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Abstract—Knowledge of protein functions plays an important role in biology andmedicine.With the rapid development of high-throughput

technologies, a huge number of proteins have been discovered. However, there are a great number of proteins without functional

annotations. A protein usually hasmultiple functions and some functions or biological processes require interactions of a plurality of

proteins. Additionally, GeneOntology provides a useful classification for protein functions and containsmore than 40,000 terms.We

propose a deep learning framework called DeepGOA to predict protein functionswith protein sequences and protein-protein interaction

(PPI) networks. For protein sequences, we extract two types of information: sequence semantic information and subsequence-based

features.We use the word2vec technique to numerically represent protein sequences, and utilize a Bi-directional Long and Short Time

Memory (Bi-LSTM) andmulti-scale convolutional neural network (multi-scale CNN) to obtain the global and local semantic features of

protein sequences, respectively. Additionally, we use the InterPro tool to scan protein sequences for extracting subsequence-based

information, such as domains andmotifs. Then, the information is plugged into a neural network to generate high-quality features. For

the PPI network, the Deepwalk algorithm is applied to generate its embedding information of PPI. Then the two types of features are

concatenated together to predict protein functions. To evaluate the performance of DeepGOA, several different evaluationmethods

andmetrics are utilized. The experimental results show that DeepGOA outperformsDeepGO and BLAST.

Index Terms—Deep learning, protein function, protein-protein interaction, protein sequence, protein domain

Ç

1 INTRODUCTION

PROTEINS perform specific functions in organisms and are
virtually involved in various biological activities, such

as body movement, metabolism, and structural support [1].
With the rapid development of high-throughput technolo-
gies, many protein databases have been available. However,
there are a great number of proteins without functional
annotations. For instance, only about 1 percent of proteins
have been confirmed with experiments and manually anno-
tated in the UniProt database [2]. Protein functions are usu-
ally discovered via in vitro or in vivo experiments [3].
However, biological experimental methods are expensive
and time-consuming. Thus, it is a difficult task to determine
the functions of a huge number of unannotated proteins
with experimental methods.

In the past decades, a number of computational methods
have been proposed to predict protein functions and could

be classified into the following three categories. The first cate-
gory of methods is sequence-based and the most famous and
wildly usedmethod is BLAST [4]. BLAST [4] assigns the func-
tions of annotated proteins to unannotated proteins based on
the homologous similarity of sequences. It has a disadvantage
that this method can only be used to predict the function of
proteins with high homologous similarity. In order to over-
come this disadvantage, other sequence-based methods with
additional biological information have been proposed to pre-
dict protein functions. FFPred3 [5] predicts protein functions
with the biological information of the secondary structures,
transmembrane helices, intrinsically disordered regions, sig-
nal peptides, and other motifs. GOLabeler [6] is a recently
developed method that improves the prediction of protein
functions with a combination of diverse sequence-based fea-
tures, such as 3-mer, protein domains, families, motifs, and
biophysical properties. The second category of methods is
focusing onphylogenomic and genomic information. Proteins
are translated fromgenes and the changes of protein functions
are related to the changes of the physiologies in different
species. Thus, SVD-phy [7] uses the singular value decompo-
sition of phylogenetic profiles for the protein function pre-
diction. SIFTER [8] improves the function annotation by a
statistical model with the phylogenetic tree. TreeGrafter [9]
annotates protein functions with phylogenetic tree data. In
addition, with the development of high-throughput microar-
ray technology, there are methods that use the gene expres-
sion data for the accurate protein function prediction [3], [10].
The third category of methods is predicting protein functions
with other biological information (do not contain protein
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sequences).Many proteins that have similar protein functions
do not mean they have a similar sequence. As we know,
many different types of biological information (e.g., PPI net-
work, genetic interaction, genomic context, and protein struc-
ture) have complex relationships with protein functions [11],
[12]. Thus, these different types of biological information are
applied to the prediction of protein functions. For example, a
protein is not isolated, yet interact with other proteins to per-
form its functions in many situations. Therefore, several
researchers [13], [14], [15], [16], [17] use a PPI network to pre-
dict protein functions. Moreover, there are methods that pre-
dict protein functions with multiple network information.
NetGO [18] improves the protein function prediction by
incorporating massive protein-protein network information.
DeepNF [19] uses multimodal Deep Autoencoders to extract
high-level features of proteins from multiple heterogeneous
interaction networks.

In common, a huge number of researchers annotate pro-
tein functions with Gene Ontology (GO) [20]. GO has three
major branches, biological processes (BP), molecular func-
tions (MF) and cellular components (CC). GO contains more
than 40,000 terms and a lot of proteins have more than one
function. It is infeasible to train a model for each GO term
with traditional machine learning methods (e.g., Support
Vector Machine (SVM) and Logistic regression). Recently,
deep learning techniques have been extensively applied to
several fields, such as computer vision, natural language
processing, and speech recognition. Inspired by their suc-
cess, some researchers use deep learningmethods to identify
protein functions to address this issue. DeepGO [21] presents
a deep ontology-awaremodel for protein function prediction
and achieves good results. It learns sequence features of
proteins with convolutional neural networks and obtains
topological features of the PPI network by using a network
representation learning technique.

Deep learning techniques have improved the performance
of some biological problems [22], [23], [24], [25], [26]. In this
study, we present a novel deep learning framework called
DeepGOA that predicts protein functions based on protein
sequences and PPI networks. First, we generate the dense
vectors of each amino acid code of each protein sequence by
using the word2vec technique which is a recently developed
distribution representation technique. Second, in order to
extract more effectively features of protein sequences, a sin-
gle convolutional layer is replaced by a multi-scale convolu-
tional layer which has a stronger ability to capture features
than a single convolutional layer. Additionally, we extract
global features of sequences with Bi-LSTM [27] before the
multi-scale convolutional layer. Bi-LSTM [27] can capture the
global features of protein sequences that can provide a pre-
liminary processing result to the multi-scale convolutional
layer. Protein subsequence-based information including pro-
tein domains andmotifs plays an important role in predicting
protein functions. Thus, we obtain the subsequence-based
information by InterPro [28] and represent the subsequence-
based information with one-hot coding. Then the combina-
tion of diverse sequence-based features is fed into a fully con-
nected layer to generate sequence-based features. Third, we
use the Deepwalk algorithm to extract topological features
without hand-crafted feature vectors. Finally, the sequence-
based features and topological features of the PPI network

are combined to perform the task of the protein functions
prediction.

Before we present our method, we would like to discuss
the difference between ourmethod DeepGOA and the previ-
ously proposed approach DeepGO [21]. First, DeepGO
extracts k-mer features from protein sequenceswith one con-
volutional layer and ignores the global information of the
whole sequence. In order to extract more effectively features
of protein sequences, DeepGOA extracts global and multi-
size local features of sequences with Bi-LSTM [27] and a
multi-scale convolutional layer. In addition, DeepGOA
obtains domains, families, and motifs from sequences by
InterPro. Second, the PPI network used in DeepGO and
DeepGOA is different. The PPI network used in DeepGOhas
8,789,935 vertices and 11,586,695,610 edges. Such a big net-
work has a lot of noise, which will bring negative effects for
the prediction, increase the cost of computation. Here, we fil-
ter the proteins and their interactions if they are not included
inUniport. The filtered PPI network contains 354,687 vertices
and 54,253,077 edges, which is much smaller than that of
DeepGO. Deepwalk is applied on the PPI network to extract
the topological features without hand-crafted feature vec-
tors. In DeepGO,Neuro-symbolic method is used.

2 METHODS

Our deep learning framework of DeepGOA proposed to
predict protein functions is shown in Fig. 1. This framework
includes the feature extraction and classification sections.

2.1 Network Architecture

In the feature extraction, DeepGOA first numerically repre-
sents protein sequences with the word2vec technique and
uses one-hot coding to represent information of protein
domains, families, motifs from InterPro. Second, DeepGOA
extracts the global features and local features of sequences,
with a Bi-LSTM [27] and a multi-scale convolutional layer,
respectively. Moreover, DeepGOA obtains high-quality fea-
tures of protein domains, families, and motifs with a neural
network. Then DeepGOA combines these subsequence-
based features and generates sequence-based features. Addi-
tionally, DeepGOA uses the Deepwalk algorithm to obtain
topological features of the PPI network. Finally, a combina-
tion of the complex sequence-based features and topological
features of the PPI network is fed into the classification sec-
tion of DeepGOA.

2.2 Extracting Sequence-Based Features

This subsection discusses the various steps involved in fea-
ture extraction from protein sequences.

2.2.1 Numerical Representation of the Sequence via

the Word2vec Technique

Proteins consist of different kinds of amino acids and many
amino acids have important biological functions. Tradi-
tional computational methods use one-hot coding to numer-
ically represent the inputs of amino acids. However, one-hot
coding is sparse and cannot reflect the relationship between
different kinds of amino acids. In recent years, the distribu-
tion representation technique has been rapidly developed
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in the field of natural language processing (NLP). The distri-
bution representation technique uses a dense vector to rep-
resent a word, which can describe the semantic distance
between words to a certain extent. The Word2vec algorithm
is one of the most classic models and widely used in various
fields [29]. Inspired by the word2vec algorithm, we regard a
protein sequence as a sentence and amino acid in the pro-
tein sequence as words and then use the word2vec algo-
rithm to numerically represent amino acid codes.

First, the word2vec algorithm calculates the word fre-
quency of each word in the input text and selects the N
words with the highest word frequency to form a vocabu-
lary. Then it generates a one-hot vector for each word in the
input text and uses the one-hot vector as the input of the
Skip-gram model [30] which predicts the probability of a
word around the input word by maximizing the possibility

of co-occurrence between words. After the training steps, we
obtain an embedding vector for eachword in the vocabulary.

In our experiments, we regard a protein sequence as a
sentence and each amino acid code as a word. We generate
a dense vector of each amino acid code with the word2vec
technique. The dense vectors of all amino acid codes of the
sequence form a feature matrix of the sequence, which is
treated as an image. As a result, we can use deep learning
techniques to capture sequential features.

2.2.2 Acquiring the Global Information of Sequences

With Bi-LSTM

The global information about the whole sequence plays an
important role in the classification of protein functions. The
multi-scale convolutional layer has little capacity to obtain

Fig. 1. An overview of our proposed deep learning framework for identifying protein functions.
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long-range features of sequences with some small kernel
sizes. If we increase the convolutional kernel size to get a
larger receptive field, it generates noises when addressing
short sequences and amino acid patterns. In addition, due
to the length of the sequence is 1000, it is difficult to choose
an appropriate convolution kernel size in the large range of
the region. In order to overcome these limitations, we first
use Bi-LSTM [27], which is a variant of the recurrent neural
network (RNN), to extract global features from protein
sequences.

RNN analyzes a text word by word and stores the seman-
tics of all the previous texts in a fixed-sized hidden layer [31].
An important advantage of the RNN is to utilize context
information in the mapping process between input and out-
put sequences. Unfortunately, the range of context informa-
tion captured by standard RNNs is limited and there exists a
vanishing gradient problem in the back-propagation pro-
cess. In order to solve this problem, some researchers pro-
posed the Long and Short Time Memory (LSTM) structure,
an excellent variant of RNN, which inherits the characters of
most RNN models and alleviates the vanishing gradient
problem. LSTM only access to past contextual information
and not to future information that is very beneficial for many
sequence annotation tasks. Based on this idea, the Bi-LSTM
[27] has been proposed, which provides complete past and
future information for each point of the input sequence in
the output layer.

In order to capture past and future context information of
protein sequences, the feature matrix of a sequence is fed to
the Bi-LSTM [27] part. The hidden layer size is 64 and the
number of hidden layers is 2. We set the dropout rate as 0.2
to avoid overfitting.

2.2.3 Obtain More Local Features of Sequences With

Multi-Scale Convolutional Layer

The local features of protein sequences are important for the
prediction. Convolutional filters can be used to obtain local
features and acquire more features with multi-layer stacking
[32]. Previous studies use a single convolution kernel to
extract features of protein sequences and work well. How-
ever, a single convolutional kernel cannot capture satisfactory
features for classification. For instance, the length of the
sequence and amino acid patternswith biological information
are different. Thus, using a single fixed convolution kernel
does not workwell with protein sequences that have different
lengths. In addition, due to the fixed input scale, the sequen-
ces whose length is less than the fixed length must be filled
with zero which may introduce noises for the prediction. To
address these problems,weusemulti-scale convolutional ker-
nels to extract more effective local features. Besides, 1D max-
pooling is applied to filter zero paddings. A multi-scale con-
volutional layer not only is suitable for sequences and the
amino patterns with different lengths but also increases the
diversity of local features. It turns out that themulti-scale con-
volutional layer is more powerful than a single convolutional
layer. For instance, TextCNN [33] uses a multi-scale convolu-
tional layer for the sentence classification, which outperforms
a single convolutional layer and other deep learning structure.
The convolutional kernels of our multi-scale convolutional
layer are 13, 15, and 17, respectively, and the number of

channels is 400. The convolutional layer is followed by the
1D-max-poolingwith the size of 1000.

2.2.4 Obtain Subsequence-Based Features

Protein subsequence-based features are very important for
the prediction of protein functions. In this study, we use the
InterPro tool to obtain protein subsequence-based features
including protein domains and motifs. InterPro analyses pro-
tein sequences according to diverse databases, including
CCD [34], Pfam [35], CATH-Gene3D [36], and SUPERFAM-
ILY [37]. InterPro provides a useful tool called InterProScan
which is a software package can be downloaded from the
InterPro database. InterProScan can create a binary vector
with 33,520-dimensional features that code the information of
protein domains, families and motifs. In order to obtain non-
linear features, the binary vector is fed into fully connected
layers. Then we combine diverse sequence features and gen-
erate comprehensive and high-quality protein features.

2.3 Extracting PPI Network Topological Features

Networks have been widely used to model various biologi-
cal problems and network topological features are very
important in the study of biological prediction problems
[38], [39]. ThrRW [11] predicts protein functions by using
multiple random walks to extract network topological fea-
tures. When a PPI network contains thousands or millions
of nodes and edges, it is computationally expensive or even
infeasible to extract topological features by using a random
walk on the network. Thus some representation learning
techniques have been proposed, including Deepwalk [40],
LINE [41], node2vec [42], HOPE [43], SiNE [44], SNE [45].
These methods are neural network-based approaches and
their performances are better than traditional approaches,
such as PCA [46] and MDS [47].

The Deepwalk algorithm is the first network embedding
method based on deep learning and the most popular
method. The Deepwalk algorithm treats nodes as words
and combines a random walk with the. Skip-gram model
[30]. The first step of the Deepwalk algorithm is represent-
ing the input network with a matrix, such as an adjacency
matrix or a Laplacian matrix. The second step is generating
sequences of nodes with random walk. Finally, the Deep-
walk algorithm uses the Skip-gram model [30] to learn to
embed nodes from sequence nodes. In our study, we utilize
the Deepwalk algorithm as the method for learning node
embedding of the PPI network. In order to cover the adja-
cent vertices of each vertex as many as possible, we use a
sampling method. The formula is as follows:

1� pð Þk � a; (1)

where p is the ratio of vertices to edges. The left part of the
formula represents the probability that one adjacent vertex
of the vertex is not picked at least once after k iterations of
random walks. When this probability is smaller than a, it is
reasonable to believe that all adjacent vertices of the vertex
are covered. In this study, we set a as 0.1 and the approxi-
mate value of the walk number is 300. The walk-length, the
window-size, and the output vector size is 20, 10, and 256,
respectively.
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2.4 Assessment Metrics

In this study, we use Fmax, AvgPr, AvgRc, MCC (Mathews
Correlation Coefficient), AUC (Area Under The Curve) to
evaluate the performance of models [48], [49]. Fmax is a pro-
tein-centric maximum F-measure. AvgPr and AvgRc are the
average precision and average recall for all proteins that
have at least one GO term, respectively. They are calculated
as follows:

priðtÞ ¼
P

fIðf 2 PiðtÞ ^ f 2 TiÞP
fIðf 2 PiðtÞÞ (2)

rciðtÞ ¼
P

fIðf 2 PiðtÞ ^ f 2 TiÞP
fIðf 2 TiÞ (3)

AvgPrðtÞ ¼ 1

mðtÞ �
XmðtÞ

i¼1

priðtÞ (4)

AvgRcðtÞ ¼ 1

n
�
Xn
i¼1

rciðtÞ (5)

Fmax ¼ max
2 �AvgPrðtÞ � AvgRcðtÞ
AvgPrðtÞ þAvgRcðtÞ

� �
(6)

AUC ¼
Z 1

�1
TPRðtÞð�FPR0ðtÞÞdt (7)

TPRðtÞ ¼ TP ðtÞ
TP ðtÞ þ FNðtÞ (8)

FPRðtÞ ¼ FP ðtÞ
FP ðtÞ þ TNðtÞ (9)

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ;

(10)

where f represents a GO term. When the threshold is t, PiðtÞ
and Ti are the set of predicted GO terms and the set of anno-
tation GO terms for protein i, respectively. n is the number
of all proteins and m(t) is the number of predicted proteins
with at least one GO term. TP and TN represent the num-
bers of the positive and negative terms of predicted proteins
which are classified correctly, respectively. FP and FN rep-
resent the numbers of positive and negative terms of pro-
teins which are misclassified, respectively.

3 DATASETS

In this study, we use the same datasets as the previous study
[21]. Specifically, we use three datasets including training
dataset, testing dataset and benchmark evaluation dataset.
The training dataset contains 48,568 proteins and the testing
dataset contains 12,142 proteins. These proteins have experi-
mental evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS,
and IC) and we ignore some proteins which contain ambigu-
ous amino acid codes (B, O, J, U, X, Z). The benchmark evalu-
ation dataset is released as part of the CAFA3 competition.
We train one model for each subontology in GO. We select
the top 589 terms of MF, 439 terms of CC, and 932 terms of
BPwith the sorted order of GO classes, respectively.

We construct a PPI network of multiple species from the
STRING database [50]. In addition, we connect these proteins

with orthology relations from the EggNOG database [51]. We
acquire the mapping relationship files provided by the
STRING and SwissProt [2] databases, respectively.

4 EXPERIMENTAL RESULTS

4.1 Implemental Details

In order to choose the best parameters, we also randomly
select 20 percent proteins from the training dataset as the val-
idation dataset. If a protein has a GO term in our selected
terms, we assign 1 to the term’s position in the label vector
and use it as a positive sample of the term. Otherwise, we
assign 0. During training and testing processes, we use pro-
teins that have at least one GO term in our selected terms.
The InterProScan tool and the InterPro entry list are down-
loaded from the InterPro database. The InterPro entry list
contains 2,865 homologous super-families, 21,695 families,
9,268 domains, 280 repeats, and 912 sites. We select proteins
that have the mapping relationship between the STRING
and SwissProt and pick up interactions of selected proteins
whose confidence score is at least 300. Then we add the
orthologous relations from the EggNOG database for
selected proteins. We combine selected proteins, PPIs and
orthologous relations to construct the PPI network, which
contains 354,687 vertices, and 54,552,077 edges. During train-
ing and testing processes, we assign a zero vector to those
proteins without the embedding representations.

Our deep learning framework is implemented by Pytorch
[52], a public deep learning framework developed by Face-
book. The detail of the network structure is described below.
We use a grid search method to choose the parameters and
structure of our method. Reasonable parameters and struc-
tures are clearly described as follows. First, we generate a
dense vector for each amino acid code with the word2vec
technique. Then we represent each protein sequence with a
featurematrixwhich is 1000 � 128. In addition, InterPro gen-
erates a 33,520-dimensional vector to represent features of pro-
tein domains, families and motifs. Second, we use the
Deepwalk algorithm to generate a 256-dimensional vector to
represent PPI features. Thewalk number, the walk-length and
thewindow-size of Deepwalk are 20, 10, and 256, respectively.
Third, after trying different kernel sizes, we determine the
kernel sizes of the multi-scale convolutional layer are
13 � 128; 15 � 128, and 17 � 128, respectively. The perfor-
mance of different kernel sizes of our model is provided in
supplementary Table S1,which can be found on theComputer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2020.2968882. The output size of the
multi-scale CNN layer is 1000 � 1 by using the zero-padding
and the stride is 1. By using a multi-scale CNN layer, we
obtain three feature maps that have 400 channels. The results
of different hidden layer sizes of our model are provided in
supplementary Table S2, available online. We use two fully
connected layers to extract high-quality features of protein
domains, families and motifs. The number of neural units in
the two fully connected layers is 1024 and 512, respectively.
The activation function of the two fully connected layers is the
sigmoid function. Two kinds of sequence-based features are
concatenated together as input to a fully connected hidden
layer for extracting high-quality sequence-based features.
On top of the fully connected hidden layer, there is another
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fully connected hidden layer taking concatenated high-quality
sequence-based features and embedding vectors from the PPI
network as input. The detailed results of DeepGOA with dif-
ferent walk numbers are found in supplementary Table S3,
available online. We used a dropout rate of 0.2 on the fully
connected layer in the network to avoid over-fitting. The out-
put from the fully connected layer is fed into the prediction
layer which performs the classification task. Finally, Adam
optimizer is used to train our deep learning framework. The
batch size is set to 128 and the initial learning rate is set to
0.002.

4.2 Comparison With Other Methods

To examine the performance of DeepGOA, we first compare
DeepGOA with BLAST [4] and DeepGO on the testing data-
set. To our best knowledge, DeepGO is the first method to
use deep learning techniques with protein sequences and
PPI networks. In this study, for a protein from the testing
dataset, we use BLAST [4] to find the most similar protein
from the training dataset. Then we assign all GO terms of the
most similar protein to it. Table 1 shows that DeepGOA
achieves the best values in all assessment metrics on all
branches. For example, in terms ofFmax, DeepGOA improves
about 34.3 percent (BP), 85.9 percent (CC), 50.0 percent (MF)
than BLAST, and about 6.8 percent (BP), 6.3 percent (CC),
18.7 percent (MF) than DeepGO. DeepGOA achieves the
AUC of 0.906 (BP), 0.976 (CC), 0.947 (MF), respectively,
which is better than DeepGO (0.896, 0.967, 0.928). In terms of
MCC measure, DeepGOA is also better than DeepGO in the
BP, CC, and MF branches. The prediction of DeepGOA is
available on this website (http://bioinformatics.csu.edu.cn/
DeepGOA/).

We also compare DeepGOA with DeepGO and FFPred3
[5] in previous CAFA challenges [53] on the benchmark eval-
uation dataset. All methods (DeepGOA, DeepGO, FFPred3)
did not use protein annotations in the benchmark evaluation
dataset during the training process. Table 2 shows the perfor-
mance of DeepGOA comparing with DeepGO, FFPred3, and
Phylo-PFP on the benchmark evaluation dataset of CAFA3.
In the CC branch, the performance values of DeepGOA are
0:538 ðFmaxÞ, 0.582 (AvgPr), 0.496 (AvgRc), 0.502 (MCC),
0.953 (AUC), respectively, which is about 21.4 percent ðFmaxÞ,

27.3 percent (AvgPr), 15.3 percent (AvgRc), 28.1 percent
(MCC), 6.7 percent (AUC) better than FFPred3. We find that
DeepGOA and Phylo-PFP are better than FFPred3 and Deep
GO in theMF branch. In terms ofFmax, the performance value
of Although Phylo-PFP is 0.539, which is better than FFPred3
(0.376) and DeepGO (0.472). The results show that our
method achieves state-of-the-art performance.

To discover the vital elements in the success of DeepGOA,
we compare ourmodelwith componentmethods. The results
are shown in Table 3. DeepGOA_Bi-LSTM [27] and Deep-
GOA_MultiCNN adopt Bi-LSTM [27] model and MultiCNN
model with only protein sequences, respectively. Deep-
GOA_Seq only uses protein sequences to predict protein
functionswith a combination of Bi-LSTM [27] andMultiCNN
models. The input of the DeepGOA_PPI method is only from
the PPI network and DeepGOA_InterPro only uses features
from protein domains, families, motifs to predict protein
functions. DeepGOA_Seq_InterPro, DeepGOA_Seq_PPI and
DeepGOA_InterPro_PPI are three independent methods that
combine DeepGOA_Seq and DeepGOA_InterPro, Deep-
GOA_Seq and DeepGOA_PPI, and DeepGOA_InterPro and
DeepGOA_PPI, respectively.

First, we compare models only using sequence-based
features as input. Table 3 shows that DeepGOA_Seq out-
performs DeepGOA_MultiCNN and DeepGOA_Bi-LSTM,
which indicates a combination of Bi-LSTM and Mul-tiCNN
makes a model to extract more effective features than only
using a singlemodel. In terms of subsequence-based features
from protein domains, families andmotifs, DeepGOA_Inter-
Pro achieves better results than DeepGOA_Bi-LSTM, Deep-
GOA_MultiCNN, DeepGOA_Seq in all assessment metrics
in BP and MF branches. Second, compared only with using
sequence-based features, DeepGOA_PPI only with topologi-
cal features of the PPI network achieves better performance
in both BP and CC branches.

Third, we compare the performance of a combination of
diverse single component methods. We observe that models
with a combination of diverse single component methods
are better than models with single component methods in
most assessment metrics. For example, DeepGOA_Seq_PPI
obtains the highest Fmax of 0.673 and AUC of 0.977 in the
CC branch. However, the results of DeepGOA_Seq_InterPro

TABEL 1
The Performance of DeepGOA and Comparison to DeepGO and BLAST

Method
BP CC MF

Fmax AvgPr AvgRc MCC AUC Fmax AvgPr AvgRc MCC AUC Fmax AvgPr AvgRc MCC AUC

BLAST 0.314 0.302 0.327 - - 0.362 0.321 0.417 - - 0.372 0.367 0.377 - -
DeepGO 0.395 0.412 0.379 0.397 0.896 0.633 0.643 0.624 0.592 0.967 0.470 0.577 0.397 0.438 0.928
DeepGOA 0.422 0.443 0.403 0.420 0.906 0.673 0.684 0.661 0.621 0.976 0.558 0.667 0.480 0.528 0.947

TABEL 2
Evaluation of DeepGOA, DeepGO, Phylo-PFP, and FFPred3 on the Benchmark Evaluation Dataset of CAFA3

Method BP CC MF

Fmax AvgPr AvgRc MCC AUC Fmax AvgPr AvgRc MCC AUC Fmax AvgPr AvgRc MCC AUC

FFPred3 0.262 0.304 0.228 0.231 0.828 0.443 0.457 0.430 0.392 0.893 0.376 0.352 0.401 0.293 0.858
Phylo-PFP 0.256 0.388 0.191 0.186 0.599 0.417 0.409 0.426 0.357 0.724 0.539 0.570 0.512 0.332 0.719
DeepGO 0.344 0.309 0.365 0.319 0.884 0.521 0.549 0.493 0.497 0.953 0.472 0.614 0.387 0.371 0.902
DeepGOA 0.369 0.376 0.366 0.373 0.904 0.538 0.582 0.496 0.502 0.953 0.570 0.637 0.521 0.465 0.954
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and DeepGOA_InterPro_PPI are better than DeepGOA_
Seq_PPI in the MF branch except for AUC. For example,
In terms of Fmax, AvgPr, MCC in MF branch, DeepGOA_
InterPro_PPI improves about 13.2 percent, 14.7 percent,
12.1 percent than DeepGOA_Seq_PPI. Then we examine the
performance of component methods in Table 3 and DeepGO
in Table 1. The results show that DeepGOA_PPI, DeepGOA_
Seq_PPI and DeepGOA_InterPro_PPI outperform DeepGO
in terms of all assessment metrics. While DeepGOA_Seq_
InterPro obviously outperforms than DeepGO inMF branch,
we observe that DeepGO achieves higher results than Deep-
GOA_Seq_InterPro in BP and CC branches.

DeepGOA, the combination of DeepGOA_Seq, Deep-
GOA_PPI andDeepGOA_InterPro, achieves the highest Fmax

in BP, CC andMF branches. Furthermore, in terms of AvgPr,
AvgRc, MCC, and AUC, DeepGOA performs comparably to
methods that achieve the highest values. Table 3 shows other
interesting results. For example, methods using features
from the PPI network outperform other methods without
considering the PPI network in BP andCC branches. The per-
formance of methods with protein families, domains and
motifs perform better than other methods. The results indi-
cate that topological features provide a better understanding
of cellular components and the biological process of protein
functions. Additionally, protein families, domains andmotifs
are useful for predictingmolecular functions of proteins.

4.3 Case Studies

First, we choose one protein (Name: RENT3_ARATH) from
the benchmark evaluation dataset of CAFA3 to illustrate the

real effect of the performance of DeepGOA and other com-
peting methods in the MF branch. Table 4 shows the results.
Although Phylo-PFP and DeepGOA predict the same num-
ber of real functions, Phylo-PFP annotates three negative
functions. The predictions of FFPred3 contain 3 real func-
tions that are more than DeepGO. However, FFPred3 pre-
dicts many negative functions. In addition, we find
GO:0003676 (nucleic acid binding) and GO:0005488 (bind-
ing) are annotated by most methods in Table 4. In summary,
the results show that DeepGOA performs better than other
compared methods. Second, we choose some examples of
the results predicted by DeepGOA_PPI, DeepGOA_seq,
and DeepGOA_InterPro to see which protein functions that
can be easily predicted by sequence or PPI features alone.
The results are shown in supplementary Table S4, available
online. We find that the sequence features prefer to common
functions while the PPI features are useful for both common
and uncommon functions.

5 DISCUSSIONS AND CONCLUSIONS

Due to the development of high throughput measures, there
are diverse heterogeneous data that are created, such as pro-
tein sequences, PPI networks and so on. Many techniques
and computational tools have been proposed to predict pro-
tein functions with various categories of data. There are still
some challenges for predicting protein functions. First, there
are proteins that need to interact with neighbor proteins to
achieve the functions in many situations. Second, it is not
obvious which kind of features is efficiently useful for large

TABLE 4
The Prediction of the Protein (RENT3_ARATH) With Different Methods

Real label DeepGOA DeepGO FFPred3 Phylo-PFP

GO:0003674 GO:0003676 GO:0003674 GO:0000166 GO:0000166
GO:0003676 GO:0003723 GO:0005488 GO:0003676 GO:0003676
GO:0003723 GO:0005488 GO:0003723 GO:0003723
GO:0003729 GO:0097159 GO:0003779 GO:0005488
GO:0005488 GO:1901363 GO:0008092 GO:0036094
GO:0044822 GO:0008134 GO:0097159
GO:0097159 GO:0015631 GO:1901265
GO:1901363 GO:0036094 GO:1901363
GO:1901576 GO:0097159
GO:1901661
GO:1901663

TABLE 3
The Performance of DeepGOA and Component Methods

Method
BP CC MF

Fmax AvgPr AvgRc MCC AUC Fmax AvgPr AvgRc MCC AUC Fmax AvgPr AvgRc MCC AUC

DeepGOA_Bi-LSTM 0.307 0.316 0.299 0.283 0.824 0.568 0.576 0.561 0.517 0.929 0.355 0.424 0.305 0.320 0.876
DeepGOA_MultiCNN 0.317 0.335 0.301 0.282 0.816 0.587 0.601 0.573 0.528 0.941 0.385 0.502 0.313 0.348 0.875
DeepGOA_Seq 0.322 0.343 0.303 0.286 0.824 0.603 0.610 0.596 0.542 0.947 0.415 0.521 0.345 0.383 0.904
DeepGOA_InterPro 0.354 0.384 0.328 0.338 0.847 0.566 0.596 0.539 0.514 0.926 0.530 0.672 0.437 0.497 0.929
DeepGOA_PPI 0.417 0.447 0.392 0.427 0.912 0.640 0.650 0.631 0.604 0.973 0.485 0.578 0.419 0.458 0.928
DeepGOA_Seq_InterPro 0.361 0.394 0.332 0.339 0.854 0.616 0.632 0.600 0.554 0.950 0.512 0.643 0.425 0.481 0.935
DeepGOA_Seq_PPI 0.420 0.438 0.404 0.418 0.911 0.673 0.686 0.659 0.625 0.977 0.492 0.584 0.426 0.470 0.943
DeepGOA_InterPro_PPI 0.416 0.446 0.389 0.413 0.899 0.635 0.659 0.612 0.592 0.968 0.557 0.670 0.476 0.527 0.948
DeepGOA 0.422 0.443 0.403 0.420 0.906 0.673 0.684 0.661 0.621 0.976 0.558 0.667 0.480 0.528 0.947
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amounts of proteins. In this study, we propose a deep learn-
ingmodel called DeepGOA that combines protein sequences
and PPI networks. First, we represent protein sequences
with the word2vec technique and use one-hot coding to rep-
resent information of protein domains, families, motifs from
InterPro. Second, DeepGOA extracts global features and
local features of sequences, with Bi-LSTM and Multi-scale
convolutional year, respectively. Moreover, a few fully con-
nected layers are used to generate high-quality features of
protein domains, families, andmotifs. Then, DeepGOA com-
bines these features to create a comprehensive sequence.
Finally, a combination of comprehensive sequence features
and topological features of the PPI network is fed into the
classification section of DeepGOA. The source code of Deep-
GOA is available at https://github.com/CSUBioGroup/
DeepGOA.

The results show that DeepGOA outperforms BLAST,
DeepGO, and FFPred3 in terms of all assessment metrics. We
observe that our models achieve higher performance with
topological features from the PPI network in both BP and CC
branches. Protein domains, families and motifs are substan-
tially useful for the prediction of molecular functions. The
possible future work is integrating additional heterogeneous
data, such as gene co-expression [54], protein structure [55],
text mining [56]. It is also possible to further improve the per-
formance by effectively using GO term information.
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