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Abstract

Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of
robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these
samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions
for novel proteins and proteins without known homologs. Moreover, most of these methods have been trained on largely
eukaryotic data, and have not been evaluated or applied to microbial datasets. This research introduces DeepGOMeta, a
deep learning model designed for protein function prediction, as Gene Ontology (GO) terms, trained on a dataset relevant
to microbes. The model is validated using novel evaluation strategies and applied to diverse microbial datasets. Data and
code are available at https://github.com/bio-ontology-research-group/deepgometa
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Introduction

Protein function prediction has evolved significantly over the

past few years, transitioning from reliance on basic sequence

alignment to approaches based on machine learning, natural

language processing, or analysis of biological networks [1].

Despite these advances, few methods have been developed for

and evaluated on metagenome or amplicon sequencing data

mainly because there is no “ground truth” unless the methods

are applied to “mock communities” which are highly simplified

versions of actual microbial communities and not representative

of the complexities encountered in real-world cases.

Microbial communities are especially complex, mainly due

to the diversity of organisms they contain, including many

that have yet to be cultured. This gives rise to a phenomenon

often termed metagenomic ‘dark matter’ where 50% to 80%

of metagenomic proteins remain unannotated using current

methods [2]. This complexity and diversity often renders

traditional annotation methods inadequate, particularly when

presented with novel proteins.

Microbial genomic data primarily come in two forms:

amplicon sequences and whole genome sequencing (WGS)

reads. Amplicon sequences, like 16S rRNA, are key for

bacterial taxonomic classification, but their utility in function

prediction is limited. Tools like PICRUSt2 [3] and Tax4Fun2

[4] infer microbial community functions using homology-based

algorithms by aligning to reference databases. However, the

accuracy of these predictions is constrained by algorithm

limitations and database completeness. WGS enables the

reconstruction of complete microbial genomes, allowing for a

more direct assessment of a microbial community’s functional

potential, traditionally done by aligning protein-coding

sequences to known proteins using algorithms like BLAST [5].

Existing protein function prediction methods face significant

limitations in microbial contexts. Even when enhanced

with machine learning, these methods are limited by their

training datasets. For example, the Critical Assessment

of Function Annotation (CAFA) challenge [6] utilizes the

SwissProt database, rich in eukaryotic proteins, overlooking

the predominantly prokaryotic nature of metagenomes [7].

Moreover, most of these methods have not been validated on

or applied to microbial data, largely due to the lack of robust

evaluation strategies. These limitations highlight the need for

models trained on relevant data and innovative evaluation

strategies.

Deep learning has shown remarkable potential in analyzing

biological data through its ability to detect intricate patterns

in vast datasets [8]. DeepGOMeta incorporates ESM2

(Evolutionary Scale Modeling 2) [9], a deep learning framework

that extracts meaningful features from protein sequences by

learning from evolutionary data. By utilizing these learned

features through ESM2, and training on a more representative

dataset, DeepGOMeta can predict protein functions even in

the absence of explicit sequence similarity or homology to

known proteins. Moreover, we introduce novel evaluation

strategies to assess the method’s performance when applied

to microbial data. Taken together, DeepGOMeta addresses

the multifaceted challenges associated with protein function

prediction for microbial data.
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Methods

Materials and Data

UniProtKB/Swiss-Prot Dataset and Gene Ontology
We obtained all proteins that were manually curated and

reviewed from the UniProtKB/Swiss-Prot Knowledgebase

(v2023 03, r28-June-2023) [10]. We further filtered to select for

proteins that belong to prokaryotes, archaea and phages, and

only kept proteins with experimental functional annotations

using evidence codes EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC,

HTP, HDA, HMP, HGI, HEP. The dataset contains 10, 107

reviewed and manually annotated proteins.

Metagenomes contain many uncharacterized, novel proteins

and in order to evaluate our models on novel proteins, we

generated training, validation and testing splits based on

sequence similarity. First, we grouped the proteins by their

similarity using Diamond (v2.0.9) [11] (e-value 0.001) and split

them into training, validation and testing sets, 81/9/10 %,

respectively. This is to ensure that the training and validation

set proteins do not have any similar sequences in the training

set.

We trained and evaluated a model for each of the GO sub-

ontologies separately (r2023-01-01) [12]. Table 1 summarizes

the datasets for each sub-ontology.

To compare our model against other methods, we generated

a test set by following the CAFA [6] challenge time-based

approach. We downloaded UniProtKB/Swiss-Prot (v2023 05

r2023-11-08) and extracted newly annotated proteins in this

version.

Table 1. Summary of the UniProtKB/Swiss-Prot dataset

Ontology Terms Proteins Groups Train Valid Test Time

MFO 3,022 6,280 2,264 5,297 354 629 30

BPO 4,861 6,620 2,717 5,563 453 604 45

CCO 537 4,975 2,539 4,174 398 403 26

The table shows the number of GO terms, number of proteins in training,

validation, and testing sets for the UniProtKB/Swiss-Prot dataset.

Protein-Protein Interactions data
For the 10,107 proteins in our dataset, we obtained protein–

protein interaction (PPI) data from the STRING (v11.0) [13]

database, which yielded 14,524 interactions. There were 7

different modes of interactions: binding, activation, reaction,

catalysis, expression, inhibition, and ptmod.

Microbial Benchmark Datasets

MGnify dataset

To evaluate microbial protein annotations, we downloaded

the MGnify protein database (r2023 02) [14] and its

associated metadata. This database includes protein sequences

from publicly available metagenomic assemblies within

MGnify. We extracted 2,000 random proteins from this

database, where half were ’aquatic’ and half were ’terrestrial’

(lineage:root:Environmental:Terrestrial/Aquatic).

Paired 16S and WGS dataset

We applied our method to generate functional profiles

of microbial communities using four publicly available

datasets that contain both 16S amplicon data and WGS

from the same samples, shown in Table 2. We used

two human stool microbiomes: 60 samples from Indian

individuals (PRJNA397112) and 60 samples from Cameroonian

individuals (WGS: PRJEB27005, 16S: mgp15238) [15, 16],

an environmental microbiome: 22 blueberry plant soil

samples (WGS: PRJNA484230, 16S: PRJNA389786), and

11 mammalian stool samples (WGS: SRP115632, 16S:

SRP115643). The datasets represent a variety of host-

associated and environmental microbiomes.

Table 2. Descriptions of the paired datasets used for evaluation

Name Biome N Region OTUs

India human stool 60 V3 2077

Cameroon human stool 60 V5-V6 721

Blueberry terrestrial 22 V6-V8 1824

Mammalian Stool mammalian stool 11 V6-V8 420

Biome, number of samples, 16S rRNA gene region and number of

identified OTUs for each dataset.

Baseline and Comparison methods
For our evaluations, we used baseline methods that do not

rely on predictions based on sequence similarity, as our aim is

to test the predictors on challenging sequences. Therefore, we

do not include methods that are primarily based on sequence

similarity, such as BLAST, Diamond, or their combinations, as

baselines. For the time-based dataset evaluation, we selected

three state-of-the-art methods developed by other groups: [17],

SPROF [18] and NetGO3 [19].

Naive approach

Due to the imbalance in GO class annotations and propagation

based on the true-path-rule, some classes have more

annotations than others. Therefore, it is possible to obtain

prediction results just by assigning the same GO classes to all

proteins based on annotation frequencies. In order to test the

performance obtained based on annotation frequencies, CAFA

introduced a baseline approach called “naive” classifier [6].

Here, each query protein p is annotated with GO classes with

a prediction scores computed as:

S(p, f) =
Nf

Ntotal

(1)

where f is a GO class, Nf is a number of training proteins

annotated by GO class f , and Ntotal is a total number of

training proteins. We implemented the same method.

MLP (ESM2)

The MLP baseline method predicts protein functions using

a multi-layer perception (MLP) from a protein’s ESM2

embedding [9]. We generated an embedding vector of size 5,192

using the ESM2 15B model and passed it to two layers of MLP

blocks where the output of the second MLP block had residual

connection to the first block. This representation is passed to

the final classification layer with sigmoid activation function.

One MLP block performs the following operations:

MLPBlock(x) = DropOut(BatchNorm(ReLU(Wx + b)))

(2)

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.28.577602doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.577602
http://creativecommons.org/licenses/by/4.0/


DeepGO-META 3

The input vector x of length 5, 192 represents the ESM2

embedding and is reduced to 1, 024 by the first MLPBlock:

h = MLPBlock(x) (3)

This representation is passed to the second MLPBlock with

the input and output size of 1, 024 and added to itself using a

residual connection:

h = h + MLPBlock(h) (4)

Finally, we passed this vector to a classification layer with a

sigmoid activation function. The output size of this layer is

equal to the number of classes in each sub-ontology:

y = σ(Wh + b) (5)

We trained a different model for each sub-ontology in GO.

DeepGO-PLUS and DeepGOCNN

DeepGO-PLUS [20] predicts protein functions by combining

DeepGOCNN, which predicts functions from the amino acid

sequence of a protein using a 1-dimensional convolutional

neural network (CNN), and the DiamondScore method.

DeepGOCNN captures sequence motifs that are related to GO

functions. Here, we only used CNN based predictions.

DeepGOZero

DeepGOZero [21] combines protein function prediction with

a model-theoretic approach for embedding ontologies into

a distributed space, ELEmbeddings [22]. ELEmbeddings

represent classes as n-balls and relations as vectors to embed

ontology semantics into a geometric model. It uses InterPro

domain annotations represented as binary vector as input and

applies two layers of MLPBlock as in our MLP baseline method

to generate an embedding of size 1024 for a protein. It learns

the embedding space for GO classes using ELEmbeddings

loss functions and optimizes together with protein function

prediction loss. For a given protein p DeepGOZero predicts

annotations for a class c using the following formula:

y
′
c = σ(fη(p) · (fη(hF ) + fη(c))

T
+ rη(c)) (6)

where fη is an embedding function, hF is the hasFunction

relation, rη(c) is the radius of an n-ball for a class c and σ is

a sigmoid activation function. It optimizes binary crossentropy

loss between predictions and the labels together with ontology

axioms losses from ELEmbeddings.

TALE

TALE [17] predicts functions using a transformer-based deep

neural network model which incorporates hierarchical relations

from the GO into the model’s loss function. The deep neural

network predictions are combined with predictions based on

sequence similarity. We used the trained models provided by

the authors to evaluate them in the time-based dataset.

SPROF-GO

SPROF-GO [18] method uses the ProtT5-XL-U50 [23] protein

language model to extract proteins sequence embeddings

and learns an attention-based neural network model. The

model incorporates the hierarchical structure of GO into the

neural network and predicts functions that are consistent with

hierarchical relations of GO classes. Furthermore, SPROF-

GO combines sequence similarity-based predictions using a

homology-based label diffusion algorithm. We used the trained

models provided by the authors to evaluate them on the

time-based dataset.

Pathway prediction

PICRUSt2 [3] provides the potential functions of microbial

communities using 16s rRNA data and a reference genome

databases. We used operational taxonomic unit (OTU) tables

as the input for PICRUSt2 and focused on MetaCyc [24]

pathways and their abundance scores. We performed Principal

Component Analysis (PCA) and k-means clustering to discern

patterns within the dataset based on these MetaCyc pathway

features. The value of k was determined based on the number

of categories within each phenotype. We measured clustering

purity based on the true phenotype labels in the datasets (eq.

16).

Evaluation

Evaluation metrics

We used four different measures to evaluate the performance

of our models. Three protein-centric measures Fmax, Smin and

AUPR and one class-centric AUC.

Fmax is a maximum protein-centric F-measure computed

over all prediction thresholds. First, we computed average

precision and recall using the following formulas:

pri(t) =

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)∑

f I(f ∈ Pi(t))
(7)

rci(t) =

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)∑

f I(f ∈ Ti)
(8)

AvgPr(t) =
1

m(t)
·
m(t)∑
i=1

pri(t) (9)

AvgRc(t) =
1

n
·

n∑
i=1

rci(t) (10)

where f is a GO class, Ti is a set of true annotations, Pi(t)

is a set of predicted annotations for a protein i and threshold

t, m(t) is a number of proteins for which we predict at least

one class, n is a total number of proteins and I is an indicator

function which returns 1 if the condition is true and 0 otherwise.

Then, we compute the Fmax for prediction thresholds t ∈ [0, 1]

with a step size of 0.01. We count a class as a prediction if its

prediction score is greater than or equal to t:

Fmax = max
t

{
2 · AvgPr(t) · AvgRc(t)

AvgPr(t) + AvgRc(t)

}
(11)

Smin computes the semantic distance between real and

predicted annotations based on information content of the

classes. The information content IC(c) is computed based on

the annotation probability of the class c:

IC(c) = −log(Pr(c|P (c)) (12)

where P (c) is a set of parent classes of the class c. The Smin is

computed using the following formulas:

Smin = min
t

√
ru(t)2 + mi(t)2 (13)

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.28.577602doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.577602
http://creativecommons.org/licenses/by/4.0/


4 Tawfiq et al.

where ru(t) is the average remaining uncertainty and mi(t) is

average misinformation:

ru(t) =
1

n

n∑
i=1

∑
c∈Ti−Pi(t)

IC(c) (14)

mi(t) =
1

n

n∑
i=1

∑
c∈Pi(t)−Ti

IC(c) (15)

AUPR is the area under the average precision (AvgPr) and

recall (AvgRc) curve.

AUC is a class-centric measure where we computed AUC

ROC per class and calculated the average.

Purity assesses the homogeneity of clusters formed by a k-

means clustering algorithm. We clustered samples based on

their predicted functions and used purity to evaluate whether

the samples with same phenotype are in the same cluster. The

Weighted Average Clustering Purity (WACP) formula is given

by:

wAvgP =
1

N

N∑
i=1

(∑k
j=1 wj · nij

ni

)
(16)

where N is the total number of data points, k is the number

of clusters, nij is the number of data points from cluster j

that are assigned to cluster i, ni is the total number of data

points assigned to cluster i, and wj is the weight associated

with cluster j.

We calculated function abundance to provide a quantitative

assessment of the functional potential within a microbial

sample. The abundance of a function (A(f) is the sum of the

relative abundance of all taxa present in a sample that contain

a certain function, given by:

A(f) =
n∑

i=1

R(ti) · I(f, ti) (17)

where i is an index representing each taxon, n is the total

number of taxa in the sample, R(ti) is the relative abundance of

the ith taxon, and I(f, ti) is an indicator function that equals

1 if the ith taxon contains function f , and 0 otherwise.

MGnify dataset

We annotated the 2,000 randomly selected proteins with

DeepGOMeta, which annotates each protein with GO

terms. We used two clustering approaches for the first

evaluation. The first approach, sequence similarity clustering,

involved calculating pairwise sequence similarities between the

proteins using DIAMOND BLASTp (v2.1.8) [11], followed by

dimensional reduction using t-Distributed Stochastic Neighbor

Embedding (t-SNE), and k-means clustering with k=2 based on

the binary nature of the dataset’s phenotypes. We calculated

clustering purity using the known environment labels of the

proteins.

For the second approach, semantic similarity clustering,

we filtered the GO annotations resulting from DeepGOMeta

to retain the most specific terms for each protein. For

measuring the semantic similarity between protein pairs, we

utilized Resnik’s similarity method [25], combined with Best

Match Average (BMA) strategy. Resnik’s similarity measure

is defined as the most informative common ancestor (MICA)

of the compared classes in the ontology. First, we computed

information content (IC) for every class with following formula:

IC(c) = − log(p(c)) (18)

Then, we found Resnik’s similarity by:

SimResnik(c1, c2) = IC(MICA(c1, c2)) (19)

We computed all possible pairwise similarities of two annotation

sets and combined them with:

SimBMA(A,B) =

c1 ∈ A(max
c2∈B

(s(c1, c2))) + c1 ∈ B(max
c2∈A

(s(c1, ce2)))

2
(20)

where s(x, y) = SimResnik(x, y).

We then performed a similar dimensionality reduction and

clustering using t-SNE, k-means and a purity calculation (eq.

16).

We further subsetted the 2,000-protein Mgnify dataset to

only keep proteins with existing Pfam annotations (n = 567)

[26]. For these proteins, we used Pfam2GO to map Pfam and

GO annotations. We calculated purity using the same semantic

similarity clustering approach described earlier.

Paired dataset

We analyzed four diverse microbiome datasets, each containing

paired 16S rRNA amplicon and WGS data. For the 16S data,

we used a Nextflow pipeline employing the RDP classifier

(v18) for processing and taxonomic classification available

on our GitHub repository1. We sourced protein sequences

corresponding to the identified bacteria in the RDP database

from NCBI and annotated with DeepGOMeta [27, 28]. We then

constructed functional profiles for each sample by aggregating

the DeepGOMeta-derived functions of all bacteria present,

weighing each function by the relative abundance of the genera

in which it was present (eq. 17). We also constructed a a binary

matrix of all the samples and functions in the dataset, where

the presence of a function in a sample is represented by 1 and

the absence by 0.

For WGS data, we used fastp (v0.23.2) [29] for trimming [-q

30]. For host-associated microbiome samples, we used Bowtie2

(v2.5.1) [30] to filter out reads mapping to the host’s reference

genome. We then assembled the reads with MEGAHIT (v1.2.9)

[31], predicted protein sequences with prodigal (v2.6.3) [32],

and annotated the predicted proteins using DeepGOMeta. For

each sample, we constructed a functional profile by aggregating

the functions derived from DeepGOMeta annotations of all

proteins present in the sample. We constructed a binary matrix

for these results as described above.

For each dataset, we applied PCA and k-means clustering to

the OTU table containing the relative abundance of bacterial

genera. The choice of k in k-means clustering was determined by

the number of phenotype categories present for each phenotype

under investigation. We calculated clustering purity based

on the known phenotype category labels provided in the

metadata (eq. 16). We conducted this analysis for all categorical

phenotypes across each dataset.

1 https://github.com/bio-ontology-research-group/

16SProcessing
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Fig. 1. The figure provides an overview of the workflows used to generate

functional profiles using DeepGOMeta for amplicon samples and WGS

samples.

Results

DeepGOMeta
Microbial samples are complex and contain many uncharacterized

proteins. Previously, we developed DeepGO-SE [33], a

method for protein function prediction using protein sequence

embeddings generated by ESM2 [9] and approximate semantic

entailment. We showed that DeepGO-SE can be applied to

uncharacterized proteins; however, since it is trained on all

experimentally annotated proteins form UniProt-KB/Swissprot

database, many of the functions it predicts are not relevant to

microbiomes and exist only in eukaryotic genomes. Therefore,

we trained DeepGOMeta, a specific version of DeepGO-

SE, optimized to predict functions of organisms found in

microbiomes. We created a dataset of prokaryotic, archaeal

and viral proteins with experimental annotations from UniProt-

KB/SwissProt and trained and evaluated three models for the

three sub-ontologies of GO. In addition, we created a time-

based benchmark dataset in order to compare with DeepGO-SE

and other state-of-the-art function prediction methods.

Proteins do not function in isolation and PPIs play

significant role in biological processes that take place in

the environment. PPI networks also offer a means to reveal

functional information for unknown proteins within microbial

datasets. In order to test if PPIs help to improve protein

function predictions, we trained a model which combines PPIs

from STRING Database [13] using Graph Attention Networks.

We refer to this model as DeepGOMeta-PPI.

We developed novel evaluation strategies to test the

performance of DeepGOMeta in annotating proteins derived

from microbial data, and we used these strategies to

test the method against sequence-similarity clustering and

Pfam database annotations. We also developed two different

workflows for functional characterization of microbial samples

consisting of 16S amplicon and WGS reads. In the case of

16S amplicon reads, we use OTUs to predict functions by

utilizing the reference genomes of the genera in the samples.We

then aggregate all the functions that were annotated into a

functional profile for that genus. In the case of WGS reads,

we performed de novo metagenome assembly and predicted

functions from metagenome assemblies. Figure 1 depicts these

workflows. We applied DeepGOMeta to diverse microbial

datasets, and compared functional profiles, pathways, and

taxonomy-based methods to gain biological insights.

Evaluation on the similarity-based benchmark
We trained, validated and tested our models for the three

sub-ontologies of GO using the UniProtKB/Swiss-Prot dataset

splitted based on sequence similarity (See Methods section).

We compared with four baseline methods such as MLP(ESM2),

DeepGraphGO, InterPro and Naive. We selected these methods

because they do not rely on sequence similarity to predict

functions.

In the MFO evaluation, DeepGOMeta performed best

in all evaluation metrics. It performed slightly better than

MLP(ESM2) in terms of Fmax and Smin,; however, the AUPR

and term-centric AUC were significantly better. Combining PPI

network features into the model reduced its performance, but

was still better than the DeepGraphGO method, which is also

based on PPIs. Table 3 provides the evaluation results for MFO

classes.

Table 3. Evaluation results for Molecular Function Ontology classes

Method Fmax Smin AUPR AUC

MLP(ESM2) 0.465 12.587 0.432 0.723

DeepGOMeta 0.468 12.230 0.449 0.874

DeepGOMeta-PPI 0.436 12.909 0.392 0.839

DeepGraphGO 0.315 14.385 0.223 0.456

InterPro 0.208 13.685 0.308 0.588

Naive 0.312 14.398 0.161 0.500

This table shows protein-centric Fmax, Smin, and AUPR, and the class-

centric average AUC.

In the BPO evaluation, our model resulted in best Fmax

of 0.476 which was significantly better (Wilcoxon signed-rank

test p-value is 8 · 10−37) than the second best MLP(ESM2)

baseline. Combining PPI networks in DeepGOMeta did not

improve the model and lead to slightly lower Fmax of 0.469.

Interestingly, InterPro baseline performance was close to Fmax

of 0. We believe that this might be due to the fact that not

many of InterPro annotations are linked to BPO classes. It

also explains the low performance of the DeepGraphGO method

which uses InterPro annotations. Table 4 provides detailed

evaluation results.

Table 4. Evaluation results for Biological Process Ontology classes

Method Fmax Smin AUPR AUC

MLP(ESM2) 0.449 20.095 0.419 0.811

DeepGOMeta 0.476 19.394 0.462 0.847

DeepGOMeta-PPI 0.469 19.715 0.443 0.823

DeepGraphGO 0.340 22.607 0.283 0.507

InterPro 0.040 24.691 0.294 0.519

Naive 0.337 22.564 0.248 0.500

This table shows protein-centric Fmax, Smin, and AUPR, and the class-

centric average AUC.

In the CCO evaluation, DeepGOMeta achieved the best

Fmax of 0.739 followed by almost the same performance

by MLP(ESM2) baseline. Noticably, MLP(ESM2) method

resulted in the best Smin. Similarly to MFO and BPO

evaluations, combining PPIs did not improve the predictions.

DeepGraphGO method resulted in Fmax of 0.501 which is

slightly better than Naive classifier, and InterPro annotation-

based prediction performance was close to zero. Table 5

provides the evaluation results.
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Table 5. Evaluation results for Cellular Component Ontology

classes

Method Fmax Smin AUPR AUC

MLP(ESM2) 0.738 3.369 0.741 0.897

DeepGOMeta 0.739 3.394 0.759 0.903

DeepGOMeta-PPI 0.706 3.648 0.710 0.869

DeepGraphGO 0.501 5.218 0.494 0.577

Interpro 0.075 6.067 0.322 0.539

Naive 0.498 5.367 0.308 0.500

This table shows protein-centric Fmax, Smin, and AUPR, and the class-

centric average AUC.

By embedding proteins with ESM2 [9] and employing graph

attention mechanisms, our model further enriched the protein

feature with contextual information present in the PPI network.

However, the results indicated that incorporating PPIs as

background information did not improve function prediction

in our case. Upon scrutinizing the interaction data, we noticed

that the interaction information was excessively sparse, failing

to provide substantial support for function prediction and,

instead, introducing additional noise. Our datasets included

10,107 proteins and 14,524 interactions, but only 1,935 proteins

had interactions. Given the sub-optimal performance and

sparse nature of PPI data, we excluded the DeepGOMeta-PPI

model from further evaluation.

Evaluation and comparison on the time-based split
We used a time-based split to evaluate DeepGOMeta as

microbial data often contains an abundance of novel proteins.

This is to ensure that our model is robust and effective in

predicting the functions of these newly discovered proteins. We

did this by comparing DeepGOMeta predictions on the newly

annotated proteins with other state-of-the-art methods that

predict functions based on protein language model embeddings

and transformer-based deep learning models, including TALE

[17], SPROF-GO [18] and DeepGO-SE [33]. We found that

DeepGOMeta outperforms the DeepGO-SE method in all three

sub-ontology evaluations and performs better than all the

compared methods in the BPO and CCO evaluations in terms

of Fmax and Smin. However, it resulted in lower performance

than SPROF-GO method in the MFO evaluation and in terms

of AUC in BPO evaluation. Table 6 shows the results of this

evaluation.

Evaluation strategies on microbial proteins
Given the unique challenges presented by microbial data and

the lack of robust evaluation strategies, it was necessary

to develop new strategies to assess the performance of

DeepGOMeta in annotating microbial proteins in comparison

with current annotation methods. Our evaluation employs k-

means clustering and clustering purity based on true phenotype

labels as a key metric (eq. 16) using a two-fold strategy.

First, we compared our method against traditional sequence

similarity-based methods by clustering based on sequence

similarity. Second, we compared our method against database

annotations by clustering based on semantic similarity.

Sequence similarity is a well-established method often

employed in homology-based function prediction, and we aim

to illustrate how DeepGOMeta performs in comparison to this

approach. We used DeepGOMeta to annotate 2,000 proteins

Fig. 2. Clustering of microbial proteins (n = 2000) from MGnify.

(a) Clustering based on sequence similarity between all proteins. (b)

Clustering based on semantic similarity between all proteins.

Fig. 3. Clustering of microbial proteins (n = 567) from MGnify that

possess Pfam annotations. (a) Clustering based on sequence similarity

between all proteins. (b) Clustering based on semantic similarity between

all proteins.

derived from microbial data in the MGnify database, and we

calculated pairwise sequence similarity for these proteins. We

clustered the proteins based on their sequence similarity scores

and calculated purity, and in order to allow for an evaluation of

our predicted functions against this, we clustered the proteins

based on their predicted functions using semantic similarity.

Both methods yielded a clustering purity of 0.55 (Figure 2).

This implies that DeepGOMeta is at least as effective as

traditional sequence similarity-based approaches, based on the

assumption that a a similar degree of clustering purity based

on the true phenotype labels indicates similar performance.

As most current function annotation methods rely on

annotations in existing databases, we subsetted this dataset

to only keep proteins with Pfam annotations to compare

against DeepGOMeta annotations. We observed that only 567

proteins have existing annotations, highlighting the annotation

limitation in these traditional databases. DeepGOMeta was

capable of annotating all 2,000 proteins, demonstrating its

comprehensive annotation coverage. When focusing on the

subset of 567 proteins with Pfam annotations, sequence

similarity clustering yields a clustering purity of 0.6. After

mapping the Pfam annotations to GO terms using Pfam2G),

we found that the clustering purity using semantic similarity

was also 0.6 for both Pfam and DeepGOMeta annotations

(Figure 3). This parity in clustering purity might suggest that

DeepGOMeta does not surpass sequence similarity methods in

terms of predictive accuracy. However, it has the advantage

that it can annotate all the proteins in the dataset.

Applications on amplicon and metagenome data
To demonstrate the utility of our method in function prediction

for different types of microbial data, we used paired datasets of

16S amplicon reads and WGS reads of the same samples. Here,
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Table 6. Evaluation of DeepGOMeta on time-based split

MFO BPO CCO

Method Fmax Smin AUC Fmax Smin AUC Fmax Smin AUC

DeepGO-SE 0.369 11.569 0.613 0.371 19.704 0.592 0.696 5.252 0.713

SPROF-GO 0.383 11.299 0.740 0.422 19.035 0.718 0.661 5.427 0.750

TALE 0.229 13.332 0.662 0.283 22.687 0.630 0.653 6.579 0.620

DeepGOMeta 0.371 11.967 0.602 0.431 18.296 0.644 0.749 4.497 0.758

we employed our evaluation strategy where we used clustering

to assess our method’s efficacy in capturing functionally

relevant information from microbial communities. Due to the

absence of ground-truth data for microbial functions, we

assume that protein functions found in microbial communities

are more similar when the microbial communities are from the

same environment or share identical phenotypes. Consequently,

we used functional similarity, based on the functions predicted

by DeepGOMeta, to cluster microbial samples. This clustering,

based on functional similarity, serves as an unsupervised and

ostensibly unbiased method to group microbial communities

by their functions. This approach allowed us to explore the

primary drivers of community composition, focusing on the

application of DeepGOMeta for gaining biological insights.

We used DeepGOMeta to construct functional profiles for

each sample using reads from both sequencing strategies and

compared against taxonomy-based clustering (Table 7). For

each dataset, based on DeepGOMeta results, we constructed

a binary representation of functions which indicates presence

or absence of a function. For 16S data, we also constructed

an abundance-weighted matrix, in which each function is

assigned a weight (eq. 17). In certain contexts, DeepGOMeta

demonstrated superior performance over OTU-based clustering.

Specifically, in 5 out of the 9 phenotypes we analyzed,

employing 16S functions (abundance-weighted) proved to be

either on par with or more effective than clustering by

OTUs. This suggests that DeepGOMeta’s functional profiles

can be effective in capturing specific functional attributes

that are unique to each phenotype. In some datasets, such

as Mammalian Stool and Cameroon (Region, Ethnicity),

the functional attributes were more defining than taxonomic

composition, suggesting that these community compositions are

driven by functions (in contrast to taxa).

Conversely, in 3 out of 9 phenotypes studies, OTU-based

clustering proved more effective. Specifically, in two datasets

(Blueberry, India), the location phenotype was better explained

by OTU composition than by functions. Interestingly, we

found that using 16S functions in a binary format never

outperformed the abundance-weighted approach, suggesting its

limited efficacy. In the case of WGS functions, this method only

took the lead in 1 out of 9 phenotypes, possibly indicating the

necessity of weighing functions.

We also compared OTU-based clustering and DeepGOMeta-

derived functional profiles with pathways generated by

PICRUSt2 (detailed in the methods section). PICRUSt2

provides functional insights into microbial communities through

KEGG/MetaCyc pathways. In only one case, the Cameroon

dataset (Diet), we find that the functional insights provided by

PICRUSt2 exhibit a better capacity to separate the phenotype

than taxonomy-based clustering. We also find that pathway

predictions and taxonomic composition separate samples by

location equally well in the India dataset. However, for other

datasets, there is no clear distinction between pathway-based

and taxonomy-based clustering purity; none of which show

a clear superiority in separating the samples between the

phenotypes.

Compared to DeepGOMeta, PICRUSt2’s pathway information

would be considered limited, as it constitutes only a subset

of the predictable functions by DeepGOMeta in the form of

BPO predictions. The results also indicate that PICRUSt2’s

functional information overall does not separate samples better,

based on phenotype, in comparison to DeepGOMeta. However,

the experiment falls short of comparing the performance of

the two function prediction methods. This indicates either a

lack of strong associations between pathways and phenotypes

or limitations of the algorithm/database used by PICRUSt2.

Discussion

In this study we introduced DeepGOMeta, which aims to

overcome the limitations of current methods in their lack of

representative training sets and the lack of validation and

applications on microbial data. Current function prediction

methods are predominantly trained on eukaryotic data. We

trained, tested, and evaluated three different models on

UniProtKB/Swiss-Prot Knowledgebase proteins that belong

to microbial species (prokaryotes, archaea, viral), a set

more representative of species prevalent in microbial datasets.

DeepGOMeta provides function predictions in the form of GO

terms, as each of the three models was trained on a distinct

GO sub-ontology. DeepGOMeta demonstrates an improvement

over similarity-based benchmark methods in most evaluation

metrics across the three sub-ontologies. In the comparison using

a time-based split, DeepGOMeta outperformed DeepGO-SE,

TALE and SPROF-GO in all three sub-ontology evaluations

in BPO and CCO assessments in Fmax and Smin metrics.

However, in the MFO evaluation, the model was outperformed

by SPROF-GO.

To evaluate the method’s predictions on microbial proteins,

we designed a novel evaluation and benchmark strategy in

which we use k-means clustering and clustering purity based

on true phenotype labels in order to evaluate our method

against sequence similarity-based methods and annotations in

existing databases. For this, we use both sequence similarity-

based clustering and semantic similarity-based clustering.

We demonstrated that DeepGOMeta performs as well as

traditional sequence similarity approaches in annotating

2,000 proteins from the MGnify protein database. This

indicates the method’s ability to group proteins based on the

environment in which they were found based on their predicted

function. Notably, while only 567 proteins had existing Pfam

annotations, DeepGOMeta successfully annotated all 2,000

proteins, showcasing its comprehensive annotation capabilities.

While DeepGOMeta successfully annotated these proteins,

extending the functional knowledge base, we recognize that

further validation is necessary to ensure the specificity
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Table 7. K-means cluster purity based on genus abundance and function abundance (k = number of true phenotype labels) - Transposed.

Mammalian Stool Blueberry India Cameroon

Datatype Host Type Location Location Diet Region Diet Sex Ethnicity

OTUs 0.63 0.63 0.77 0.62 0.73 0.41 0.43 0.61 0.67

16S Functions (Abundance) 0.72 0.63 0.68 0.58 0.73 0.44 0.43 0.56 0.69

16S Functions (Binary) 0.64 0.55 0.68 0.58 0.73 0.44 0.48 0.57 0.67

WGS Functions 0.55 0.55 0.68 0.58 0.73 0.41 0.52 0.56 0.69

Pathways 0.60 0.61 0.67 0.62 0.69 0.38 0.48 0.55 0.64

and accuracy of these annotations. The absence of Pfam

annotations for this subset presents a challenge in directly

validating the functional relevance and precision of our model’s

predictions.

We demonstrated an application of DeepGOMeta in

annotating both amplicon and metagenomic data in diverse

datasets using a workflow that we have developed for this

purpose. We constructed functional profiles for each samples

based on 16S amplicon and WGS data, and compared the

clustering of phenotypes against clustering based on taxonomic

classification, allowing us to explore the primary drivers of

community composition. We found that, overall, generating

functional profiles using 16S amplicon data with DeepGOMeta

(abundance-weighted) yields a higher clustering purity than

clustering by OTUs. This indicates that many phenotypic

differences can be attributed to functional variability rather

than taxonomic composition. However, the variability in

performance across the different datasets and phenotypes

highlights that microbial community composition could be

driven by functions and/or taxonomy. Looking forward, we

propose several avenues for further enhancing the method’s

utility. We plan to expand the training data to incorporate

eukaryotic microbial genomes for WGS analysis, which will

enable a more comprehensive understanding of metagenomic

samples in ecosystems where eukaryotes play significant roles.

Furthermore, as our observations reveal the sparsity of

PPIs in bacteria, we intend to incorporate methods for

interaction predictions. Integrating such methods as features

within DeepGOMeta could substantially enhance its predictive

accuracy and, consequently, our understanding of microbial

interactions.

Additionally, we plan to expand our bioinformatics workflow

in two ways. First, we aim to explore several ways through

which we can assign weights to functions assigned to proteins

from WGS data. Second, we would use the predicted functions

and interactions to elucidate pathways both within and

between organisms. This shift towards unraveling more complex

biological processes will facilitate a deeper understanding of

the intricate interactions and dependencies within microbial

communities.
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