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Abstract

Motivation: Automated function prediction (AFP) of proteins is a large-scale multi-label classification problem. Two
limitations of most network-based methods for AFP are (i) a single model must be trained for each species and (ii)
protein sequence information is totally ignored. These limitations cause weaker performance than sequence-based
methods. Thus, the challenge is how to develop a powerful network-based method for AFP to overcome these
limitations.

Results: We propose DeepGraphGO, an end-to-end, multispecies graph neural network-based method for AFP,
which makes the most of both protein sequence and high-order protein network information. Our multispecies strat-
egy allows one single model to be trained for all species, indicating a larger number of training samples than exist-
ing methods. Extensive experiments with a large-scale dataset show that DeepGraphGO outperforms a number of
competing state-of-the-art methods significantly, including DeepGOPIlus and three representative network-based
methods: GeneMANIA, deepNF and clusDCA. We further confirm the effectiveness of our multispecies strategy and
the advantage of DeepGraphGO over so-called difficult proteins. Finally, we integrate DeepGraphGO into the state-
of-the-art ensemble method, NetGO, as a component and achieve a further performance improvement.

Availability and implementation: https://github.com/yourh/DeepGraphGO.

Contact: zhusf@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

reduce this huge gap, developing an effective and efficient automatic
protein function prediction (AFP) method is of great significance
(Radivojac et al., 2013).

For assessing the performance of large-scale AFP methods,

1 Introduction

Proteins are building blocks of life, playing many crucial roles with-
in organisms, such as catalyzing chemical reactions, coordinating

signal pathway and providing structural support to cells (Weaver,
2011). In order to elucidate the mechanism of life, it is important to
identify protein/gene functions, which are now standarized by Gene
Ontology (GO) (Ashburner et al., 2000). The GO covers three bio-
logical domains: molecular function ontology (MFO), biological
process ontology (BPO) and cellular component ontology (CCO)
with over 44 000 concepts (January 2021). The number of known
protein sequences increases rapidly due to the development of gene
sequencing technologies. Until Jan. 2021, there are more than 200
million proteins in UniProKB (UniProt Consortium, 2019).
However, only < 0.1% proteins have experimental GO annotations
due to the high cost of biochemical experiments. Therefore, to

©The Author(s) 2021. Published by Oxford University Press.

Function Special Interest Group (Function-SIG) of International
Society for Computational Biology (ISCB) has organized a commu-
nity challenge, the Critical Assessment of protein Function
Annotation algorithms (CAFA) (Jiang et al., 2016; Radivojac et al.,
2013; Zhou et al., 2019). CAFA has been held four times so far:
CAFA1 in 2010-2011, CAFA2 in 2013-2014, CAFA3 in 2015-
2016 and CAFA4 in 2019-2020 (prediction results of CAFA4 are
still under evaluation). In both CAFA3 and CAFAA4, the organizers
provided a large number number of protein sequences (around
100 000) to the participants, who have to submit the predictions of
protein functions (GO term associations) before the deadline (TO0).
For building the benchmark data, then the organizers collect
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proteins with experimental annotations by a few months later (T1,
10 months later in CAFA3). The benchmark data consists of two
types of proteins: no-knowledge and limited-knowledge proteins
(Zhou et al., 2019). Without any experimental annotations before
TO, no-knowledge proteins receive at least one experimental annota-
tion between TO and T1. On the other hand, limited-knowledge pro-
teins have partial prior experimental annotations before TO in one
or two domains other than the target domain, where the first experi-
mental annotation was obtained between T0 and T1. Since currently
more than 99.9% proteins have no experimental annotations, we
focus on AFP for no-knowledge proteins in this study.

One protein can be associated with multiple GO terms. By
regrading each GO term as a label and each protein as an instance,
AFP can be deemed as a large-scale, multi-label problem. This is a
challenging task from both sides of label (GO) and instance (pro-
tein). For the label side, there are more than 44 000 GO terms,
where GO is a directed acyclic graph (DAG), meaning that for one
protein annotated by one GO term, all ancestor GO terms in GO
can be also assigned. In fact, one human protein is currently associ-
ated with 47 GO terms on average, according to Gene Ontology
Annotation (GOA) Database (Dec 2020) (Huntley et al., 2015). For
the instance side, we can consider all kinds of protein information to
improve the accuracy of AFP.

Recently we developed a sequence-based AFP method,
GOLabeler (You ez al., 2018), which achieved the first place in
CAFA3 on no-knowledge benchmark in terms of Fp,y in all three
GO domains. GOLabeler utilizes learning to rank (LTR) to integrate
multiple types of sequence information, such as sequence homology,
protein domain and family, to rank the candidate GO terms for a
given protein. However, sequence information is insufficient to
characterize protein functions. A promising idea to improve AFP is
that proteins connected in a protein network (e.g. protein-protein
interaction or metabolic network) like to share the same functions
(Oliver, 2000; Schwikowski et al., 2000). In light of this perspective,
we have developed NetGO (You ef al., 2019), keeping the LTR
framework of GOLabeler, to improve the performance of
GOLabeler by massive network information in STRING
(Szklarczyk et al., 2019). As a result, NetGO achieved the state-of-
the-art performance, while LTR, an ensemble approach of many
component methods, is computationally intensive. More important-
ly, in NetGO, the component method on networks considers only
neighbors of a test protein (i.e. low-order information) in given net-
works, meaning that high-order information in protein networks are
ignored.

We propose DeepGraphGO, a semi-supervised, deep learning
method, which takes the advantages of both protein sequence and
network information through graph neural network (GNN) (Kipf
and Welling, 2016). DeepGraphGO has the following three notable
features: (i) InterPro for representation vector: The input of repre-
sentation vectors (of nodes/proteins), trained by GNN, is generated
from InterPro (Mitchell ez al., 2019), a protein domain and family
database. It combines 14 different databases, such as Pfam (Finn
et al., 2016), SUPERFAMILY (Oates et al., 2015), CATH-Gene3D
(Lewis et al., 2018) and CDD (Marchler-Bauer et al., 2017), which
provides many types of functional information, such as family, do-
main and motifs. The features extracted from InterPro were success-
fully used in GOLabeler and NetGO as well. (ii) Multiple graph
convolutional neural (GCN) layers: GNN has been developed for
various tasks, such as node embedding, link prediction, node classi-
fication and graph classification (Zhou et al., 2018). Graph convolu-
tional network (GCN) is a typical GNN. It can obtain a
representation vector of each node by a graph convolutional layer
(GCN layer), which aggregates representations of neighboring
nodes. Multiple GCN layers allow to capture high-order informa-
tion among nodes (proteins). (iii) Multispecies strategy: We used
proteins of all species for training only one single model, which we
call multispecies strategy. Compared with previous work focusing
on single species, it can make use of more data to achieve better per-
formance, especially for the species that are sparsely annotated.

We thoroughly validated the performance of DeepGraphGO
through comprehensive experiments on large-scale datasets under

the CAFA settings. We compared DeepGraphGO with a number of
methods, including DeepGOPlus (Kulmanov and Hoehndorf,
2020), a state-of-the-art deep learning-based method for AFP, and
three most important components of the latest ensemble method,
NetGO: BLAST-KNN, Net-KNN and LR-InterPro. Experimental
results demonstrate that DeepGraphGO outperformed all compet-
ing methods in Fp,x and AUPR for all three domains of GO. We
confirmed that our multispecies strategy of using all species for one
single model is effective: DeepGraphGO  outperformed
DeepGraphGOsp, which was trained by only proteins of a specific
species. Also, even DeepGraphGO.,, which was trained by pro-
teins of all other species except the specific species, outperformed
DeepGraphGOs,. This indicates that using other species is useful,
confirming our multispecies strategy. All these results prove the ef-
fectiveness and efficiency of DeepGraphGO. Finally, we integrate
DeepGraphGO into NetGO as a component to generate a model,
called DeepGraphGo-LTR. It outperformed the two state-of-the-art
ensemble methods, GOLabeler and NetGO in all three domains of
GO in our experiments, showing the possibility of improving the
predictive performance of AFP further.

2 Related work

There are a large number of studies for AFP (Zhou et al., 2019),
while the network-based methods are most related.

There are three well established network-based methods for
AFP: GeneMANIA (Mostafavi et al., 2008), Mashup (Cho et al.,
2016) and clusDCA (Wang et al., 2015). GeneMANIA integrates
multiple protein networks into one network, over which labels (GO
terms) are propagated for prediction. Mashup learns the embeddings
of proteins by using a method called diffusion component analysis
(DCA) over a given network, and these embeddings are used for pre-
diction. ClusDCA also uses DCA, while embeddings of proteins and
GO terms are trained from protein networks and the DAG of GO,
respectively. These three methods have two clear drawbacks: (i) the
prediction model of each species is trained independently. (ii) se-
quence information is completely ignored. Thus a more recent
method, ProSNet integrates both sequence homology and molecular
network to improve the performance of AFP (Wang et al., 2017).
However, the complexity of constructing and training a network in
ProsNet is extremely high, which makes it infeasible to incorporate
a dozen of species at the same time. Also, the performance of
ProSNet was examined by cross-validation, while separating test
data from training data is not clear in a network, casting a doubt as
to whether a protein in test data is new for training data. Note that
the validation setting of CAFA (which will be used in our experi-
ments) uses no-knowledge proteins, which can clearly avoid the
above doubt of cross-validation in network data.

The cutting-edge deep learning-based methods for AFP also use
protein networks as input. By running a deep graph autoencoder on
a given network, deepNF (Gligorijevi¢ et al., 2018) learns represen-
tation vectors for proteins which are used for building a support vec-
tor machine (SVM) classifier for each GO term. Graph2GO (Fan
et al., 2020) takes a similar procedure, while various information,
including protein sequences, subcellular location and protein
domains as well as protein networks are all used to generate repre-
sentation vectors. A drawback of both deepNF and Graph2GO is
that training and testing must be done for each species. DeepGO
(Kulmanov et al., 2018) generates representation vectors from both
amino acid sequences and protein networks, while the high compu-
tational burden of DeepGO limits the label size, like only 2000 out
of all more than 44 000 GO terms being a predictable limitation.
DeepGOPlus (Kulmanov and Hoehndorf, 2020) is a simpler model
to reduce the high computational complexity of DeepGO, combin-
ing two submodels, a neural network called DeepGOCNN and a k-
nearest neighbor called DiamondScore, in which protein similarity is
computed by the Diamond tool (Buchfink et al., 2015). However,
empirically both DeepGO and DeepGOCNN provide only lower
performances than even DiamondScore, for MFO and BPO
(Kulmanov and Hoehndorf, 2020).

£20Z Jaquieldeg | uo Jesn Ateiqr ABojouyos | R aousiog [euoneN Aq £9961£9/29z!/1  1uswa|ddng// g/e0ne/so1euwLIouIoIg/Wod dno-olWwspeoe//:sdny woJj papeojumoq



i264

R.You et al.

Recently, several methods using GNN for AFP have been pro-
posed (Gligorijevic et al., 2019; loannidis et al., 2019; Zhou et al.,
2020). DeepFRI (Gligorijevic et al., 2019) is a GNN-based method
for AFP, which uses LSTM (long short-term memory) to extract resi-
due level features of protein sequence and GCN layers for learning
complex structure to function relationships. DeepGOA (Zhou et al.,
2020) is another method using GNN for AFP. DeepGOA encodes
protein sequence by CNN as DeepGOCNN and obtains a semantic
representation of each GO term by GCN on the DAG of GO. Both
DeepFRI and DeepGOA do not use PPI network information, and
can only deal with a small number of GO terms (around 4000 out of
more than 44 000) due to their high computational complexity.

3 Materials and methods

3.1 Overview

Figure 1 shows a schematic procedure of DeepGraphGO, which has
two inputs: (i) graph G (protein network) with N nodes (proteins)
or weighted adjacency matrix A € RN*N (edge weights range be-
tween 0 and 1). (ii)) N binary feature vectors, generated by
InterProScan (Jones et al., 2014) for N proteins based on InterPro,
where each element shows the presence/absence of a protein do-
main/family/motif. The procedure has three steps: (i) Input (fully
connected) layer: the binary feature vector of each protein is trans-
formed into a non-binary vector, to be used as the initial representa-
tion vector. (ii) Graph convolutional (GCN) layer: updates the
representation vector of each node (protein) to capture high-order
information through graph edges, by renewing the vector using
those of neighboring nodes. (iii) Output (fully connected) layer: pre-
dicts scores of GO terms for each protein.

3.2 Input layer

For protein p;, we use InterProScan to generate a binary feature vec-
tor x; € {0,1}", where m is the number of signatures (domains and
families in InterPro) related to at least one of N proteins in G, and
the jth element of x;, x;;, indicates if the jth signature belongs to p;.
We use a fully connected layer to obtain a low-dimensional repre-
sentation vector hfo) € R from x; as follows:
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where W© € R”*¢ and b'” € R? are the weight and bias of the
fully connected layer, respectively, and f is a non-linear activation
function. We generate initial representation matrix H° € RN*¢ by
concatenating the obtained low-dimensional representation of all N
proteins.

3.3 GCN layer

Following (Kipf and Welling, 2016), at the Ith GCN layer
(1 < I < M), representation matrix H”? € RN*¢ can be updated
with residual connection (He et al., 2016) as follows:

HO — (B 2AD WO £ b0) + HO-D), @)

where A = A + I, I is the identity matrix with the size of N, D is the
degree matrix of A (D; = Z/-/j\,-,») and WU € R4 and bV ¢ R?
are the weight and bias, respectively. Continuous M GCN layers can
capture high-order [M (and less)-order] information of each node.

3.4 Output layer and loss function
For the ith protein and the jth GO term, prediction score y,; can be
computed by the output (fully connected) layer as follow:

Vi = U(Wfo)hi + bfo))» (3)

where W;U) e R4 and b;‘)) € R are the weight and bias for the jth
GO term, respective and ¢ is the sigmoid function. We use the bin-
ary cross-entropy as loss function J:

J=-
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where K denotes the number of GO terms and y;; € {0,1} is the
ground truth. The loss function is computed from only known pro-
teins (nodes with the ground truth in G), which means semisuper-
vised learning.
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Fig. 1. A schematic procedure of DeepGraphGO. The input is N binary feature vectors (with the size of 71) obtained from InterPro. The size of the input vectors is reduced by
the input (fully connected) layer [For example, 7 (originally seven) is reduced to four] to generate dense vectors, which are used as the initial value of representation vectors of
the subsequent convolutional (GCN) layer. The GCN layer accepts protein networks of all species (due to our multispecies strategy), and the representation vector of each
node (in red) is updated by the representation vectors of the connected nodes (in blue). This process is repeated (twice) to capture the neighboring information, eventually high-
order information in the given network. Finally the output layer outputs the prediction scores of K GO terms for each protein by using a fully connected layer with the input of
representation vectors trained by the GCN layers
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3.5 Training setting

We use mini-batch training, with which GraphSAGE shows a better
generalized performance (Hamilton et al., 2017), instead of full-
batch training in (Kipf and Welling, 2016). Practically, to keep mod-
erate computational complexity, we selected edges with k largest
weights for each node, instead of sampling neighbors (which is done
by GraphSAGE). Note that training uses data of all species, i.e. mul-
tispecies strategy.

4 Experiments

4.1 Datasets
We collected data following the standard CAFA protocol (Jiang
et al., 2016; Radivojac et al., 2013; Zhou et al., 2019):

1. 1. Protein sequences: We downloaded protein sequences from
UniProt (https://www.uniprot.org/downloads) (UniProt
Consortium, 2019).

2. Protein networks: We used version 11.0 of STRING (https://
string-db.org/) (Szklarczyk et al., 2019). This database covers
around 24.6 million proteins from 5090 organisms with more
than two billion interactions in total, which was generated be-
fore TO (Jan. 2019).

3. GO terms: We downloaded from SwissProtl (Boutet et al.,
2016), GOA (http://www.ebi.ac.uk/GOA) (Huntley et al., 2015)
and GO (http://geneontology.org/page/download-annotations)
(Ashburner et al., 2000) in January 2020. We extracted all ex-
perimental annotations in: ‘IDA’, ‘IPI’, ‘EXP’, ‘IGI’, ‘IMP’,
IEP’, IC’ or “TA’. All are combined to generate an annotation
dataset.

We then generated training, validation and testing sets by time
stamps when proteins were annotated:

1. Training: All data experimentally annotated before Jan. 2018.

2. Validation: All no-knowledge proteins experimentally annotated
from January to December 2018.

3. Testing: All no-knowledge proteins experimentally annotated
from January 2019 to January 2020.

For validation and testing sets, we used the same 17 target spe-
cies as CAFA4. Table 1 shows the statistics of the training, valid-
ation and testing sets. Note that DeepGraphGO was trained by
proteins in 17 target species appearing in both the training set and
STRING, while competing methods (unless using protein networks
as input) were trained by all proteins in the training set.

4.2 Competing methods

Competing methods were used for two types of evaluation manners:
protein-centric (The ‘protein-centric’ evaluates GO terms annotated
to each protein, while the ‘GO-term centric’ is reverse. The ‘pair
centric’ evaluates ‘protein-GO term’ pairs.) and GO term-centric.

For protein-centric, DeepGOCNN, DeepGOPlus and three most im-
portant components of NetGO: BLAST-KNN, Net-KNN and LR-
InterPro. For GO term-centric, three most representative network-
based methods: DeepNF, clusDCA and GeneMANIA. These three
methods have one model for each species, and each model is trained
independently. We explain BLAST-KNN, Net-KNN and LR-
InterPro below, while all other competing methods were introduced
in Section 2.

4.2.1 BLAST-KNN

The idea is that similar proteins may have similar protein functions.
We run BLAST over all proteins in the training set to obtain set Z;
of proteins which are homologous to protein p; (using a cut-off e-
value of 0.001 in our experiments). Then score Sg(p;, GO;) between
protein p; and GO term GO, can be computed as follows:

_ Yopeez, Lor, GO;) x B(pi, pr)

Sp(pi, GO,) = , 5
40, GO)) S pees, Bl pr) ©)

where B(p;,py,) is the similarity score (bit-score) between p; and py,
by BLAST and I(py, GO;) is a binary indicator: 1 if GO; belongs to
protein py; otherwise zero.

4.2.2 Net-KNN
Similarly score Sx(pi, GO;) between protein p; and GO term GO;
can be computed as follows:

_ 2pev 1(pis GOy) x o(pis pi))

Sn(pi, GO;) = > 0(Dis br) 7 N

where Vis all nodes (proteins) in graph G and w(p;, py) is the weight
of the edge between p; and py. In testing, if a given protein p is not
in STRING, the score of protein p; (in STRING) which is most hom-
ologous to p} is used as the prediction score of p!.

4.2.3 LR-InterPro

For each GO term, logistic regression (LR) is trained using the bin-
ary feature vector (obtained by InsterProScan) which is the same as
the input of DeepGraphGO. The trained LR is used for prediction.

4.3 Experimental settings

We trained DeepGraphGO for MFO, BPO and CCO separately. We
used two GCN layers [In preliminary experiments, we examined
deeper GCN layers, while the performance was not highly improved
regardless of the dramatically increase of computational cost. Then
we set M = 2 (see the supplementary material for the details).]. That
is, M =2. The batch size and epoch number were 40 and 10, respect-
ively. We used Adam optimizer (Kingma and Ba, 2014) with the
learning rate of le-3. We used ReLU (Arora et al., 2016) for activa-
tion function f. To avoid overfitting, we used dropout (Hinton et al.,
2012) after each GCN layer with the drop rate of 0.5. Also, to re-
duce the computational cost, we used only 30 edges with the largest
weights for each node in protein networks, i.e. k=30. All these
hyperparameters were selected by using the validation set.

Table 1. Data statistics (# proteins) on species with more than 10 proteins in every domain of GO

Train Valid Test

MFO BPO CCO MFO BPO CCO MFO BPO CCO
HUMAN (9606) 9208 12 095 18 842 86 138 137 41 87 767
MOUSE (10090) 6138 9927 8482 103 299 228 65 156 130
ARATH (3702) 5108 9887 6973 69 166 93 44 100 56
RAT (10116) 5008 8444 9509 86 201 107 97 145 128
DROME (7227) 4312 5412 4912 27 101 140 16 30 25
All species (not only the above) 51549 85104 76 098 490 1570 923 426 925 1224
Data used by DeepGraphGO 35092 54276 48 093 490 1570 923 426 925 1224
Percentage 68.1% 63.8% 63.2% 100% 100% 100% 100% 100% 100%

£20Z Jaquieldeg | uo Jesn Ateiqr ABojouyos | R aousiog [euoneN Aq £9961£9/29z!/1  1uswa|ddng// g/e0ne/so1euwLIouIoIg/Wod dno-olWwspeoe//:sdny woJj papeojumoq


https://www.uniprot.org/downloads
https://string-db.org/
https://string-db.org/
http://www.ebi.ac.uk/GOA
http://geneontology.org/page/download-annotations
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab270#supplementary-data

i266

R.You et al.

Table 2. Performance comparison of DeepGraphGO and competing methods

Method Finax AUPR

MFO BPO CcCcoO MFO BPO CcCcoO
BLAST-KNN 0.590 0.274 0.650 0.455 0.113 0.570
LR-InterPro 0.617 0.278 0.661 0.530 0.144 0.672
Net-KNN 0.426 0.305 0.667 0.276 0.157 0.641
DeepGOCNN 0.434 0.248 0.632 0.306 0.101 0.573
DeepGOPlus 0.593 0.290 0.672 0.398 0.108 0.595
DeepGraphGO 0.623 0.327 0.692 0.543 0.194 0.695

Following NetGO, if a given protein p; was not in STRING, we
used the score of protein p;, which is most homologous (highest bit-
score by BLAST) to p/ as the prediction score of p}. In practice, we
trained three models with different initial weights and averaged over
the three prediction scores to obtain the final prediction.

For the competing methods, we downloaded their implementa-
tions from the original authors’ websites. We trained these methods
using our training data and tuned the parameters using the valid-
ation data. As GeneMANIA, clusDCA and deepNF utilized multiple
networks as input, all 7 types of networks in STRING were used,
which include neighborhood, fusion, co-occurrence, co-expression,
experiment, database and text mining. For DeepGraphGO, an inte-
grated network from above 7 types provided by STRING was used.

4.4 Performance evaluation metrics

We used three evaluation metrics: Fp.c, AUPR (Area Under the
Precision-Recall curve) and M-AUPR. F,,,y is protein-centric, which
has been used in CAFA as the main evaluation metric (Jiang ez al.,
2016). AUPR is pair-centric and widely used for performance evalu-
ation of multi-label classification including AFP (Kulmanov and
Hoehndorf, 2020; You et al., 2018, 2019). M-AUPR is GO term-
centric, being widely used by network-based methods (Gligorijevi¢
et al., 2018; Mostafavi et al., 2008; Wang et al., 2015). Specifically,
Frnax is defined as follow:

Fppa = mfx{%w}’

where pr(t) and rc(t) are so-called precision and recall, respectively,
obtained at some cut-off value, 7, defined as follows:

R G,,P) 1) - I(G:, P;)
TZ: GGz
,LN P) > ) (G, P)
Nr ; ZI( Py) ’

where h(7) is the number of proteins with the score no smaller than
7 for at least one GO term, and 1(-) is 1 if the input is true; otherwise
zero. For F, and AUPR, given a testing set, we first obtain the pre-
diction score of each protein-GO term pair. All protein-GO term
pairs are then sorted by these prediction scores. Finally, the perform-
ance was evaluated by F,x and AUPR. On the other hand, for M-
AURP, we averaged AUPR on each GO term appearing more than
twice in a given testing set, where the test proteins are ranked by the
prediction scores with respect to each GO term.

4.5 Results
In tables of experimental results, the best and second best perform-
ance values are highlighted in bold face and underlined, respectively.

Table 3. Statistics of subsets STRI and HOMO

MFO BPO cco
STRI 286 (67.1%) 638 (69.0%) 446 (36.4%)
HOMO 132 (31.0%) 246 (26.6%) 756 (61.8%)
None 8(1.9%) 3(2.5%) 2(1.8%)
total 426 925 1224

4.5.1 Comparison with competing methods over all test proteins
Table 2 shows the performance comparison of DeepGraphGO and
all competing methods: BLAST-KNN, LR-InterPro, Net-KNN,
DeepGOCNN and DeepGOPlus. We have four main findings: (i)
DeepGraphGO achieved the best performance of both Fy. and
AUPR in all three domains, especially for BPO and CCO. For ex-
ample, DeepGraphGO achieved the highest Fy.x of 0.327 in BPO,
which was 7.2% and 12.8% improvements over Net-KNN (0.305)
and DeepGOPlus (0.290), respectively. This result indicates that
DeepGraphGO made the most of information of both protein
sequences and networks by using graph neural network. (ii) LR-
InterPro achieved the second best performance in MFO, which out-
performed both BLAST-KNN and DeepGOPlus. LR-InterPro uti-
lized protein domain, family and motif information extracted from
InterPro, while BLAST-KNN and DeepGOPlus used only the se-
quence homology information in BLAST and DIAMOND, respect-
ively. This suggests that protein domain and family information
might be more important than sequence homology for function pre-
diction in MFO. (iii) Net-KNN achieved the second best perform-
ance in BPO (Fn,, and AUPR). This is consistent with widely
accepted hypothesis that proteins interacting (connected) in the
same network tend to participate in the same biological process. (iv)
The sequence-based deep learning method, DeepGOCNN, did not
perform well in all three GO domains. This result indicates that
encoding protein sequences by a simple one dimensional convolu-
tional neural network is hard to (extract and) capture the most help-
ful information for AFP.

To check the robustness of improvement by DeepGraphGO, we
conducted bootstrap with replacement 100 times, to generate 100
testing sets. We then ran paired t-test over 100 trials to examine the
statistical significance on performance improvement between
DeepGraphGO and competing methods. The results show that the
performance improvements by DeepGraphGO over competing
methods were all statistically significant (see Supplementary
Materials on the details).

In addition, all methods perform much worse in the BPO cat-
egory compared to MFO and CCO. This is consistent with the
results of CAFA, which could be attributed to the following
factors(Jiang et al., 2016; Zhou et al., 2019): (i) BPO has much
more GO terms and higher depths than MFO and CCO; (ii) the
BPO terms are considered to be more abstract in nature than MFO
and CCO terms; (iii) BPO may have complicated annotation status
such as the annotation depth of benchmark proteins and various an-
notation biases.
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Table 4. Performance on proteins in STRI and HOMO

Method Frax AUPR

MFO BPO CCO  MFO BPO CCoO

STRI
BLAST-KNN 0.608 0.291 0.570 0.466 0.122  0.438
LR-InterPro 0.630 0.293 0.627 0.562 0.162  0.598
Net-KNN 0.443 0.314 0.617 0.297 0.177 0.607

DeepGOCNN 0.432 0.258 0.588 0.173 0.036 0.136
DeepGOPlus 0.602 0306 0.617 0.423 0.118 0.489
DeepGraphGO  0.642  0.348  0.665 0.582 0.209 0.663

HOMO
BLAST-KNN  0.583 0248 0.704 0456 0.104  0.652
LR-InterPro 0.602 0256 0.689 0.501 0.114 0.720
Net-KNN 0422 0.300 0709 0.253 0.128 0.675

DeepGOCNN 0.456 0.231 0.662 0.349 0.088 0.613
DeepGOPlus 0.582 0.257 0.710 0.438 0.100 0.656
DeepGraphGO  0.619  0.306 0.726  0.475 0.157 0.736

4.5.2 Performance comparison over proteins in STRING and
those homologous to proteins in STRING

To further check the usage of network information in
DeepGraphGO, we divided the testing proteins into three subsets:
(i) STRI: proteins in STRING, (ii) HOMO: proteins being not in
STRING but homologous to proteins in STRING and (iii) NONE:
all other proteins. Table 3 shows the number of proteins of these
three subsets. We note that proteins in NONE occupy only
around 2% of all proteins, although DeepGraphGO is unable to
annotate these proteins in NONE (e.g. B2CXA1 and B3H4Y2 in
testing data). We note that proteins in NONE occupy only around
2% of all proteins, although DeepGraphGO is unable to annotate
these proteins in NONE. Table 4 reports the performance of
DeepGraphGO and competing methods on proteins in STRI and
HOMO. DeepGraphGO achieved the best performance under all
settings, except only one case (AUPR of MFO) for HOMO.
Meanwhile, in both cases of STRI and HOMO, LR-InterPro is
mainly the second best method for MFO, while Net-KNN is the
second best method for BPO and CCO. For example, over STRI
proteins, DeepGraphGO achieved the highest Fy.x of 0.642 and
0.348 in MFO and BPO, respectively. Subsequently, LR-InterPro
achieved the second highest F. of 0.630 in MFO, while Net-
KNN achieved the second highest Fax of 0.314 in BPO. In spite
of the similar tendency, the degree of improvements by
DeepGraphGO over competing methods is much higher in STRI
proteins than HOMO proteins. For instance, DeepGraphGO
achieved the 10.8% (0.348 versus 0.314) improvement over Net-
KNN in terms of Fy,x in BPO over STRI proteins, while the im-
provement over HOMO proteins was only 2% (0.306 versus
0.300). All these results suggest that DeepGaphGO could improve
the AFP performance of both STRI and HOMO proteins, particu-
larly STRI proteins because of these proteins appearing in
STRING.

4.5.3 Species (HUMAN and MOUSE) specific performance

We explored the performance of each species listed in Table 1,
particularly HUMAN and MOUSE. Table 5 reports the perform-
ance of DeepGraphGO and competing methods over proteins in
HUMAN and MOUSE. Again DeepGraphGO outperformed all
competing methods in all twelve settings except one.
DeepGraphGO has a notable feature, multispecies strategy, which
uses proteins of all species in a single model at once. To under-
stand the advantage of this feature of using the STRING network
of all 17 species in the training set at once, we considered two
variants of DeepGraphGO: (i) DeepGraphGOs,: trained with

Table 5. Performance comparison on proteins in HUMAN and
MOUSE

Method Frnax AUPR

MFO BPO CCO  MFO BPO CCO

HUMAN (9606)

BLAST-KNN 0471 0241 0.555 0296 0.074 0.384
LR-InterPro 0.593 0282 0.650 0496 0.138  0.603
Net-KNN 0485 0261 0.615 0358 0.143  0.620

DeepGOCNN 0.468 0.263 0.594 0.327 0.114 0.552
DeepGOPlus 0.501 0.277 0.625 0.246 0.088 0.479
DeepGraphGO  0.633  0.320 0.655 0.520 0.178  0.642

MOUSE (10090)
BLAST-KNN 0.681 0.289 0.593 0.593 0.105 0.441
LR-InterPro 0.628 0.312 0.592 0.625 0.175 0.569
Net-KNN 0.420 0302 0.588 0.319 0.167 0.569
DeepGOCNN 0.475 0.258 0.574 0.405 0.129 0.495
DeepGOPlus 0.634 0306 0.598 0.550 0.132  0.488
DeepGraphGO  0.650  0.329  0.638 0.651 0.201 0.634

proteins in the target species only, and (ii) DeepGraphGO.,:
trained with proteins in 16 species other than the target species.
Table 6 shows the performance of DeepGraphGO and the two
variants over test proteins in HUMAN and MOUSE.
DeepGraphGO achieved the best performance in nine out of all
12 settings. Meanwhile, even without using proteins in the target
species for training, DeepGraphGO.y, was one of the two best
methods in eight out of all 12 settings. In contrast,
DeepGraphGOs;, is generally the third best model, which was one
of the two best methods in only five out of all 12 settings. For ex-
ample, DeepGraphGO achieved the highest F,.. of 0.638 on
CCO over MOUSE proteins, which was followed by
DeepGraphGO..g, (0.622) and DeepGraphGOs, (0.602). All these
results indicate that multispecies strategy by DeepGraphGO is
helpful for solving AFP, allowing DeepGraphGO to outperform
all other competing methods. In addition, the relatively good per-
formance of DeepGraphGO., highlights (i) the importance of
using more data than the target species and also (ii) the effective-
ness of GCN of using such a large amount of data for AFP, which
eventually allows to integrate both sequence/domain/family and
network information.

4.5.4 Performance comparison on difficult proteins

Inspired by the result analysis of CAFA2 (Jiang et al., 2016), we
examined the performance of competing AFP methods over diffi-
cult proteins, where the definition of the difficult proteins is: the
sequence identity of the protein (in the training set) most similar
(homologous) to a difficult protein is less than 60%. The number
of difficult proteins in testing set is 303 in MFO, 649 in BPO and
437 in CCO, respectively. Note that obviously it is hard to make
accurate function prediction of these difficult proteins by hom-
ology-based methods. Table 7 shows the performance comparison
of DeepGraphGO and competing methods. DeepGraphGO
achieved the best performance in all six settings, and LR-InterPro
achieved the second best performance in five out of all six set-
tings. For example, DeepGraphGO achieved the highest AUPR of
0.184, which was followed by LR-InterPro (0.148) and Net-KNN
(0.142). LR-InterPro uses protein domain and family information,
which made LR-InterPro outperform BLAST-KNN (in all six set-
tings), which is a sequence homology-based method. We also
found that the performance of DeepGOPlus was worse than LR-
InterPro in five out of all six settings. A possible reason of this re-
sult would be that one of the two components of DeepGOPlus,
DiamondScore, which is a homology-based method, did not work
well for difficult proteins. On the other hand, by taking advantage
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Table 6. Performance comparison of DeepGraphGO and the two variants over proteins in HUMAN and MOUSE

Method Frnax AUPR
MFO BPO CCoO MFO BPO CCO
HUMAN (9606)
DeepGraphGOy, 0.636 0.299 0.629 0.530 0.163 0.601
DeepGraphGO .., 0.612 0.297 0.643 0.524 0.169 0.607
DeepGraphGO 0.633 0.320 0.655 0.520 0.178 0.642
MOUSE (10090)
DeepGraphGOy, 0.559 0.309 0.602 0.499 0.183 0.584
DeepGraphGO .., 0.653 0.302 0.622 0.635 0.178 0.618
DeepGraphGO 0.650 0.329 0.638 0.651 0.201 0.634
Table 7. Performance comparison on difficult proteins
Method Finax AUPR
MFO BPO CCO MFO BPO CCO
BLAST-KNN 0.534 0.274 0.521 0.377 0.114 0.354
LR-InterPro 0.589 0.275 0.613 0.493 0.148 0.591
Net-KNN 0.404 0.292 0.595 0.230 0.142 0.560
DeepGOCNN 0.406 0.243 0.578 0.246 0.091 0.478
DeepGOPlus 0.564 0.292 0.602 0.326 0.108 0.454
DeepGraphGO 0.598 0.322 0.625 0.508 0.184 0.607
Table 8. M-AUPR of DeepGraphGO and competing methods
Method MFO BPO CCO
10-30  31-100 101-300 >300 10-30  31-100 101-300 >300 10-30  31-100 101-300 >300
BLAST-KNN 0.590 0.579 0.533 0.500 0.064 0.192 0.141 0.135 0.296 0.501 0.236 0.251
LR-InterPro 0.544 0.652 0.560 0.545 0.146 0.154 0.120 0.128 0.319 0.461 0.192 0.220
Net-KNN 0.281 0.371 0.301 0.273 0.034 0.131 0.123 0.144 0.126 0.258 0.167 0.248
DeepGOCNN 0.014 0.045 0.235 0.252 0.005 0.019 0.042 0.073 0.004 0.004 0.061 0.169
DeepGOPlus 0.309 0.322 0.414 0.427 0.022 0.078 0.096 0.124 0.170 0.418 0.193 0.239
DeepGraphGO 0.594 0.632 0.571 0.575 0.170 0.196 0.134 0.168 0.353 0.559 0.277 0.295

of both protein domain/family and network information through
GCN layers, DeepGraphGO could outperform LR-InterPro in all
six settings. All these results suggest that DeepGraphGO is the
most reliable and effective model among all compared methods
for the AFP of difficult proteins.

4.6 Results analysis

4.6.1 Comparison over groups divided by #annotations per GO
term

According to the number of annotations per GO term: we grouped
annotations (GO terms) in the testing set into four groups: 10-30,
31-100, 101-300 and >300. Table 8 shows M-AUPR computed in
each group. DeepGraphGO outperformed other methods in all 12
settings except for two cases, being followed by LR-InterPro and
BLAST-KNN in MFO and CCO, respectively (each being one of the
two best in three out of four cases). Deep learning-based methods
showed the worst performance, particularly for less frequent GO
terms. For example, DeepGOCNN showed only 0.014, 0.005 and
0.004 for the 10-30 group in MFP, BPO and CCO, respectively
(The corresponding M-AUPR of DeepGraphGO was 0.594, 0.170
and 0.353, respectively).

4.6.2 Term-centric and pair-centric comparison with network-
based methods over specific species (HUMAN and MOUSE)
Existing network-based methods focus more on the term-centric
metric over a specific species, and so we compared DeepGraphGO
with GeneMANIA, clusDCA and deepNF (state-of-the-art network-
based methods) over HUMAN and MOUSE in term-centric and
pair-centric manners. As the number of testing proteins in each spe-
cies is limited, we collected all GO terms (appearing more than twice
in the testing set) together to compute M-AUPR (and also regular
AUPR was computed). Table 9 reports performance of
DeepGraphGO and the three competing methods. DeepGraphGO
achieved the best performance in all 12 settings, except two cases.
For example, DeepGraphGO achieved the highest M-AUPR of
0.254, followed by GeneMANIA (0.203) and deepNF (0.148).

4.6.3 Integrating DeepGraphGO as a component method of
NetGO

Table 10 shows the performance of DeepGraphGO, two state-of-
the-art ensemble methods for AFP, GOLabeler and NetGO and
DeepGraph-LTR, which is generated by plugging DeepGraphGO
into NetGO as a component to improve the performance. From
Table 10, we have two findings: (i) DeepGraphGO (again which
uses both network and protein domain/family information)
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Table 9. M-AUPR and AUPR of DeepGraphGO and three network-based competing methods over proteins in HUMAN and MOUSE

M-AUPR AUPR

MFO BPO CcCoO MFO BPO CcCco

HUMAN (9606)
GeneMAINIA 0.560 0.203 0.413 0.324 0.147 0.618
clusDCA 0.317 0.145 0.263 0.159 0.059 0.323
deepNF 0.600 0.148 0.445 0.476 0.148 0.654
DeepGraphGO 0.672 0.254 0.362 0.520 0.178 0.642
MOUSE (10090)
GeneMAINIA 0.514 0.192 0.487 0.230 0.154 0.511
clusDCA 0.465 0.167 0.397 0.217 0.095 0.383
deepNF 0.603 0.227 0.476 0.387 0.152 0.588
DeepGraphGO 0.770 0.244 0.547 0.651 0.201 0.634
Table 10. Performance comparison of DeepGraphGO and ensemble methods over the whole testing set
Method Frnax AUPR
MFO BPO CCO MFO BPO CCo

DeepGraphGO 0.623 0.327 0.692 0.543 0.194 0.695
GOLabeler 0.629 0.296 0.685 0.558 0.149 0.708
NetGO 0.630 0.335 0.697 0.553 0.190 0.725
DeepGraphGO-LTR 0.634 0.339 0.702 0.574 0.202 0.736

outperformed GOLabeler (which does not use network information)
in both BP and CC in terms of Fy.x, while the performance of
DeepGraphGO was slightly worse than NetGO, the state-of-the-art
method. (ii) DeepGraphGO-LTR achieved the best performance in
all six cases. For example, the highest AUPR of 0.202 in BPO was
6% higher than NetGO (0.190) and 35.6% higher than GOLabeler
(0.149). Overall, the AFP performance could be further improved in
all three GO domains by using DeepGraphGO as a component of
NetGO.

4.6.4 Ablation experiment on GCN layers with protein network
The main feature of DeepGraphGO is the GCN layers for the input
protein network. Instead of the GCN layer, we train representation
vectors by using a fully connected layer for the input InterPro feature
vectors. We call this alternative as DNN-InterPro. Table 11 reports
the performance of DeepGraphGO and DNN-InterPro. We found
that DeepGraphGO outperformed DNN-InterPro in all six cases
with all three domains. For example, DeepGraphGO achieved 0.327
of Fiax and 0.194 of AUPR in BPO, which were 15.1% and 22.8%,
respectively, higher than DNN-InterPro. This result indicates again
that the GCN layer in DeepGraphGO is effective for improving the
performance of AFP.

4.6.5 Case study

Finally we show a typical example obtained by DeepGraphGO and
competing methods, to illustrate the real performance difference on
annotating GO to a no-knowledge protein in the testing set.
Table 12 shows the GO terms in BPO for the target no-knowledge
protein, Q9BQD7, which were predicted by competing methods and
DeepGraphGO. In Table 12, the bottom row shows 22 true GO
terms of QIBQD?7, and in each row, correctly predicted GO terms
were in red. Q9BQD?7 is a difficult protein, which has no homolo-
gous proteins (cut-off e-value at 0.001) in the training set, by which
BLAST-KNN could not predict any GO terms. LR-InterPro pre-
dicted 12 true GO terms out of the predicted 19 GO terms. Net-
KNN predicted the largest number (45) of GO terms, out of which
18 was true. DeepGOCNN predicted 20 GO terms, with eight true
GO terms, while DeepGOPlus predicted only five GO terms, with

Table 11. Performance comparison of DeepGraphGO and DNN-
InterPro

Method Frnax AUPR

MFO  BPO CCO MFO BPO CcCoO

DNN:-InterPro 0.607 0.284 0.663 0.513 0.158 0.667
DeepGraphGO  0.623  0.327  0.692 0.543 0.194  0.695

four true GO terms. This may be due to that one homology-based
component, DiamondScore, did not work well on the difficult pro-
tein. Finally DeepGraphGO achieved 18 true GO terms out of 25
predicted. Thus 18 was the highest number of correctly predicted
GO terms (by DeepGraphGO and NetKNN), while the number of
wrongly predicted GO terms was only 7 by DeepGraphGO and 23
by Net-KNN. This difference was clearly shown by the difference in
the F1 score in the last column. That is, DeepGraphGo achieved
0.766 of F1 while Net-KNN was 0.537, which was even lower than
0.585 of LR-Interpro. Supplementary Figure S1 in Supplementary
Materials shows the DAG with these 22 GO terms, where each GO
term is attached with the methods, which predict the corresponding
GO term correctly. Overall this real case study demonstrates the
high predictive performance of DeepGraphGO over other compet-
ing methods.

5 Conclusion

We have designed an end-to-end, graph neural network-based
model, DeepGraphGO, for the challenging AFP problem, to make
the most of both protein sequence and protein network information.
DeepGraphGO uses ‘multispecies strategy’, which allows only one
single model to be trained by using proteins of all species. Extensive
experiments under diverse settings revealed that DeepGraphGO out-
performed a number of compared methods, such as DeepGOCNN,
DeepGOPlus and three representative network-based methods,
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Table 12. Predicted GO terms (the root GO term (G0O:0008150 biological process) is omitted) of Q9BQD7 in BPO by NetGO and competing

methods

Method

F1

BLAST-KNN

LR-InterPro

GO0:0006139, GO:0006725, GO:0006807, GO:0008152, GO:0009987, GO:0032259,
GO:0034641, GO:0043170

GO:0043412, GO:0043414, GO:0044237, GO:0044238, GO:0044260, GO:0046483,
G0:0065007, GO:0071704

G0:0090304, GO:1901360, GO:1901564

GO0:0006139, GO:0006412, GO:0006464, GO:0006479, GO:0006518, GO:0006725,
GO0:0006807, GO:0008152

G0:0008213, GO:0009058, GO:0009059, GO:0009987, GO:0010467, GO:0010468,
GO0:0016070, GO:0019222

G0:0019538, GO:0032259, GO:0034641, GO:0034645, GO:0036211, GO:0043043,

0.0
0.585

0.537

Net-KNN GO:0043170, GO: 0043412

GO:0043414, GO:0043603, GO:0043604, GO:0044237 GO:0044238, GO:0044249,

GO:0044260, GO:0044267

G0:0044271, GO:0046483, GO:0048519, GO:0050789, GO:0050794, GO:0060255,

GO0:0065007, GO:0071704

G0:0090304, GO:1901360, GO:1901564, GO:1901566, GO:1901576

GO0:0044238, GO:1901564, GO:0008152, GO:0043170, GO:0044237, GO:0006807, 0.381

DeepGOCNN GO0:0009987, GO:0071704

G0:0019222, GO:0080090

G0:0050896, GO:0050794, GO:0050789, GO:0031323, GO:0048519, GO:0065007,

GO0:0060255, GO:1901576, GO:0009058, GO:0044249

DeepGOPlus

G0:0009987, GO:0008152, GO : 0071704, GO:0044237, GO:0065007 0.296

GO:0006464, GO:0006479, GO:0006807, GO:0008152, GO:0008213, GO:0009058, 0.766

GO0:0009987, GO:0019538

DeepGraphGO
GO:0044237, GO:0044238

GO0:0032259, GO:0034641, GO:0036211, GO:0043170, GO:0043412, GO:0043414,

GO:0044249, GO:0044260, GO:0044267, GO:0050789, GO:0065007, GO:0071704,

GO0:0071840, GO:1901564
GO:1901576

G0:0044238, GO:0006479, GO:0032259, GO:0044237, GO:0018193, GO:0036211,

GO0:0008152, GO:0009987,

Truth G0:0008213, GO:0043414, GO:0043412, GO:0006807, GO:0018205, GO:0006464,

GO0:0044267, GO:0071704,

G0:0019538, GO:1901564, GO:0044260, GO:0043170, GO:0018022, GO:0018023

Note: Correctly predicted GO terms are in red. The last column shows F1 scores.

GeneMANIA, deepNF and clusDCA. Furthermore DeepGraphGO
can be integrated into an ensemble method as a component. Then
DeepGraphGO-LTR, a  method obtained by plugging
DeepGraphGO into NetGO, the state-of-the-art ensemble method
of AFP, outperformed both GOLabeler and NetGO. Possible future
work would be to build a single model for AFP, which can incorpor-
ate all kind of protein information including sequence, structure and
network.
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