facebook/esm1b_t33_650M_
UR50S) as the encoder. The binary cross entropy is used as
the loss function during the training process, together with the
Adam optimizer for gradient update, and the initial learning
rate is set to 0.0001 to balance the retention of pretrained
knowledge and the adaptation of new features. To prevent
overfitting, a dropout ratio of 0.2 is set for the network, and the
batch size is controlled at 16 to fit the memory capacity. A total
of 20 epochs of iterative training are performed. Based on the
principle of optimal performance of the validation set, we
adopt the model parameters corresponding to the peak of the
Fmax index as the final preferred solution.

In this study, the CAFA3 data set was used for method
validation, and the data were obtained from DeepGOPlus
public resources. The training set sequences and experimental
annotations were released in September 2016, and the test set
data were released in November 2017. We strictly screened the
raw data to exclude proteins with sequence lengths of more
than 1000 amino acids (9% of the total samples) and remove
proteins with “fuzzy201d” amino acids (less than 2% of the
total samples). The sequence length distribution of the data set
is shown in Figure 2. Protein 3D structure data from the
AlphaFold database show excellent performance, with a global
prediction accuracy of more than 92% and an average error
controlled within 1 Å. It has been shown that there is no
significant difference between the AlphaFold-predicted struc-
tures and the PDB experimentally resolved structures in terms
of key indicators.24,25 The complete statistical information on
the experimental data set is detailed in Table 1.

Comparative Experiments. The naiv̈e method is an
intuitive prediction strategy that annotates proteins based on
the frequency of occurrence of GO terms in the data set. The
algorithm is uniformly labeled with the same annotations for all
samples in the test set and is used as a baseline method in

CAFA competitions. Diamond is a prediction method based
on the sequence similarity of proteins, and its core idea is to
assign similar functional annotations to similar proteins. For a
given protein p and functional term G, the method evaluates
the similarity between the two by calculating the set of proteins
E with a confidence value greater than 0.001 in sequence
similarity to the target protein p and the set of annotations Ts
for protein s. The method is based on the idea of assigning
similar annotations to similar proteins.

=
·

p g
p s I f T

p s
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bitscore( , ) ( )

bitscore( , )
s E

s E

s

(28)

DeepGOPlus employs a convolutional neural network to
extract sequence features and improves protein function
prediction performance by integrating sequence features with
homology information. This method performed exceptionally
well in the CAFA3 challenge, demonstrating its strong
prediction capability. DeepFRI26 constructs pretrained LSTM
language models to extract amino acid contact map features
from PDB sequences and then further processes and integrates
these features through a three-layer GCN. The PredGO27

method extracts sequence features by utilizing a protein
language model trained on many protein sequences. In
addition, it utilizes a graph neural network with a geometric
vector perceptron (GVP-GNN) to extract information from
the protein structures predicted by AlphaFold2. It employs a
multihead attention mechanism to integrate PPI features.

According to Figure 3, the diamond method based on
sequence homology outperforms the statistically based plain
method on the MF and BP ontologies. However, it slightly
underperforms the latter in the CC ontology. In contrast,
according to Table 2, our model improves the performance by
40.7%, 39.9%, and 25.94% on the MF, BP, and CC ontologies

Figure 2. Distribution of protein sequence lengths in the CAFA3 data
set.

Table 1. Number of Proteins and Number of GO Terms on
the CAFA3 Dataset

data set ontology training Validation test terms

CAFA3 MF 28,679 3228 1035 677
BP 42,250 4748 2185 3992
CC 39,893 4510 1117 551
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compared with the diamond method, respectively. This fully
demonstrates that the deep learning model can mine deeper
information from massive sequences or other features,
significantly improving the accuracy and reliability of function
annotation prediction. This performance enhancement is
mainly due to the innovative design of our model in feature
representation learning, feature extraction and fusion, which
enables the model to capture the complex patterns and implicit
functional information in protein sequences more effectively.

In comparison with the DeepGOPlus method, which relies
only on sequence information, our model achieves 22.7%,
7.3%, and 10.9% performance enhancements on the MF, BP,
and CC ontologies, respectively. These results indicate that
integrating multiple sources of information can effectively
address the limitations of relying on a single type of data. This

fusion provides a more comprehensive set of protein-level
features, enhancing the thoroughness and accuracy of the
functional annotation predictions.

Compared with the DeepFRI method, the Fmax metrics of
our model on the MF, BP, and CC ontologies were improved
by 9.30%, 13.40%, and 2.00%, respectively. In comparison with
the PredGO method, our Fmax on the MF and BP ontologies
improved by 4.20% and 2.40%, respectively, while Smin
decreased by 6.90% and 1.80% and AUPR improved by
5.5% and 2.0%. Although the enhancement on the CC
ontology is relatively tiny, Fmax is only enhanced by 0.70%, Smin
is reduced by 0.6%, and the AUPR is enhanced by 2.1%, it
reflects the advantage of our model in the fusion of multisource
information. This result may be because the protein structural
information introduced by our model is not as apparent as the

Figure 3. Fmax, Smin, and AUPR scores of our method with other state-of-the-art methods on the CAFA3 data set.

Table 2. Fmax, Smin, and AUPR Scores of Our Method with other State-of-the-Art Methods on the CAFA3 Dataset

Fmax ↑ Smin ↓ AUPR ↑

MF BP CC MF BP CC MF BP CC

Naiv̈e 0.303 0.366 0.565 7.416 21.402 7.876 0.142 0.261 0.460
DiamondScore 0.499 0.428 0.559 7.346 20.050 7.517 0.321 0.263 0.323
DeepGOPlus 0.572 0.558 0.620 8.154 23.869 9.083 0.498 0.495 0.576
DeepFRI 0.642 0.528 0.690 6.626 19.518 6.923 0.603 0.446 0.663
PredGO 0.674 0.585 0.699 6.194 18.067 6.717 0.642 0.512 0.678
Ours 0.702 0.599 0.704 5.766 17.742 6.679 0.677 0.522 0.692

Figure 4. Characterization of the output from layers 28−33 of the protein language model represents the Fmax and AUPR scores of the output
results via the GLAM.
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protein interaction information employed by PredGO on the
CC ontology. Nevertheless, our model still shows strong
competitiveness in the functional annotation prediction.

Ablation Experiment. ESM-1b Fine-Tuning Strategy
Based on Middle Layer Feature Selection Reduces
Redundant Feature Information. The choice of feature
extractor significantly impacts prediction performance in the
critical bioinformatics task of protein function prediction. In
recent years, protein language models have attracted much
attention due to their powerful sequence representation
capabilities. However, choosing the appropriate feature
representation layer has become an urgent problem when
applying such models for feature extraction.

Each layer in the 33-layer architecture of ESM-1b outputs its
feature embedding, and traditional approaches often tend to
select the feature representation of the last layer of the model
to capture the most comprehensive information. However, due
to the deeply stacked structure of the protein language model,
the feature representation of the last layer may contain
redundant information that adversely affects the prediction
accuracy. To address this problem, this study proposes an
innovative ESM-1b fine-tuning strategy based on the
intermediate layer feature selection. We experimentally
evaluated the performance of the feature representations
output from the last six layers (28−33) of ESM-1b, and
Figure 4 illustrates the Fmax and AUPR metrics for each layer.
According to the results in Table 3, ESM-1b_29 exhibits
optimal performance with Fmax metrics of 0.687, 0.591, and
0.702 for the MF, BP, and CC ontologies, respectively. Based
on this finding, we design a fine-tuning method to use the

optimally performing intermediate layer (layer 29) in the ESM-
1b model as the feature output layer and extract the feature
representation output from this layer for downstream tasks.
This method can effectively reduce redundant information and
improve prediction accuracy and efficiency. Implementing this
strategy provides a new direction for designing and optimizing
future protein language models. It emphasizes the importance
of the properties and utility of feature representations at
different levels to achieve more accurate and efficient protein
function prediction. We can provide a new and effective feature
extraction and fine-tuning approach for protein function
prediction tasks.
Significant Performance Improvement in the Combined

DPC-PSSM Matrix Validates the Predictive Value of Evolu-
tionary Information. In protein function prediction, the
optimal choice of feature representation is a key determinant
of model performance. Given the central role of evolutionary
information in revealing protein function, this study system-
atically integrates multiple protein feature representations�
one-hot coding (characterizing amino acid class information)
and PSSM and its derived representations (aac-PSSM, rpm-
PSSM, s-fPSSM, and DPC-PSSM)�and comprehensively
evaluates them through SGAM modeling to reveal the different
information types’ differences in prediction efficacy. Specifi-
cally, aac-PSSM is a single-residue global statistic; rpm-PSSM
employs row-averaged compression to preserve the conserva-
tive trend of global evolution; s-fPSSM focuses on global
statistical features; and DPC-PSSM captures the coevolu-
tionary pattern of local residue pairs through dipeptide
composition.

Table 3. Characterization of the Output from Layers 28−33 of the Protein Language Model Represents the Fmax, Smin, and
AUPR Scores of the Output Results via the GLAM

Fmax ↑ Smin ↓ AUPR ↑

MF BP CC MF BP CC MF BP CC

esm1_28 0.685 0.590 0.698 5.974 17.790 6.816 0.653 0.518 0.680
esm1_29 0.687 0.591 0.702 5.933 17.795 6.731 0.654 0.519 0.678
esm1_30 0.685 0.587 0.701 5.902 18.184 6.801 0.660 0.503 0.677
esm1_31 0.683 0.588 0.699 6.026 17.938 6.740 0.649 0.511 0.672
esm1_32 0.679 0.587 0.701 6.084 17.796 6.686 0.649 0.510 0.677
esm1_33 0.668 0.565 0.701 6.215 18.630 6.822 0.639 0.478 0.674

Figure 5. SGAM feature extractor combines different features of Fmax and AUPR scores.
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Figure 5 shows that DPC-PSSM based on the dipeptide
composition exhibits significant advantages in Fmax and AUPR
metrics for all three ontology classifications: MF, BP, and CC.
The quantitative analysis of Table 4 shows that compared with
the traditional one-hot encoding, DPC-PSSM improves the
Fmax metrics of MF, BP, and CC ontologies by 0.16, 0.08, and
0.04, respectively, and this improvement fully validates the gain
effect of the evolutionary information on the prediction of
protein functions.

In-depth mechanistic analysis reveals that the superiority of
DPC-PSSM stems from its unique local coevolutionary
characterization ability. Compared with aac-PSSM, which
focuses on only single residue frequencies, rpm-PSSM, which
may lose positional information, and s-fPSSM, which focuses
on global characterization. DPC-PSSM can efficiently model
local structural domain features closely related to protein
functions by capturing coevolutionary patterns of adjacent
amino acid pairs. This feature is highly compatible with the
biological law that protein functional sites are usually formed
by short-range residue interactions, which significantly
improves the function prediction accuracy. The results confirm
that the modeling of local coevolutionary information has

more substantial discriminative power than global statistical
features in protein function prediction.
Global Linkage Aggregation Module Prove Its Effective-

ness in Sequence Feature Extraction. The technical approach
to protein function prediction, an important application of
natural language processing in bioinformatics, has advanced
with the continuous development of natural language models.
Natural language models have evolved remarkably from CNN
to transformer, which provides new technical perspectives for
protein function prediction. In order to systematically evaluate
the performance of different models in protein function
prediction, we conducted a detailed comparative study of the
GLA module with MLP, CNN, gated recurrent units (GRU),
and the multi-head attention mechanism. The experimental
results are detailed in Table 5, where the GLAM achieves Fmax
metrics of 0.687, 0.591, and 0.702 on the MF, BP, and CC
ontologies, respectively. The results in Figure 6 show that
GLAM significantly outperforms the other models in terms of
the Fmax and AUPR metrics and achieves either optimal or
optimal results. This excellent performance demonstrates the
powerful ability of the GLAM to capture complex patterns and
relationships in protein sequences. The GLAM effectively

Table 4. SGAM Feature Extractor Combines Different Features of Fmax, Smin, and AUPR Scores

Fmax ↑ Smin ↓ AUPR ↑

MF BP CC MF BP CC MF BP CC

one_hot 0.491 0.470 0.634 8.383 20.460 7.711 0.410 0.343 0.591
aac_pssm 0.563 0.536 0.654 7.651 19.373 7.560 0.521 0.427 0.626
s_fpssm 0.595 0.541 0.662 7.177 19.119 7.389 0.541 0.434 0.635
rpm_pssm 0.600 0.539 0.671 7.206 19.404 7.197 0.559 0.427 0.638
dpc_pssm 0.655 0.552 0.672 6.474 19.018 7.228 0.608 0.461 0.651

Table 5. Fmax, Smin, and AUPR Scores of Different Methods on GLAM

Fmax ↑ Smin ↓ AUPR ↑

MF BP CC MF BP CC MF BP CC

MLP 0.678 0.587 0.698 6.113 18.089 6.835 0.655 0.515 0.675
CNN 1d 0.681 0.595 0.698 6.137 17.953 6.816 0.651 0.515 0.674
GRU 0.683 0.582 0.699 5.987 18.526 6.837 0.660 0.511 0.676
MutilHeadAttention 0.687 0.586 0.698 6.042 18.256 6.826 0.653 0.504 0.676
GLA Module 0.687 0.591 0.702 5.933 17.795 6.731 0.654 0.519 0.678

Figure 6. Fmax and AUPR scores of different methods on GLAM.
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improves the model’s ability to extract and represent protein
sequence features by integrating the linkage attention
mechanism with additional enhancement strategies. Compared
with traditional MLP, CNN, and GRU models, the GLAM
demonstrates significant advantages in processing long
sequences and capturing long-distance dependencies. The
effectiveness of a GLAM in sequence feature extraction is
confirmed.
Outstanding Performance of GAT Combined with Gep

Pooling Demonstrates the Effectiveness of SGAM Feature
Extractors. We propose an SGAM feature extractor that
innovatively combines GAT and global average pooling (gep)
methods. In order to systematically evaluate the effectiveness
of our proposed module, we designed a series of comparison
experiments to compare in detail the two graph neural
networks, GAT and GCN, and the three graph pooling
methods gap (global maximum pooling), gep, and gmp (global
summation pooling). The experimental results are detailed in
Table 6, where the combination of GAT and gep pooling

achieves Fmax metrics of 0.66, 0.552, and 0.672 on the MF, BP,
and CC ontologies, respectively. The results in Figure 7 show
that the combination of GAT and gep pooling significantly
achieves optimal or optimal results for both metrics. This result
indicates that GAT performs better than GCN in learning
features from graph structure information to predict protein
function. Since the importance of each node in the feature
learning process of GAT can be dynamically adjusted, this is in
contrast to the fixed assignment of node importance in GCN.
Consequently, GAT is more suitable for handling scenarios
where the training and test sets differ. As a result, GAT can
capture the key information in the graph structure more
flexibly, which enhances its feature representation capability. In
addition, the gep pooling approach exhibits significantly higher
performance in the experiments, attributed to its ability to
effectively capture global information on the graph while
preserving important local features.
Results of Ablation Experiments Highlight the Effective-

ness of Individual Channels. We verified the critical role of

Table 6. Fmax, Smin, and AUPR Scores of Different Methods on SGAM Feature Extractors

Fmax ↑ Smin ↓ AUPR ↑

MF BP CC MF BP CC MF BP CC

GCN + gap 0.640 0.551 0.665 6.699 19.031 7.351 0.587 0.432 0.643
GCN + gmp 0.644 0.550 0.666 6.714 19.154 7.322 0.578 0.440 0.640
GCN + gep 0.646 0.556 0.670 6.606 19.040 7.322 0.607 0.440 0.642
GAT + gap 0.638 0.549 0.664 6.797 19.173 7.445 0.598 0.425 0.640
GAT + gmp 0.640 0.546 0.663 6.690 19.275 7.395 0.593 0.445 0.644
GAT + gep 0.660 0.552 0.672 6.471 19.018 7.228 0.611 0.461 0.651

Figure 7. Fmax and AUPR scores of different methods on SGAM feature extractors.

Table 7. Fmax, Smin, and AUPR Scores for 3-Channel Ablation Experiments

HPFS Fmax ↑ Smin ↓ AUPR ↑

ESM SIFM SGAM MF BP CC MF BP CC MF BP CC

√ 0.687 0.591 0.699 5.933 17.795 6.768 0.654 0.519 0.680
√ 0.685 0.567 0.697 6.001 18.413 6.783 0.657 0.473 0.683

√ 0.660 0.552 0.672 6.471 19.018 7.228 0.611 0.461 0.651
√ √ 0.693 0.598 0.704 5.876 17.682 6.705 0.666 0.517 0.688
√ √ 0.696 0.592 0.703 5.798 17.779 6.718 0.666 0.524 0.685

√ √ 0.681 0.577 0.700 6.059 18.231 6.763 0.654 0.488 0.685
√ √ √ 0.702 0.599 0.704 5.766 17.742 6.679 0.677 0.522 0.692
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multichannel features in protein function prediction by
ablation experiments. As shown in Table 7, through the
experimental design of blocking different channels one by one,
it is observed that removing all channels triggers significant
performance decay, which fully proves the effectiveness of
fusion in the HPFS framework. Specifically, when the ESM
channel is removed, the Fmax metrics of the model on the three
ontologies MF, BP, and CC decrease by 3.1%, 3.8%, and 0.6%,
respectively, with the most significant decrease across
ontologies, verifying that the channel carries the richest
functional discriminative information. This suggests that deep
semantic characterization can effectively capture the essential
features of protein function. The removal of SGAM resulted in
a 2.9% and 2.3% decrease in Fmax for the MF and BP
ontologies, respectively, whereas the performance of the CC
ontology remained unchanged (Fmax = 0.704). This suggests
that structural information mainly enhances the prediction of
molecular functions and biological processes but has a limited
contribution to the localization of cellular components. This
may be related to the fact that the CC prediction depends
more on subcellular localization features. The removal of SIFM
channels caused relatively small decreases in each ontology,
indicating that although the sequence-label interaction
mechanism enhances prediction through hierarchical informa-
tion, the magnitude of its gain is limited by the intrinsic
characteristics of the structure of the GO. The optimal
configuration (ESM:0.407, SGAM:0.179, and SIFM:0.414)
achieved by the dynamic weight allocation mechanism during
the 37th round of training, as shown in Figure 8, verifies the
effectiveness of the SWFM fusion strategy. Among them, the
deep semantic and interaction features occupy the dominant
weights, while the structural features serve as an important
complement, and the three synergize to achieve the optimal
effect.

We conducted an in-depth examination of the SIFM’s
performance. Through meticulously designed ablation experi-
ments, the SIFM applied to the MF ontology yielded
impressive outcomes: the Fmax value reached 0.685, the Smin
value reached 6.001, and the AUPR value was 0.657. This level
of performance significantly outpaced the conventional layer
normalization, feature multiplication, and feature concatena-
tion fusion techniques. It resulted in respective improvements
of 2.2%, 1%, and 0.3% in the Fmax. These results conclusively
validate that our method achieves the interactive fusion of
sequences and labels, effectively capturing and leveraging the
complementary information between feature sets. This
demonstrates the superiority and efficacy of our module.

In addition, for the feature fusion strategy of the three
channels, we adopt SWFM and make a careful comparison
with the feature-level self-learning weighted fusion, the cross-
attention mechanism, and the feature splicing method. The
results show that the SWFM improves 5.9%, 4.9%, and 4.2% in
terms of the Fmax value of the MF ontology compared to the
other three methods, respectively. By dynamically adjusting the
weights of each channel’s features, the feature information on
each channel can maintain the uniqueness of the original
features. Consequently, our module can achieve the optimal
effect of feature fusion.

■ DISCUSSION
In this study, the DeepMFFGO model is innovatively
proposed to address the challenges of multisource data fusion
and GO hierarchy utilization in protein function prediction. A
fine-tuning strategy based on intermediate layer feature
selection was adopted to effectively eliminate redundant
features of protein sequences effectively. Meanwhile, GLAM
was designed to equip the model to capture sequences and
label deep semantic features. In addition, the DeepMFFGO
model uniquely proposes HPFS, which effectively integrates
four key information sources, sequence information, structural
information, GO hierarchy, and PSSM, and realizes comple-
mentary and synergistic enhancement of feature information.
This enables the model to generate more accurate and reliable
function annotation predictions.

In the experimental validation on the CAFA3 data set, the
performance of the DeepMFFGO model on the MF, BP, and
CC ontologies is outstanding, comprehensively outperforming
the existing state-of-the-art models based on multisource
protein information and achieving Fmax values of 0.702, 0.599,
and 0.704, respectively. The ablation experiments fully validate
the effectiveness of each module in the model and its
significant contribution to the overall performance.

Looking ahead, we plan to optimize the model further and
use partially resolved protein structures to replace the
structures predicted by AlphaFold, thus improving the
accuracy of the predictions. We will focus on solving the
sequence-structure mismatch problem caused by protein
sequence truncation to ensure the accuracy and consistency
of the model output. In addition, we propose to model the
entire protein structure in an all-encompassing way, replacing
the previous contact maps that focused only on the distances
of Cα atoms in the 3D structure of proteins. By doing this, we
aim to capture the structural features of proteins more

Figure 8. 3-Channel weight assignment of SWFM on MF with optimal configuration achieved in the 37th round of training.
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comprehensively. Regarding multisource feature fusion, we will
actively explore including more information sources to
enhance the model’s reliability. However, the vast data volume
and complex model architecture from the multisource fusion
algorithm will also demand our computational resources. For
this reason, we will consider lightweight prediction algorithms
to achieve a balance between high performance and low power
consumption. We expect DeepMFFGO to achieve more
excellent results in protein function prediction and provide
more powerful tools for bioinformatics and functional
genomics research.
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