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Enhancing Protein Function Prediction Through the
Fusion of Multi-Type Biological Knowledge With

Protein Language Model and Graph Neural Network
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Abstract—Proteins play crucial roles in diverse biological
functions. Accurately annotating their functions is essential for
understanding cellular mechanisms and developing therapies for
complex diseases. Computational methods have been proposed
as alternatives to labor-intensive and expensive experimental
approaches. Existing computational methods have demonstrated
that protein evolution information and Protein-Protein Interac-
tions (PPIs) are essential for protein function prediction. However,
traditional computational approaches for generating evolution
information are time-consuming. On the other hand, proteins
lacking interactions are ignored in previous studies. To address
these limitations, we propose a novel deep learning framework,
named DeepFMB, which incorporates multi-type biological
knowledge. DeepFMB leverages a pre-trained protein language
model to extract evolution information. Moreover, DeepFMB
generates PPI-related features and orthology-related features
using graph neural networks on the constructed PPI and orthology
networks. Then, these multi-type features are fused adaptively for
protein function prediction. Compared to eight state-of-the-art
methods, DeepFMB outperforms all of them in terms of F-max
and AUPR. Additionally, with the combination of sequence
similarity-based inference, our predicted model predicts protein
functions more accurately. Experimental results also validate the
superior performance of our methods in predicting low-frequency
GO terms. Ablation studies demonstrate that the multi-type
biological knowledge we use is highly relevant to protein functions.

Index Terms—Protein function prediction, protein-protein
interactions, orthology relations, pre-trained protein language
model, graph neural network.

I. INTRODUCTION

PROTEINS are essential biomolecules within living organ-
isms and play indispensable roles in diverse biological
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processes, including cell motility and metabolic pathways [1].
Accurately annotating protein functions is crucial for under-
standing biological activities and disease pathology mechanisms
[2]. However, traditional experimental approaches for functional
annotation are costly, time-consuming, and unable to keep up
with the rapidly increasing number of protein sequence gen-
erated by high-throughput sequencing technologies [3]. Con-
sequently, over 99% of protein sequences in the UniProt [4]
database lack experimentally validated functional annotations.
Faced with this challenge, it is essential to develop computa-
tional approaches to accurately predict protein functions [5].
Such approaches not only enhance our understanding of protein
functions but also expedite new drug discoveries and facilitate
the development of disease treatment strategies.

During the early stages of protein function prediction re-
search, the lack of a unified standard led to significant differences
in how biologists defined protein functions, posing challenges to
this field. To address this issue, researchers established special-
ized databases such as Gene Ontology (GO) [6], which provides
a standardized definition of biological information by integrating
descriptions of gene products across databases. GO classifies
protein functions into three aspects: Cellular Component (CC),
Molecular Function (MF), and Biological Process (BP). Each
function is considered as a ‘GO term’ with a unique identifi-
cation, which together form a Directed Acyclic Graph (DAG)
through the relationships between different GO terms, including
‘is-a’, ‘part-of’, etc [7].

Till now, significant progress has been made in this field. Pro-
tein sequences, as the basics of proteins, are closely correlated
with protein functions and have been widely used in existing
computational methods [3], [8], [9], [10], [11]. Sequence-based
methods, such as Diamond [12] and BlastKNN [13], predict
functions by transferring functions from known proteins via the
sequence similarities. With the development of deep learning
(DL), several DL-based approaches, such as DeepGOPlus [10]
and TALE [14], use Convolutional Neural Network (CNN)
[15] and Transformer architectures [16], respectively, to extract
sequence motifs for function prediction. Benefiting from the
advantages of deep learning in extracting latent features, these
methods surpass traditional approaches based on the sequence
similarities [7].

Additionally, since proteins do not perform functions inde-
pendently, the proteins that interact with each other tend to be
more likely to perform similar functions [17]. Protein-Protein
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Interactions (PPIs) are also crucial in detecting protein functions
[18]. Consequently, several methods have attempted to annotate
protein functions by incorporating protein sequence and PPI net-
work information. For instance, DeepGraphGO [19] uses Graph
Neural Networks (GNNs) [20] to aggregate sequence features
of interacted proteins through PPI network. DeepGOA [21]
employs Bidirectional Long Short-Term Memory (Bi-LSTM)
[22] and Convolutional Neural Network (CNN) to extract se-
quence profiles, adopts fully connected layers to extract Inter-
Pro features [23], [24], [25] and protein embeddings from PPI
network which are generated by Node2Vec [26], demonstrating
the effective of the strategy that considering protein sequence
and PPI for protein function prediction.

Although these DL-based approaches have significantly im-
proved the accuracy of protein function prediction than tradi-
tional sequence-based computational methods, they still face
some challenges. Firstly, sequence profiles that contain co-
evolution information play a vital role in protein function predic-
tion [21], which are generated by BLAST [13] or HHsuite [27].
These tools need to scan the whole background database for the
target proteins, which is very time-consuming. Additionally, PPI
is indeed critical for protein function prediction. Existing PPI-
based approaches struggle to annotate functions for proteins that
lack interactions [19]. This limitation leads to poor performance
in predicting the functions of such proteins.

Recently, several protein Large Language Models (pLLMs)
[28], [29] have been proposed and achieved significant improve-
ment in many fields [30], [31]. These models are trained on
large scale protein sequences, enabling them to capture co-
evolution information and generate high-quality features from
protein sequences. Meanwhile, orthology relations also provide
the information between proteins that share similar functions
[17]. As orthology relations are widely predicted or detected
from protein sequences, they cover a broader range of proteins
compared to PPIs [32], [33].

To address these limitations mentioned above, we pro-
pose a novel DL-based method, named DeepFMB (A deep
learning-based model for protein function prediction by fusing
multi-type biological knowledge). DeepFMB adopts various
forms of biological knowledge, including protein sequences,
PPIs and orthology relations, to accurately predict protein
functions. DeepFMB integrates these various sources of bi-
ological knowledge effectively. Specifically, DeepFMB first
generates co-evolution information as the evolution-related fea-
tures from protein sequences using a pre-trained pLLM [28].
Then, DeepFMB constructs functional features via InterProScan
[34] and aggregates features from similar proteins through
PPIs and orthology relations as the PPI-related and orthology-
related features, respectively. Finally, three types of features
are fused to predict protein functions. Furthermore, we in-
tegrate the results of DeepFMB and a sequence similarity-
based method, BlastKNN, denoted as DeepFMB+. To evaluate
the performance of DeepFMB and DeepFMB+, we compare
them with 11 state-of-the-art methods on the latest datasets,
including 8 single methods and 3 composite methods. The
results show that DeepFMB outperforms other single methods
in terms of Fmax and AUPR. After incorporating the sequence

similarity, DeepFMB+ achieves the best performance over all
other methods in terms of Fmax and AUPR for BP, MF and CC.
Further ablation study and several cases demonstrate the positive
effect of fusing multi-type biological knowledge in DeepFMB
for protein function prediction.

II. METHODS

The framework of DeepFMB is illustrated in Fig. 1, which
mainly consists of four modules: (1) Construction of evolution-
related features. (2) Construction of PPI-related features and
orthology-related features. (3) Fusion of multi-type biological
features and protein function prediction. (4) Extension with
sequence similarity-based methods.

A. Construction of Evolution-Related Features

Evolution-related features play a pivotal role in DeepFMB,
following the recognition of the significance of evolution infor-
mation in previous studies [9], [21]. However, different from
previous work, in this study, DeepFMB utilizes a distinct ap-
proach by utilizing a pre-trained protein large language model
[28] to generate evolution-related features. The pLLM has been
trained on large-scale protein sequences with a self-supervised
strategy, enabling it to learn the evolutionary process of proteins.
An obvious advantage is that the pLLM can be easily merged
into DeepFMB, as it only requires protein sequences as input.
This contrasts with traditional methods that require pre-prepared
protein profiles, resulting in time-consuming preparation steps.

Specifically, for each protein P , a famous pLLM, ESM-1b
[28], is used to generate initial evolution-related features. We
extract the output of 33rd layer of ESM-1b as protein embed-
ding, denoted as fpre ∈ R1∗1280. Then, the initial features are
fed into three non-linear layers to get more sophisticated and
representative features:

fevo = σ (σ (σ (fpre ∗W1 + b1) ∗W2 + b2) ∗W3 + b3) (1)

where (Wi, bi) represent the corresponding linear layers
(i = 1, 2, 3) andσ(·) is activation function LeakReLU. Finally,
we can obtain the evolution-related features fevo ∈ R1∗512.

B. Construction of PPI-related Features and Orthology-
Related Features

1) Generating Functional Features: InterPro [23], [24], [25]
is a comprehensive database that integrates 14 databases in-
cluding SMART [35], CDD [36], Pfam [37], SUPERFAMILY
[38]. This platform offers researchers a wealth of information on
protein functions, structures, and sequence annotations. Through
InterPro, users can access functional characteristics on specific
proteins, including their domains, motifs, and families. These
features provided by InterPro are crucial for gaining a deeper
understanding of protein functions and have been widely used
in previous studies [2], [19].

Specifically, we utilize the InterProScan tool [34] to extract
interpro properties (domains/motifs/families) of proteins. Then,
for each protein P , these properties are encoded as 39227-
dimensional binary features, denoted as f inter ∈ {0, 1}1∗39227,
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Fig. 1. The framework of DeepFMB and DeepFMB+. Firstly, evolution-related features are extracted using the pre-trained protein large language model ESM-1b.
Then, InterPro properties are generated from the protein sequences by InterProScan. Subsequently, two residual GNNs are used to aggregate the neighboring features
through the PPI network and the orthology network, separately. The PPI-related and orthology-related features, extracted from the two types of networks, are
fused by a linear attention mechanism. Then, the fused features are combined with evolution-related feature to predict protein functions. DeepFMB+ incorporates
BlastKNN results into DeepFMB, further improving the performance of protein function prediction.

where each position represents a specific property, with a value
of 1 indicating that P has the corresponding property. Subse-
quently, the binary features are fed into an embedding layer to
obtain a dense representation with low dimensions:

ffunc = τ
(
f inter ∗Wemd + bemd

)
(2)

where (Wemd, bemd) are the parameters of embedding layer and
τ(·) is non-linear activation function ReLU. Finally, ffunc ∈
R1∗256 denotes the functional features that will be used to
generate PPI-related features and orthology-related features in
later steps.

2) Constructing PPI Network and Orthology Network: In
this subsection, we construct two networks: a PPI network Ap

and an orthology network Ao, which are the foundation for
generating PPI-related features and orthology-related features,
respectively.

For the construction of the PPI network, the STRING database
[39], [40] is used in this study. The database integrates com-
prehensive data from various sources and provides extensive
information on PPIs across different species. To reduce the
complexes of our model and noises in the original data, we only
retain the interactions with confidence higher than 300. The final
PPI network is denoted as Ap ∈ Rn∗n, where n is the number
of proteins and 0 ≤ Ap(i, j) ≤ 1 represents the confidence of
interaction between protein Pi and Pj , which can be obtained
from the STRING database.

Different from PPI network, the orthology network is con-
structed from the eggNOG database [32], [33]. The database
provides comprehensive information on orthology relations and
evolutionary histories across different species. The final orthol-
ogy network can be denoted as Ao ∈ {0, 1}n∗n, where n is the
number of proteins and Ao(i, j) = 1 indicates the existence of
an orthology relation between protein Pi and Pj . Consequently,
we construct two different types of networks. The PPI network

focuses on the relations between proteins in the same species,
while the orthology network reflects the relations between pro-
teins among different species. This ensures a broader coverage
of proteins compared to relying on a single network alone.

3) Generating Network-Related Features: For each net-
work Ap and Ao, Graph Convolutional Networks (GCNs)
are adopted to aggregate information of neighbor pro-
teins to learn PPI-related features and orthology-related fea-
tures, respectively. Specifically, functional features F func =
[ffunc

1 ; ffunc
2 ; . . . ; ffunc

n ] ∈ Rn∗256 are used as node features.
For the (l + 1)-th layer of GCN, residual operation is added to

improve the representation capability of the model, the process
of aggregation is as follows:

Fl+1 = τ
(
D̃− 1

2 ÃD̃− 1
2FlW

GCN
l+1 + bGCN

l+1

)
+ Fl (3)

where Fl and Fl+1 refer the output features of l-th layer and
(l + 1)-th layer, Ã ∈ {Ap + I, Ao + I} indicates the PPI net-
work or orthology network, D̃ is the corresponding degree ma-
trix of Ã, and (WGCN

l+1 , bGCN
l+1 ) are the parameters of (l + 1)-th

GCN layer. After two residual GCN layers, we can obtain the
final network-related features. Notably, in this process, separate
GCN layers are applied for the PPI network and orthology net-
work, indicating a total of four GCN layers in DeepFMB. Con-
sequently, PPI-related features and orthology-related features
can be obtained, denoted as fppi ∈ R1∗512 and fort ∈ R1∗512,
respectively.

C. Fusion of Multi-Type Biological Features and Training
Model

DeepFMB integrates both PPI-related features and orthology-
related features, which are derived from the functional prop-
erties obtained through InterPro. The fusion process involves
combining these two types of features before incorporating the
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evolution-related features. Subsequently, DeepFMB utilizes the
fused features to predict protein functions.

In this study, we introduce a linear attention mechanism to
adaptively fuse two types of network-related features:

ffuse = wppifppi + wortfort (4)

wppi, wort = softmax
(
tpppi, tport

)
(5)

tpppi = δ
(
fppi ∗W att

1 + batt1

) ∗W att
2 (6)

tport = δ
(
fort ∗W att

1 + batt1

) ∗W att
2 (7)

where wppi and wort are learned weighted (wppi + wort = 1)
for fusing fppi and fort, which are generated from two shared
non-linear layers (W att

1 , batt1 ,W att
2 ), and δ(·) is activation func-

tion Tanh.
Subsequently, the fused features ffuse are further concate-

nated with evolution-related features fevo and fed into two
non-linear layers to predict protein functions:

f cob =
[
ffuse, fevo

]
(8)

ŷ = τ
(
f cob ∗W pred

1 + bpred1

)
∗W pred

2 + bpred2 (9)

where ŷ ∈ R1∗M is the predicted probability of GO terms. To
obtain a stable performance, we store the three best models that
achieves better Fmax (the definition can be seen in Section III.B)
on the validation data during the training epochs, and average
the results predicted by these three models as the final result.

Additionally, we use binary cross entropy as the loss function
L:

L = − 1

NM

N∑
i=1

M∑
j=1

yij log (ŷij) + (1− yij) log (1− ŷij)

(10)
where N is the number of proteins, and M is the total number of
GO terms. If GO term Gj is annotated to protein Pi, yij is 1.
Otherwise, yij is 0.

D. Extension With Sequence Similarity

To further enhance the predictive performance of DeepFMB,
we try to fuse the model predictions with existing homology
methods. Previous studies have demonstrated the effective-
ness of combining model predictions with homology-based
approaches, such as DeepGOPlus [10], DeepGOZero+ [11],
and ATGO+ [41]. These methods incorporate the results of
homology methods, such as BlastKNN and Diamond, to im-
prove the overall performance. Inspired by these, we combine
our DeepFMB prediction results with the results of BlastKNN.
The specific processes are as follows:

ŷBlastKNN (Pi, Gj)=

∑
Pk∈N(Pi)

I (Pk, Gj)∗Sim (Pi, Pk)∑
Pk∈N(Pi)

Sim (Pi, Pk)

(11)

ŷDeepFMB+ (Pi, Gj) = aŷDeepFMB (Pi, Gj)

+ (1− a) ŷBlastKNN (Pi, Gj)
(12)

TABLE I
STATISTIC INFORMATION OF DATASETS GENERATED BY TIME STAMPS

where N(Pi) represents the top-k proteins that are most similar
to protein Pi, and I(Pk, Gj) equals to 1 if protein Pk has the
function Gj , otherwise 0. Sim(Pi, Pk) is the similarity score
between Pi and Pk, which is calculated by Blast with cut-off
e-value of 0.001. Then, the results of BlastKNN are combined
with our model DeepFMB, where a is set to 0.5, 0.5, 1 in BP, MF,
CC, respectively. To be noted, we find that BlastKNN reduces
the performance of DeepFMB in CC. So we set a to 1.

E. Implemental Details

All parameters are optimized based on the performance of
DeepFMB on the validation set. In order to predict as many GO
terms as possible, all the GO terms that have appeared in the
training set are saved as the predicted labels. During the training
and testing processes, we focus on proteins that have at least one
GO term in the specific ontology term (BP, MF and CC).

Our deep learning framework is implemented by Pytorch [42],
a public deep learning framework developed by Facebook. For
two network modules, since the original networks are too large,
we keep the 100 largest edges for each node and adopt a mini-
batch strategy for training and testing. The batch size and GCN
layers are set as 40 and 2, respectively.

Finally, the Adam optimizer is used to train our deep learning
framework. The initial learning rate is set to 0.001, the number
of epochs is set to 20, batch size is set to 40, and k in BlastKNN
is set as 50000.

III. EXPERIMENTS

A. Datasets

In our experiments, we construct an updated dataset follow-
ing the Critical Assessment of Functional Annotation (CAFA)
challenges [3], including protein sequences and their functions
from the UniProt database, and GO terms from the Gene On-
tology database. For additional biological knowledge used in
our model, the interactions and orthology relations are extracted
from the STRING database and the eggNOG database, respec-
tively. The details of data process are as follows:
� Protein sequences and functions: We collect protein

sequences and their corresponding functions from the
UniProt database (April 2022 release). Following the
CAFA challenges [3], we retain 23 species with 8 evidence
codes, i.e., ‘EXP’, ‘IDA’, ‘IPI’, ‘IMP’, ‘IGI’, ‘IEP’, ‘TAS’,
and ‘IC’. After excluding proteins without GO annotations,
our final protein dataset comprises 60121 proteins.

� PPI network: The PPI information is obtained from the
STRING [40] database (version 11.5 full links). To reduce
the noise and complex of the PPI network, we filter the
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TABLE II
PREDICTIVE PERFORMANCE OF DEEPFMB (+) AGAINST COMPETING METHODS

interactions with a confidence score lower than 300. Fi-
nally, 29285116 interactions of 19 species with 196490
proteins are retained.

� Orthology network: Orthology relations are downloaded
from the eggNOG [33] database version 5.0, encompassing
all proteins used in our study. Finally, 1473178 orthology
relations of 22 species between 54959 proteins are retained.

� GO file: The go.obo is downloaded from Gene Ontology
[6], (December 4, 2022). As only the ‘is-a’ and ‘part-of’ re-
lationships are deemed reliable for grouping protein func-
tions in function propagation, we investigate all annotated
GO terms and their ancestor nodes for each protein based
on these relationships.

Similar to CAFA [3], as illustrated in Table I, we partitioned
the dataset based on time stamps as follows:
� Training: released before 2020-05.
� Validation: released from 2020-05 to 2021-04.
� Test: released from 2021-05 to 2022-04.
Based on the GO terms existing in the training data, there

are 19717, 2506, and 6095 GO terms in BP, CC, and MF,
respectively.

B. Evaluation Metrics

For the evaluation of these models, we utilize two widely
used metrics, Fmax and AUPR. Fmax is the maximum value of
F1-score for all proteins and GO terms at different thresholds
within the [0, 1] range. Given a threshold t, its corresponding
precision and recall for protein Pi can be calculated as follows:

Pri (t) =

∑
j I (S (Pi, Gj) ≥ t) ∗ I (Pi, Gj)∑

j I (S (Pi, Gj) ≥ t)
(13)

Rci (t) =

∑
j I (S (Pi, Gj) ≥ t) ∗ I (Pi, Gj)∑

j I (Pi, Gj)
(14)

where S(Pi, Gj) represents the predicted score of function Gj

for protein Pi. I(S(Pi, Gj) ≥ t) returns 1 when the predicted
score is greater than or equal to the threshold t, while it returns

0 otherwise. I(Pi, Gj) equals to 1 when the protein Pi has a
functionGj . Otherwise, it equals to 0. Subsequently, the average
precision and recall of all proteins can be obtained:

AvgPr (t) =
1

m (t)
∗

m(t)∑
i=1

Pri (t) (15)

AvgRc (t) =
1

n
∗

n∑
i=1

Rci (t) (16)

where n is the number of proteins, and m(t) is the number of
proteins that accurately predict at least one GO term. Then, Fmax
is the best performance of F1-score among different thresholds
t:

F max = max
t

{
2 ∗AvgPr (t) ∗AvgRc (t)

AvgPr (t) +AvgRc (t)

}
(17)

Similarly, AUPR is the area under the curve of precision-recall
formed by different thresholds t. Both higher Fmax and higher
AUPR reflect better performance.

C. Performance Comparison With Other Methods

To evaluate the predictive performance of DeepFMB, we
compare it with eight state-of-the-art single algorithms: Di-
amond [12], BlastKNN [13], DeepGO [43], DeepGOA [21],
DeepGOCNN [10], DeepGOZero [11], DeepGraphGO [19],
ATGO [41]. All the methods are implemented with default
parameters. Additionally, we also compare the extended ver-
sion, DeepFMB+, with other three composite algorithms that
are all combined with sequence similarity-based approaches:
DeepGOPlus [10], DeepGOZero+ [11] and ATGO+ [41].

Table II presents the performance of different types of
methods on the test set. It is remarkable that DeepFMB and
DeepFMB+ both achieve the best performance between sin-
gle algorithms and composite algorithms. Specifically, for sin-
gle algorithms, in terms of Fmax, DeepFMB yields improve-
ments ranging from 1.6% to 77.3% in MF and from 2.3% to
41.1% in BP. Similarly, DeepFMB surpasses other methods
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TABLE III
STATISTIC INFORMATION OF GO TERMS GROUPED BY DIFFERENT

FREQUENCIES

by 4.9%∼127.9% in MF and 4.1%∼109.7% in BP in terms
of AUPR. Notably, the advantages of DeepFMB in CC are
more pronounced, outperforming other approaches by at least
3% and 10% in terms of Fmax and AUPR, respectively. These
results demonstrate that DeepFMB can predict protein functions
more accurately. Additionally, although DeepGO and DeepGOA
utilize orthology relations, their performance is poorer compared
to DeepFMB, proving that GNNs are more effective in capturing
relationships between proteins. Furthermore, compared to Deep-
GraphGO that also uses GNNs to aggregate InterPro features
via PPI network, DeepFMB outperforms DeepGraphGO in the
three sub-ontologies, especially in MF, where Fmax and AUPR
are improved by 13.9% and 17.3%, respectively. This suggests
that the orthology-related features and evolution-related features
contribute to our model significantly. Similar conclusions can
also be obtained from Supplementary Table S1 in terms of AUC
and ACC.

Meanwhile, for composite algorithms that incorporating se-
quence similarity-based methods, DeepFMB+ achieves the best
performance in all sub-ontologies. As for Fmax, there is an
improvement of 1.3%∼7.3%, 2.6%∼9.0%, and 3.0%∼3.5% in
BP, MF, and CC, respectively. As for AUPR, there is also an
improvement of 0.2%∼12.8%, 4.4%∼17.7%, and 8.8%∼16.6%
in BP, MF, and CC, respectively.

Consequently, DeepFMB+ is further improved after consid-
ering the sequence similarities between proteins. It is worth
noting that DeepFMB performs well in CC and introducing
BlastKNN will reduce its performance, which may indicate that
sequence similarity occupies a significant role in MF and BP,
excluding CC. Above all, the results illustrate that DeepFMB
and DeepFMB+ hold the ability to predict protein functions
accurately.

D. Performance Comparison on GO Groups With Different
Frequencies

In the loosely hierarchy of GO terms, the deeper the depth of
the GO term tends to represent more specific function and often
corresponds to fewer proteins with this function. Consequently,
it is more challenging and meaningful to accurately predict GO
terms with fewer samples. In this section, we further evaluate
these methods on different GO terms grouped by frequencies
(the number of known samples).

As shown in Table III, according to the number of annotations
per GO term, we categorize the GO terms in the training set into
4 groups: 10-30, 31-100, 101-300 and>300. Table IV illustrates
the performance of these methods on different groups in terms
of M-AUPR, which is the average of AUPR on each GO term.

Notably, DeepFMB outperforms all other single approaches in
all sub-ontologies, with only DeepGOZero slightly better when
the number of annotations in BP is greater than 300. Consistent
improvements demonstrate that DeepFMB holds stable advan-
tages on different GO terms. Similar conclusions can also be
obtained from DeepFMB+. Additionally, compared with Deep-
GOCNN and DeepGOPlus, DeepGOZero and DeepGOZero+,
ATGO and ATGO+, DeepFMB and DeepFMB+, there is a com-
mon trend that the performance of all these methods is signif-
icantly improved after incorporating sequence similarity-based
methods. Additionally, the one-side Wilcoxon test is provided
(see Table IV), and the results also demonstrate the effective of
our methods in protein function predictions.

E. Ablation Studies

To understand the specific contributions of each component
in DeepFMB, we design ablation studies addressing several key
questions:
� Does orthology network facilitate DeepFMB’s inference

of protein function?
� Does PPI network facilitate DeepFMB’s inference of pro-

tein function?
� How powerful are the evolution-related features generated

from pre-trained model?
� Is it helpful to fuse multi-type biological features?
Therefore, we design the following four variant models to

verify our conjectures:
� DeepFMB_only_evo: only uses evolution-related features

extracted by ESM-1b.
� DeepFMB_no_evo: removes evolution-related features ex-

tracted by ESM-1b, only keeps PPI-related features and
orthology-related features.

� DeepFMB_no_ort: excludes the orthology network, utiliz-
ing evolution-related features and PPI-related features.

� DeepFMB_no_PPI: excludes the PPI network, utilizing
evolution-related features and orthology-related features.

The performance of these models is shown in Fig. 2.
Our results show that: (i) Comparing DeepFMB with
DeepFMB_no_ort, it can be found that the performance in MF
decreases significantly after removing orthogonal correlation
features, while the performance in BP and CC is stable. This
indicates that orthology relations may have a more pronounced
effect in MF than BP and CC. (ii) Comparing DeepFMB
with DeepFMB_no_PPI, a significant decrease can be found
in MF and CC, which indicates that the PPI information also
contributes protein function prediction in MF and CC. (iii)
Comparing DeepFMB with DeepFMB_no_evo, in CC and MF,
there is a significant decrease in terms of AUPR, and a slight
decrease in Fmax. It also proves that the evolution-related fea-
tures play a key role in MF and CC. (iv) Comparing DeepFMB
with DeepFMB_only_evo reveals a common observation in all
conditions. After removing PPI-related and orthology-related
features, the performance of our model drops drastically in
terms of Fmax and AUPR in MF, CC, and BP. It demon-
strates that functional features (InterPro properties), PPI network
and orthology network together contribute to protein function
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TABLE IV
PREDICTIVE PERFORMANCE ON GO TERMS WITH DIFFERENT FREQUENCIES IN TERMS OF M-AUPR

prediction. Above all, all types of biological knowledge used
in DeepFMB are significant and different types of biological
knowledge contribute to different ontologies.

F. Case Study

To further compare DeepFMB with other methods, we use
two proteins (HS3S1_MOUSE and ERG13_SCHPO) in the test

set to show the predictive performance of these methods. As
can be seen in Table V, HS3S1_MOUSE is experimentally
annotated by 7 GO terms. However, DeepGraphGO predicts 4
GO terms and only 2 of them are correct. DeepGO predicts
4 GO terms and only 3 of them are correct. DeepGOCNN
predicts 12 GO terms and only 3 of them are predicted correctly.
Diamond, BlastKNN, DeepGOA, DeepGOZero, DeepGOPlus,
DeepGOZero+, and ATGO+ all predict 5 GO terms, all of
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Fig. 2. The predictive performance of different variant models in terms of F-max and AUPR.

TABLE V
PREDICTIVE PERFORMANCE OF VARIOUS METHODS ON HS3S1_MOUSE

which are predicted correctly. While ATGO also correctly pre-
dicts these 5 GO terms, it predicts a GO term incorrectly,
whereas ATGO+ can make corrections when predicting this
GO term, making its prediction more accurate. It can also
be obtained that Diamond and BlastKNN methods achieve
comparable performance to several DL-based methods, indi-
cating that using sequence similarity can work well for function
prediction, not only for enhancement, but also for prediction
alone. Our models, DeepFMB and DeepFMB+, both predict
6 correct GO terms and predict GO:0034483 which is not
predicted by the rest of the methods, reflecting the effectiveness
of our models. Additionally, Table VI illustrates the performance

of existing methods on ERG13_SCHPO, which is annotated
by 70 GO terms. It is worth noting that sequence similarity-
based approaches (eg. BlastKNN and Diamond) outperform
almost other deep learning-based methods, except DeepFMB
and DeepFMB+. Specifically, BlastKNN and Diamond achieve
F1 socre of 0.95 and 0.91, respectively. Our method, DeepFMB,
gets better performance with a precision value of 1.00, a recall
value of 0.99 and an F1 value of 0.99. After incorporating
BlastKNN, our method, DeepFMB+, can accurately annotate
ERG13_SCHPO perfectly with the best F1 score of 1.00. These
cases further demonstrate the practicality of DeepFMB and
DeepFMB+.
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TABLE VI
PREDICTIVE PERFORMANCE OF VARIOUS METHODS ON ERG13_SCHPO

IV. DISCUSSIONS AND CONCLUSION

With the development of high-throughput technology and
deep learning technologies, protein-related data are constantly
being produced, including protein sequences and PPI networks,
which provide more opportunities for computational methods to
predict protein functions. Although several existing approaches
have shown that evolution information of protein sequences is
highly correlated with functions, generating evolution informa-
tion by traditional methods are time-consuming. Besides, as
proteins perform their functions with interactions, PPI infor-
mation is also utilized by several methods to predict protein
functions. However, these methods perform poorly on proteins
lacking interactions. To address these limitations, we propose a
noval deep learning-based model, DeepFMB, which integrates
multi-type biological knowledge, including protein sequences,
protein-protein interactions and orthology relations. DeepFMB
utilizes pre-trained pLLMs to generate evolution-related fea-
tures, which is much faster than traditional computational meth-
ods. Simultaneously, DeepFMB introduces orthology relations
to compensate for the lack of interactions in some proteins.

Experimental results indicate that DeepFMB surpasses com-
peting methods across all sub-ontologies, particularly in CC.
Further enhancement is achieved by combining DeepFMB with
BlastKNN, forming DeepFMB+. This combination improves
performance in BP and MF, highlighting the importance of
sequence similarity in these ontologies. Additionally, we also
compare the performance of these methods on different GO
terms categorized by their frequencies, demonstrating the ca-
pability to effectively predict GO terms that are few annotated
to proteins. Ablation studies verify that our proposed framework
can fuse multi-type biological knowledge effectively and differ-
ent types of functions focus on different biological knowledge.
Specifically, sequence information may be more crucial on CC,
while orthology relations are more closely related to MF. Finally,
we use a typical protein case to show the practicality of our
method.

As for future work, we are probably to integrate other hetero-
geneous data, such as gene co-expression [2], protein structure
[8], text mining [44], and other biological networks [45], to ex-
plore more possibilities to enhance protein function prediction.
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