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A B S T R A C T   

With the application of new high throughput sequencing technology, a large number of protein sequences is 
becoming available. Determination of the functional characteristics of these proteins by experiments is an 
expensive endeavor that requires a lot of time. Furthermore, at the organismal level, such kind of experimental 
functional analyses can be conducted only for a very few selected model organisms. Computational function 
prediction methods can be used to fill this gap. The functions of proteins are classified by Gene Ontology (GO), 
which contains more than 40,000 classifications in three domains, Molecular Function (MF), Biological Process 
(BP), and Cellular Component (CC). Additionally, since proteins have many functions, function prediction rep
resents a multi-label and multi-class problem. We developed a new method to predict protein function from 
sequence. To this end, natural language model was used to generate word embedding of sequence and learn 
features from it by deep learning, and additional features to locate every protein. Our method uses the de
pendencies between GO classes as background information to construct a deep learning model. We evaluate our 
method using the standards established by the Computational Assessment of Function Annotation (CAFA) and 
have noticeable improvement over several algorithms, such as FFPred, DeepGO, GoFDR and other methods 
compared on the CAFA3 datasets.   

1. Introduction 

The gap between the known sequences of proteins and their function 
become wider, because of the ever increasing universe of protein amino 
acid sequences (Radivojac et al., 2013). Many computational methods 
have been proposed to annotate functions for unknown proteins. In 
order to provide a standard description method, Gene Ontology (GO) 
was launched. Currently, Gene Ontology (GO) has over 40,000 biolog
ical conceptsgrouped into three domains: Molecular Function Ontology 
(MFO, or MF), Biological Process Ontology (BPO,or BP) and Cellular 
Component Ontology (CCO,or CC) (You et al., 2018a). On the other 
hand, the UniProt, which is the biggest protein sequence database, had 
an increase of the data from 553,232–558,590 for the manually anno
tated proteins, whereas the number of automatically annotated proteins 
increased from 7,187,988 in January of 2016 to 11,713,556 in October 
of 2018. In parallel, the proportion of protein with known functions in 

this database decreased from 7.70 % to 4.77 %. All these observations 
indicate that although the number of protein sequences is increasing 
fast, the understanding of their functions is falling far behind. To fill this 
deep gap, an imperative issue would be the development of efficient 
automated function prediction (AFP) tools (Jiang et al., 2016a). 

To advance the performance of AFP, the Critical Assessment of 
Functional Annotation challenges (CAFA) have been held four times 
(Anon., 2013; Jiang et al., 2016b; Zhou et al., 2019). CAFA1 to CAFA3 
were held in 2010–2011, 2013–2014, 2016–2017 respectively and most 
recent CAFA pi was held in 2017− 2018. CAFA utilizes a time-delayed 
evaluation procedure to assess the accuracy of protein function predic
tion submitted by participants. To this end, CAFA uses proteins that have 
no publicly available experimental annotations for each GO domain 
(MFO, BPO or CCO), which is called no-knowledge protein (Jiang et al., 
2016a). Importantly, at the start of the assessment, these proteins have 
only sequences, whereas their functional annotations will be released 
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only after the deadline. Since in practice, over 95 % of proteins have 
only sequence information and no functional annotations, developing 
the efficient AFP for such no-knowledge proteins constitutes a very 
important task. These would be also the reasons why a well-performing 
AFP method is important. Since a protein is expected to have multiple 
functions, AFP method requires an eigenvalue that clearly represents 
each protein. To achieve this goal, researchers extracted many pieces of 
biological information, which can be useful in functional predictions, 
such as protein sequences, protein domains, protein structures, protein 
interactions, text information, informational spectrum, sequence simi
larity (Pérez et al., 2004; Raychaudhuri et al., 2002; Shatkay et al., 2007; 
Wong and Shatkay, 2013; Shatkay et al., 2015; Van et al., 2014; Deng 
and Huang, 2014; Huang and Hong-Jie, 2013; Kent, 2002), and various 
combinations of these features (Sokolov and Ben-Hur, 2010). 

Below we provide a short description of several previously elabo
rated methods as shown in Table 1, which may fall into two classes. 

The first and the most widely used class is information-based 
methods, which use the information of sequence alignment, amino 
acid content, sequence properties etc for protein function prediction. For 
example, COGIC (Cozzetto et al., 2013), GoFDR (Gong et al., 2016), and 
SMISS (Cao and Cheng, 2016) use combinations of different resources 
for protein function prediction 

The second class is machine learning-basedmethods (Huang and Du, 
2008; Shen et al., 2018) Most machine learning methods use features 
generated from the protein sequences for model training, and use that 
model to predict protein function. For example, PhosPred-RF (Wei et al., 
2017a), CPPred-RF (Wei et al., 2017b), PANNZER (Koskinen et al., 
2015), FEATURE (Halperin et al., 2008), NetGo (You et al., 2018b), 
FFPred3 (Cozzetto et al., 2016) use SVM, random forest, naïve Bayes, 
learn to rank to predict protein function. There are two crucial steps 
among these methods, building a meaningful feature set and choosing 
an appropriate algorithm. However, more errors could be involved for 
an inapposite feature set. The latest machine learning methods—deep 
learning which uses multiple layers representation and abstraction of 
data have proven their outstanding performance in image recognition 
and speech recognition It would be interesting to apply these latest 
machine learning methods for the protein function prediction problem, 
such as DeepGO (Kulmanov et al., 2017) and DeepText2Go (You and 
Zhu, 2017). 

The DeepGO method combines two forms of representation learning 
based on multiple layers of neural networks to learn features that can be 
used in prediction of protein functions (Kulmanov et al., 2017). Here, 
one method learns features from protein sequence, whereas another 

learns representations of proteins based on their location within the 
protein–protein interaction networks for multiple species from the 
STRING database (Damian et al., 2015). Adding this PPI 
network-derived information to the sequence-based information 
increased the predictive performance of DeepGO (Kulmanov et al., 
2017). Similarly, a NetGO approach (You et al., 2018b) combines 
various sequence information and massive network information of all 
species (>2000) in STRING (Damian et al., 2015). Furthermore, NetGO 
is able to use network information to annotate a protein by homology 
transfer, even if it is not covered in STRING (You et al., 2018b). It was 
shown that NetGO significantly outperformed GOLabeler (You et al., 
2018a), DeepGO (Kulmanov et al., 2017), and several other methods for 
automatic functional annotation of proteins. 

Furthermore, there are several methods, such as FFPred3 (Cozzetto 
et al., 2016), that show great performance based on the CAFA data 
(Anon., 2013; Jiang et al., 2016b; Zhou et al., 2019). These methods use 
protein sequences as their primary data and utilize homology-based 
transfer of information (GoFDR) (Gong et al., 2016) or scan the input 
sequences against a set of SVMs, each examining the relationship be
tween protein function and biophysical attributes, such as secondary 
structure, transmembrane helices, intrinsically disordered regions, 
signal peptides and other motifs (FFPred3) (Cozzetto et al., 2016). 
Additionally, utilization of the Label-Space Dimensionality Reduction 
(LSDR) techniques based on the structure of the GO terms and on the 
semantic similarity of terms was shown to improve the CAFA perfor
mance of several function prediction algorithms (Makrodimitris et al., 
2019). 

Motivated by the success of the DeepGO method, we propose here a 
method called DeepAdd that can predict protein functions using a deep 
convolutional neural network (CNN) framework. To this end, we inte
grate a natural language method into the protein sequence representa
tion. Instead of describing the protein sequence as a tri-gram embedding 
as DeepGO did, DeepAdd utilizes a Word2Vec method on defining the 
set of features to represent a protein. The vector representations of 
words learned by Word2Vec models has shown to carry semantic 
meanings and are useful in various natural language processing (NLP) 
tasks (Mikolov et al., 2013; Goldberg and Levy, 2014; Bengio et al., 
2003; Asgari and Mofrad, 2015). Although DeepGo added network in
formation to sequence-based information, network information has 
limitations for modeling protein function. For example, if a protein is 
annotated as unknown, then the corresponding features of PPI network 
will be set to zero, and as a result, the performance of DeepGo will be 
affected. To address this issue, DeepAdd incorporates sequence 

Table 1 
Comparison of several AFP methods.  

Method Means of prediction Level Properties 

COGIC (Cozzetto et al., 
2013) 

Statistical scoring methods Sequence similarity Integrate multiple sources of biological information, need 
multiple methods 

GoFDR (Gong et al., 2016) Statistical scoring methods Sequence similarity Need PSI-BLAST; Slow in predicting 
Smiss (Cao and Cheng, 

2016) 
Complex Statistical scoring 
methods 

Sequence similarity,go term, PPIs, spatial 
gene–gene interaction networks 

Combines information from different sources and calculates 
three different probability scores 

PhosPred-RF (Wei et al., 
2017a) 

Random forest-based 
predictor 

Phosphorylation and non- phosphorylation sites Usage of random forest,simple sequence features 

CPPred-RF (Wei et al., 
2017b) 

Random forest-based 
predictor 

Sequence similarity Multiple sequence-based feature 

PANNZER (Koskinen 
et al., 2015) 

Weighted k-nearest neighbor 
method 

Sequence similarity, PPIs, and gene expressions High annotation accuracy, not suitable classifier 

FEATURE (Halperin et al., 
2008) 

Naïve Bayes Structure information Need known 3D structure 

NetGo (You et al., 2018b) Learn to rank Sequence information and massive network 
information 

Based on various sequence information and massive network 
information of all species (>2000) 

FFPred3 (Cozzetto et al., 
2016) 

SVM Sequence information, structure information Utilize SVM to find biophysical attributes 

DeepGO (Kulmanov et al., 
2017) 

Multiple layers of neural 
networks 

Protein sequence, PPIs Usage of deep learning, simple sequence coding 

DeepText2Go (You and 
Zhu, 2017) 

Combines neural network and 
basic method 

Sequence information, sequence similarity Need PSI-BLAST; Slow in predicting  
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similarity profile (SSP) to learn features that exploits functional re
lationships across all levels of similarity, and not only at high similarity 
levels (Makrodimitris et al., 2019). For each target protein, if the fea
tures of PPI network are empty, then we infer SSP features for that 
protein as added features instead of PPI network. For example, since a 
target protein PEFAH_ECOLI is an unknown protein, it does not have PPI 
features, then the SSP will be used as supplementary features instead of 
empty PPI network features. 

2. Materials and methods 

The main workflow of the DeepAdd algorithm is illustrated in Fig. 1. 
DeepAdd uses three steps to predict functions of protein. In testing, 
given the sequence of a query protein, we use the Word2Vec method to 
represent the protein sequence. After that, DeepAdd consists of two CNN 
models with multiple convolution blocks that map the presented protein 
sequence to two-feature vectors representation. One feature represen
tation is for the sequence similarity profile by SSP model. The other 
feature representation is the PPI network by PPI model. Finally, Deep
Add uses a hierarchical classification method to classify all candidate GO 
terms of each query protein. All proteins in the training data set and 
their candidate GO terms are used for training the two CNN models. In 
this way, DeepAdd allows integration of the sequence similarity 
knowledge and protein- protein interaction information of query 
proteins. 

2.1. Datasets 

We trained DeepAdd on two datasets, a CAFA3 dataset and a Swis
sProt dataset (Boutet et al., 2016). As a sequence could be assigned more 
than one function, DeepAdd had to solve a multi-label classification task 
on both datasets. 

In our experiments, we use Gene Ontology (Ashburner et al., 2000) 
to annotate functions of protein, which was downloaded on 23 April 
2018 from the following link http://www.geneontology.org/page/ 
download-go-annotations in the OBO format. By following the CAFA 
settings, we kept experimental annotations as our training and test data 
with following codes: ‘EXP’, ‘IDA’, ‘IPI’, ‘IMP’, ‘IGI’, ‘IEP’, ‘TAS’ and ‘IC’. 

As for the SwissProt dataset (Boutet et al., 2016), we downloaded 
reviewed and manually annotated proteins on 24 April 2018 from http 
s://www.uniprot.org/downloads#uniprotkblink, to have a set which 
includes 558,590 proteins. Also, we test our method on CAFA3 dataset, 
which includes 130,787 protein sequences, downloaded from http 

s://www.biofunctionprediction.org/cafa/. We filtered the protein se
quences by length to uniform the input length of two deep learning 
models, and the length of protein sequence was no more than 1000 
residues. 

2.2. Utilization of Word2Vec

Traditional methods simply calculate the vector of k-mer frequencies 
without utilizing the co-occurrence relationship of k-mers. The k-mer 
feature is an order-less document, used in natural language processing 
and information retrieval. With the co-occurrence, we can get a word 
embedding with global statistical information, which may help us to 
construct better feature representations. Therefore, we use a Word2Vec 
method in DeepAdd. The superiority of Word2Vec over other method for 
learning word embedding lies in thesimplicity of its operation and 
capability to generate stable results. 

Word2Vec include 2 models, continuous bag-of-words (CBOW) 
model and Skip-Gram model (Mikolov et al., 2013; Goldberg and Levy, 
2014). These two models have opposite data flows, when one training 
the corpus. We use CBOW model in this experiment. The raw protein 
sequences are used as the input to the Word2Vec. Each protein is has a 
characteristic sequence composed of 20 amino acids. We are using the 
fixed word length of k for the sequence utilizing a sliding window 
(Fig. 2). Then these k-residues are trained to a dictionary with 20k ele
ments. We divide each sequence by the same window and annotate 
every k-residue according to the dictionary (see Algorithm 1). The 

Fig. 1. Framework of the DeepAdd algorithm.  
Fig. 2. Principles of using neural networks for predicting molecular traits from 
protein sequence. 
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corresponding outputs were used as the inputs for the two CNN models. 

2.3. Additional features 

In order to furtherly help the neural network to classify proteins and 
describe the relationship between proteins in training set and test set, we 
introduce two additional features: PPI network features and sequence 
similarity profile features. 

2.3.1. Protein-protein interaction (PPI) network features 
PPI network is composed of individual proteins engaged in their 

interactions with specific partners. PPI networks are crucial forvarious 
life processes such as biological signal transmission, gene expression 
regulation, energy and material metabolism and cell cycle regulation. 
We use it to describe the relationship between all proteins we use. 

Since our experiment was based on SwissProt protein identifiers, we 
mapped the graph of proteins identifiers using the identifier mapping 
from Search Tool for the Retrieval of Interacting Genes (STRING) 
database (Damian et al., 2015). 

In order to represent nodes and the topological relationship between 
nodes, Walking-RDF (Alshahrani et al., 2017) method was used to 
extract the knowledge graph embedding with size of 256 for each pro
tein. Walking-RDF is an improved DeepWalk method, which uses lan
guage modeling in social network (Perozzi et al., 2014). For proteins 
those missing in the graph, a vector of 256 zeros were set to indicate 
features missing. We mapped 5,570,349 proteins randomly in UniProt 
for our work and the knowledge graph embedding. 

2.3.2. Sequence similarity profile (SSP) features 
For unknown proteins or some proteins which are not covered in 

STRING and SwissProt, they may have no any PPI features. In this case, 
the performance of the PPI features based model will be poor for the PPI- 
related feature vectors are empty. In order to fix the problem, we 
included the sequence similarity profile (SSP) features as supplementary 
features. The SSP feature is a list of sequence similarity score s, 
computed with respect to all of the sequences in the training set. It 
represented each protein i in the dataset as a vector xi, which jth element 
shows the sequence identity between ith and jth training protein. This 
means that each protein is represented by a SSP in the training set. The 
SSP feature offers two primary advantages. First, it is a helpful feature 
when the PPI features are empty. Second, the SSP feature is simpler 
because it does not need to be trained separately for each GO term. 

We utilized the Needleman-Wunsch global sequence alignment al
gorithm (Heringa, 2004) to conduct alignment, which use BLOSUM62 as 
scoring matrix. Additionally, the SwissProt database may contain 
orthologous proteins, which are almost identical and might have similar 
functions. To ensure that our dataset does not contain sequences with 
high similarity levels, we use SSP to filter our dataset. The highest 
similarity in our dataset is 0.45. Summarizing since using zeros for 
proteins that are not in PPI graph has bad effect on evaluation param
eters, we used SSP for these proteins to improve performance of our 
models. 

2.4. Convolutional neural network (CNN) models 

We built up the deep learning framework by Keras, which uses 
Tensorflow as backend. As we have two kinds of additional features, two 
CNN models were built. 

For the SSP model, an embedding layer was used to facilitate data 
input and matrix shape transformation. After the embedding layer, three 
pairs of convolution layers with max pooling layers were designed to 
extract eigenvalues. Then, one full connection layer (dense layer) was 
used for further data extraction and a fixed length of output vector. 

For the PPI model, an embedding layer was used for input and three 
1D-convolution layers for eigenvalue extraction, followed by a max- 
pooling layer to simplify computing complexity of network. The detail 

parameters are shown in Fig. 3. 

2.5. Hierarchical classifier 

In order to code the functional dependencies between classes in GO 
and optimize the classification accuracy on the hierarchy of GO at the 
same time, each GO class is encoded instead of optimizing a local model 
for each class. The intention is that this model can identify both explicit 
and implicit dependencies. We generate a series of full connection layers 
with a sigmoid activation function for each classes in GO, each of these 
layers has one connection to an output neuron. For each subclass, we 
have a connection from its ancestors to represent this relationship. 

The concatenated sequence and additional features passed to a fully 
connected layer with 1024 nodes and the output is used as the input of 
the hierarchical classifier for further classification. 

2.6. Evaluation 

For comparison, we use two sets of parameters to evaluate the model. 
One set include AUC of ROC curve and Mathews Correlation Coefficient 
(MCC). The sensitivity and specificity for ROC curve is computed by Eqs. 
(1) and (2). For all threshold parameter t mentioned below, we have t∈
[0,1]. 

senf (t) =

∑

i
|f ∈ Pi(t) ∩ f ∈ Ti |

∑

i
|f ∈ Ti|

(1)  

spef (t) =

∑

i
|f ∕∈ Pi(t) ∩ f ∕∈ Ti |

∑

i
|f ∕∈ T|

(2) 

In these equations, f is the annotation for proteins from Gene 
Ontology, Pi (t) is a set of predicted classes for a given protein i with 
threshold t, Ti is a set of accurate annotation of a protein i. 

The AUC is computed by Eq. (3). The MCC is computed by Eq. (4). 
Here, TP stands for true positives, FN for false negatives, FP for false 
positives and TN for true negatives. 

Fig. 3. Convolutional neural network structure.  
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AUC =

∫ ∞

− ∞

TP(t)
TP(t) + FN(t)

∙
(

− FP(t)
Fp(t) + TN(t)

)

dt (3)  

MCC =
TP∙TN − FP∙FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (4) 

The other set of parameters are average precision (pr) and recall (re) 
(Clark and Predrag, 2013), which are computed by Eqs. (5)–(8). Where 
precision is averaged over the proteins where we at least predict one 
term and m(t) is the total number of such proteins and n is the number of 
protein in the test set. 

pk(t) =

∑

f
|f ∈ Pk(t) ∩ f ∈ Tk |

∑

fun
|f ∈ Pk(t) |

(5)  

rk(t) =

∑

f
|f ∈ Pk(t) ∩ f ∈ Tk|

∑

f
|f ∈ Ak|

(6)  

pr(t) =
1

m(t)

∑m(t)

k=1
pk(t) (7)  

re(t) =
1
n
∑n

k=1
rk(t) (8) 

Additionally, we use Fmax, which can compute by Eq. (9) to get a 
general watch on precision and recall for a threshold parameter t∈[0,1] 
using the average precision and recall. 

Fmax = max
{

2∙pr(t)∙re(t)
re(t) + pr(t)

}

(9)  

3. Result 

In order to verify the feasibility of DeepAdd, we run a series of 
comparative experiments, including comparison of this tool with the 
new and effective external methods and internal control comparison. 

3.1. Experiment setup 

For our experiments, we trained three models for each sub-ontology 
on GO (BP, CC and MF). First, we use GO to annotate proteins in Swis
sProt database and randomly group the proteins. Then 80 % of them are 
used as a training set and 20 % as a test set. Furthermore, 20 % of the 
training set are extracted as validation set. 

To reduce the amount of computation without affecting the training 
efficiency, we set the window size to 3 in the Word2Vec operation, then 
a dictionary of 8000 words is created. The dimension of word embed
ding was set to 4. Since the length of sequence is smaller than 1001, the 
input to embedding layer has no more than 4000 features for each 
protein. 

During the training, we use Rmsprop optimizer to minimize the bi
nary cross entropy loss, with the learning rate of 0.001. We monitor the 
loss value during training to ensure the best model is saved. To accel
erate the training process, we use NVIDIA GeForce GTX 1080 Ti GPU 
that noticeably speeds up the training process. 

3.2. Performance with additional SSP features 

In the previous work (Kulmanov et al., 2017), DeepGO demonstrated 
that PPI features improved performance of function prediction. In order 
to verify the performance of SSP features, we generated a special test set 
that included all unknown proteins. 

This means that all the PPI features for these proteins were zero 
vectors. Table 2 shows the overall performance of DeepAdd-SSP (that 
relies only on SSP features) in comparison with the DeepAdd-PPI (that 
relies only on PPI features). 

We find that DeepAdd-SSP outperforms DeepAdd-PPI in the special 
test set (filtered dataset). This is the reason why we can improve the 
prediction performance of the method by combining th PPI and SSP 
features. This analysis also shows that SSP features are effective sup
plement features for unknown proteins. 

3.3. Comparison with baseline models 

To evaluate the performance of our method, we compared our 
method with DeepGo (Kulmanov et al., 2017). For DeepGo, we use the 
source code downloaded from https://github.com/bio-ontology-rese 
arch-group/deepgo. To make the experiment closer to practical appli
cation, the test set for this experiment contained all kinds of PPI features. 

From the data summarized in Table 3, we find that DeepAdd shows 
higher Fmax and AUC values than DeepGO on all three sub-ontologies, 
BP, MF, and CC. Therefore, Word2Vec performs better than NPLM, 
when a protein sequence act as an input to a neural network. In addition, 
PPI features and SSP features together helped us to improve the Deep
Add performance for the protein function prediction. 

3.4. Performance on CAFA3 dataset 

As aforementioned, AFP for no-knowledge proteins from CAFA 
challenge [4,5,6] is important. We compare DeepAdd with two top- 
performing methods from the previous CAFA challenges, GoFDR 
(Zhou et al., 2019) and FFPred3 (Cozzetto et al., 2016), also with the 
baseline methods DeepGO (Kulmanov et al., 2017) and SSP-LSDR 
(Makrodimitris et al., 2019). The data used here are on the benchmark 
released on November 2017 for CAFA3 competition. During training, 
the protein has no annotations. Table 4 shows the performance results of 
DeepAdd in comparison to other four methods on this benchmark 
dataset. DeepAdd performed well and received the highest Fmax and 
AUC score AUC in all three GO sub-ontologies. 

Also, we compared our method with other CAFA methods, and the 
results are shown as Fig. 5. The figure shows DeepAdd did not achieve 
the best performance in the CAFA3 challenge as compared with the top 
CAFA methods in Fmax value. GoLabeler(Zhu Lab) got the best overall 
performance because it integrated five different types of sequence-based 
information and an LTR regression model to predict protein function. All 
these 5 types of information are not easy to get. It need BLAST-kNN 
sequence alignment, three long features has 1170, 8000, 33,879 fea
tures and a frequency feature. The combination of these features makes 
GOlabeler get better performance. 

Among deep learning based methods, DeepGOPlus got better Fmax 
value. Due to computational limitations, DeepAdd and DeepGo can only 
predict around 2000 functions out of more than 45 000 which are 
currently in the GO. While DeepGOPlus has predicted more than 5000 

Table 2 
Classification performance on filtered dataset.   

BP MF CC  

Fmax AUC MCC pr re Fmax AUC MCC pr re Fmax AUC MCC pr re 

DeepAdd-ssp 0.358 0.846 0.346 0.368 0.348 0.552 0.910 0.565 0.656 0.476 0.539 0.924 0.546 0.531 0.547 
DeepAdd-PPI 0.233 0.754 0.222 0.184 0.315 0.188 0.761 0.210 0.217 0.166 0.321 0.773 0.491 0.281 0.372  
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protein functions. DeepGOPlus will get more than two times of recall 
when it hits the 5000 functions. That the reason why DeepAdd and 
DeepGo can’t outperform it. And we compared the number of network 
parameters in DeepAdd and DeepGOPlus, as shown in Fig. 6. It can be 
seen that the number of parameters in DeepGOPlus are several times of 
DeepAdd. In the future work, we need to improve our method compu
tational ability in order to predict more protein functions. 

3.5. Performance on proteins sets from different organisms 

Fig. 4 shows the AUC scores of DeepAdd and DeepGo on protein sets 
from different organisms for three sub-ontologies. We find that perfor
mance of DeepAdd varies greatly among proteins from different or
ganisms, in particular between eukaryotic and prokaryotic organisms. 

We also find that DeepAdd shows competitive performance for many 
organisms in BP and MF sub-ontologies, probably due to the organism 
complexity, which can bring more features to their proteins. Yet this 
advantage is not obvious in CC sub-ontology. However, compared with 
DeepGO, we found that our method get an overall better performance. 

3.6. Sensitivity analysis 

To check the robustness of the newly developed tool, we carry out 
sensitivity analysis of the DeepAdd. In Word2Vec, word embedding 
varies with output dimensions and the length of a word that is, k of k- 
residues is variable too. We ran a series of experiments to find out if 
these parameters have any influence on the outputs of our experiment. 
Several corresponding results are shown in Table 5. 

Table 3 
Classification performance on Swiss-Prot’s dataset.   

BP MF CC  

Fmax AUC MCC pr re Fmax AUC MCC pr re Fmax AUC MCC pr re 

DeepGo 0.385 0.893 0.384 0.415 0.359 0.546 0.928 0.570 0.673 0.459 0.633 0.967 0.592 0.643 0.624 
DeepAdd 0.393 0.907 0.395 0.400 0.386 0.580 0.947 0.606 0.684 0.504 0.619 0.968 0.592 0.638 0.601  

Table 4 
Performance on CAFA3 dataset.   

BP MF CC  

Fmax AUC MCC pr re Fmax AUC MCC pr re Fmax AUC MCC pr re 

SSP-LSDR 0.298 0.761 0.317 0.320 0.276 0.291 0.767 0.457 0.335 0.255 0.303 0.783 0.417 0.345 0.267 
FFPred3 0.288 0.841 0.232 0.311 0.267 0.376 0.861 0.287 0.349 0.407 0.446 0.891 0.393 0.462 0.431 
DeepGo 0.343 0.884 0.324 0.313 0.379 0.475 0.906 0.574 0.614 0.387 0.522 0.953 0.504 0.557 0.492 
GoFDR 0.193 0.621 0.024 0.283 0.146 0.513 0.847 0.615 0.889 0.361 0.413 0.734 0.320 0.400 0.426 
DeepAdd 0.345 0.896 0.335 0.315 0.381 0.516 0.912 0.585 0.641 0.432 0.547 0.958 0.511 0.536 0.558  

Fig. 4. AUC of different organisms. F.F: Fruit Fly, F.Y: Fission Yeast, M.T: Mycobacterium tuber-s, P.A: Pseudomonas aeruginosa, B.S: Bacillus subtilis.  
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3.6.1. Word embedding dimension 
From the Table 5 we can find that larger dimension of word 

embedding needs more time and memory to train the model. Although 
the performance of the model is partly improved, the increase in time is 
unacceptable. When the dimension of word embedding comes to 128 or 
higher, the training will cost more than 64GB of memory. 

3.6.2. Length of the word 
Due to the curse of dimensionality and the lack of a large enough 

corpus, we only use 5-residues to compare. The dimension of word 
embedding were set to 4 in this experiment. We found that the size of 
dictionary had little effect on the performance of our model. 

According to the Table 5, our model is insensitive to the choice of D 
and k. However large k will bring an explosive growth of the dictionary, 
which will cause a big waste of calculation. To reduce the amount of 
computation complexity and get better results, we finally selected the 4 
dimensional word embedding. 

4. Discussion 

DeepAdd extended the application of deep learning approaches for 
protein function prediction in three ways. First, we regard protein se
quences as natural language and extract word embedding with Word2
Vec. Second, we apply feature learning using two CNN models, which 
include sequence similarity profile and PPI network features. Third, two 
CNN models data sources were used in a single model. The advantages of 
our method are its scalability, the potential for the end-to-end learning 
and the potential to predict class that can provide enough training data. 

However, our model also has disadvantages. First, a large corpus is 
needed to generate a complete k-mer dictionary for Word2Vec. This 
means that we need a large enough protein database. Second, data we 
used to annotate the protein from GO have been accumulated artificially 
for many years, which limits applications in other areas, such as pre
dicting phenotype annotations or effects of variants. Furthermore, we 
use deep learning to process data, which is extremely slow on CPU. 

In the future, we intend to extend our method in several directions. 
First, we will introduce more influential, additional features, which may 
be helpful for prediction. Then we plan to explore more efficient algo
rithm to speed up the training while improving prediction results. 
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Table 5 
Different dimension word embedding performance of BP.  

Dimensions 4 64 4 

k-residues 4 4 5 
AUC 0.910 0.911 0.908 
MCC 0.392 0.394 0.389 
Fmax 0.394 0.387 0.395 
Pr 0.401 0.397 0.402 
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NOTE: Dimensions show the output dimension of Word2Vec. 

Z. Du et al.                                                                                                                                                                                                                                       



Computational Biology and Chemistry 89 (2020) 107379

8

kind in any product, service and/or company that could be construed as 
influencing the position presented in, or the review of, the manuscript 
entitled, “DeepAdd：Protein function prediction from k-mer embedding 
and additional features”. 

Acknowledgments 

The authors gratefully acknowledge the contribution of the National 
Science Foundation of China [U1713212] [61572330] [61836005] 
[61702341], the Technology Planning Project of Shenzhen City 
[JCYJ20170302143118519] [GGFW2018021118145859] [JSGG201 
80507182904693]. 

Appendix A. Supplementary data 

Supplementary material related to this article can be found, in the 
online version, at doi:https://doi.org/10.1016/j.compbiolchem.2020 
.107379. 

References 

Alshahrani, M., Khan, M.A., Maddouri, O., Kinjo, A.R., Queralt-Rosinach, N., 
Hoehndorf, R., 2017. Neuro-symbolic representation learning on biological 
knowledge graphs. Bioinformatics 33. 

Anon, 2013. A large-scale evaluation of computational protein function prediction. Nat. 
Methods 10 (3), 221–227. 

Asgari, Ehsaneddin, Mofrad, M.R.K., 2015. Continuous distributed representation of 
biological sequences for deep proteomics and genomics. PLoS One 10. 

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., et al., 2000. 
Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25, 05/01/online.  

Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C., 2003. A neural probabilistic language 
model. J. Mach. Learn. Res. 3, 1137–1155. 

Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M., Bansal, P., Bridge, A.J., et al., 
2016. UniprotKB/Swiss-Prot, the manually annotated section of the UniProt 
KnowledgeBase: how to use the entry view. Methods Mol. Biol. 1374, 23–54. 

Cao, R., Cheng, J., 2016. Integrated protein function prediction by mining function 
associations, sequences, and protein–protein and gene–gene interaction networks. 
Methods 93, 84–91. 

Clark, W.T., Predrag, R., 2013. Information-theoretic evaluation of predicted ontological 
annotations. Bioinformatics 29, i53–i61. 

Cozzetto, D., Buchan, D.W., Bryson, K., Jones, D.T., 2013. Protein function prediction by 
massive integration of evolutionary; analyses and multiple data sources. BMC 
Bioinformatics 14, 1–11. 

Cozzetto, D., Minneci, F., Currant, H., Jones, D.T., 2016. FFPred 3: feature-based 
function prediction for all Gene Ontology domains. Sci. Rep. 6, 31865. 

Damian, S., Andrea, F., Stefan, W., Kristoffer, F., Davide, H., Jaime, H.C., et al., 2015. 
STRING v10: protein-protein interaction networks, integrated over the tree of life. 
Nucleic Acids Res. 43, D447. 

Deng, Su-Ping, Huang, D.S., 2014. SFAPS: an R package for structure/function analysis of 
protein sequences based on informational spectrum method. Methods 69 (3), 
207–212. 

Goldberg, Y., Levy, O.J.C., 2014. word2vec Explained: Deriving Mikolov Et al.’S 
Negative-sampling Word-embedding Method. vol. abs/1402.3722. 

Gong, Q., Ning, W., Tian, W., 2016. GoFDR: a sequence alignment based method for 
predicting protein functions. Methods 93, 3–14. 

Halperin, I., Glazer, D.S., Wu, S., Altman, R.B., 2008. The FEATURE framework for 
protein function annotation: modeling new functions, improving performance, and 
extending to novel applications. BMC Genomics 9, S2. 

Heringa, Jaap, 2004. Needleman-Wunsch Algorithm. Dictionary of Bioinformatics and 
Computational Biology. John Wiley & Sons, Inc. 

Huang, D.S., Du, J.-X., 2008. A constructive hybrid structure optimization methodology 
for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19 (12), 
2099–2115. 

Huang, D.S., Hong-Jie, Yu, 2013. Normalized feature vectors: a novel alignment-free 
sequence comparison method based on the numbers of adjacent amino acids. 
IEEEACM Trans. Comput. Biol. Bioinform. 10 (2), 457–467. 

Jiang, Y., Oron, T.R., Clark, W.T., Bankapur, A.R., D’Andrea, D., Lepore, R., et al., 2016a. 
An expanded evaluation of protein function prediction methods shows an 
improvement in accuracy. Genome Biol. 17, 184. 

Jiang, Yuxiang, et al., 2016b. An expanded evaluation of protein function prediction 
methods shows an improvement in accuracy. Genome Biol. 17 (1), 184. 

Kent, W.J., 2002. BLAT - The BLAST-like alignment tool. Genome Res. 12 (4), 656–664. 
Koskinen, P., Törönen, P., Nokso-Koivisto, J., Holm, L., 2015. PANNZER: high- 

throughput functional annotation of uncharacterized proteins in an error-prone 
environment. Bioinformatics 31, 1544–1552. 

Kulmanov, M., Khan, M.A., Hoehndorf, R., 2017. DeepGO: predicting protein functions 
from sequence and interactions using a deep ontology-aware classifier. 
Bioinformatics 34, 660–668. 

Makrodimitris, S., Van Ham, R.C.H.J., Reinders, M.J.T., 2019. Improving protein 
function prediction using protein sequence and GO-term similarities. Bioinformatics. 

Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013. Efficient Estimation of Word 
Representations in Vector Space. 
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