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DPFunc: accurately predicting protein
function via deep learning with domain-
guided structure information

Wenkang Wang1, Yunyan Shuai1, Min Zeng 1, Wei Fan2 & Min Li 1

Computational methods for predicting protein function are of great sig-
nificance in understanding biological mechanisms and treating complex dis-
eases. However, existing computational approaches of protein function
prediction lack interpretability, making it difficult to understand the relations
between protein structures and functions. In this study, we propose a deep
learning-based solution, named DPFunc, for accurate protein function pre-
diction with domain-guided structure information. DPFunc can detect sig-
nificant regions in protein structures and accurately predict corresponding
functions under the guidance of domain information. It outperforms current
state-of-the-art methods and achieves a significant improvement over existing
structure-based methods. Detailed analyses demonstrate that the guidance of
domain information contributes to DPFunc for protein function prediction,
enabling our method to detect key residues or regions in protein structures,
which are closely related to their functions. In summary, DPFunc serves as an
effective tool for large-scale protein function prediction, which pushes the
border of protein understanding in biological systems.

Proteins are fundamental units that perform functions to accomplish
various life activities1,2. The individual proteins after mutations, for
example, are necessary to verify that the specific functions are
retained3–5. While traditional wet-lab experiments have long been the
gold standard for accurately determining protein functions6, their
time-consuming and costly have spurred the development of auto-
mated protein function prediction methods. Till now, less than 1% of
protein sequences are annotatedbyGeneOntology (GO) terms7, which
canbedivided into threeontologies:molecular functions (MF), cellular
components (CC), and biological process (BP)8,9. Consequently,
developing computational methods for automated protein function
prediction is crucial for bridging the widening gap between the num-
ber of known annotations and protein sequences generated by high-
throughput technology10,11, which benefits biologists in discovering
proteins of interest and serve as a guide for protein virtual screening
and protein design12,13.

Traditional computational methods have long relied on homol-
ogy similarity, inferring protein function based on known proteins and
applying that knowledge to proteins of interest6,14. More recently,
several machine learning and deep learning classifiers15–19 have been
proposed to learn the latent relationships between protein sequences
and functions, surpassing the performance of traditional homology-
based methods. Propelled by high-throughput technologies, a vast
amount of biological data have been produced, including gene
expression20, biomedical text21, protein-protein interaction (PPI)22, and
homology relationship23. These data provide new perspectives for
protein function prediction. The Critical Assessment of Functional
Annotation (CAFA) competition24,25 has proven the advancements in
incorporating these biological data. Notably, most of these methods
rely on specific features generated from additional information (for
example, PPI26 or gene expression27) beyond the protein sequences
themselves. Thus, although these methods achieve impressive per-
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formance, they struggle to be applied to large-scale protein datasets or
those predicted from only sequenced genomes, as there is no guar-
antee that additional information is available for all target proteins28.
Above all, it still remains a big challenge to predict protein function
only based on protein sequences18,29–31.

It is widely known that protein sequences fold into three-
dimensional structures and further determine specific functions32. In
the early days, constrained by limited experimental protein structures,
almost all sequence-based computational methods predict functions
based on motifs of sequences, like DeepGOPlus16 and TALE33. With the
development of deep learning, computational methods, such as
ESMFold34, AlphaFold235, and AlphaFold336, can predict high-accuracy
protein structures from sequences, addressing the limitations of
existing sequence-based methods for protein function prediction.
Now, several methods that leverage both sequences and structures
have been proposed, such as DeepFRI37 and GAT-GO38. Thesemethods
construct protein contactmaps based on the 3D coordinates of amino
acids from protein structures39–42, then adopt different Graph Neural
Networks (GNNs)43,44 to extract protein-level features. These structure-
based methods have achieved some progress compared to previous
methods. However, existing structure-based approaches ignore the
importance of different amino acids and directly average all amino
acid features as protein-level features, failing to effectively discover
the relationships between functions and important domains in the
structure. In fact, proteins consist ofmany specific domains45–48, which
are closely related to both their structures and functions49. It has been
shown fromprevious studies19,26 that it is valuable to detect domains in
sequences for protein function prediction.

To address these limitations, we introduce a deep learning-based
method, DPFunc, which integrates domain-guided structure informa-
tion for accurate protein function prediction. The core idea is to
leverage domain information within protein sequences to guide the
model toward learning the functional relevance of amino acids in their
corresponding structures, highlighting structure regions that are clo-
sely associated with functions. More specifically, DPFunc first extracts
residue-level features from a pre-trained protein language model and
then employs graph neural networks to propagate features between
residues. Simultaneously, it scans the sequences and generates
domains, converting them into dense representations through
embedding layers. Inspired by the transformer architecture, DPFunc
introduces an attention mechanism that learns whole structures and
predicts functions under the guidance of corresponding domain
information. With this architecture, our model is able to capture
functionally crucial domainswithinprotein structures.Comprehensive
evaluations and analyses reveal that DPFunc outperforms existing
state-of-the-art methods. Further exploration also demonstrates its
ability to detect key motifs or residues in protein structures that
exhibit strong functional correlations. In summary, DPFunc offers a
more efficient way to unravel the relationships between protein
structures and functions compared to existing structure-based meth-
ods. It provides researchers with important sites in the structure that
may be highly relevant to functions. Moreover, DPFunc also holds the
potential for widespread application across large-scale protein
sequence datasets, since it can directly obtain features only from
protein sequences.

Results
Overview of DPFunc
DPFunc is a deep learning-based method for protein function predic-
tion using domain-guided structure information. The overall archi-
tecture of DPFunc is shown in Fig. 1. It consists of three modules: (1) a
residue-level feature learning module based on a pre-trained protein
language model and graph neural networks for propagating features
between residues through protein structures which can be the native
structures from the PDB database50 or the predicted structures51,52 by

AlphaFold235. (2) a protein-level feature learningmodule for extracting
the whole structure features from residue-level features guided by
domain information from sequences. (3) a protein function prediction
module for annotating functions to proteins based on protein-level
features.

The residue-level feature learning module takes protein sequen-
ces and structures as input. Based on protein sequences, it first gen-
erates the initial features for each residue from the pre-trained protein
language model (ESM-1b)53. Simultaneously, it constructs contact
maps based on corresponding protein structures. Subsequently, these
contact maps and residue-level features can be considered as graphs
and corresponding node features, which are further fed into several
GCN layers to update and learn the final residue-level features. Addi-
tionally, inspired by ResNet54, this module also utilizes a residual
learning framework in GCNs. The protein-level feature learning mod-
ule holds the key component for transforming residue-level insights
into a comprehensive representation of the entire protein structure. It
first uses InterProScan55 to scan the target protein sequences, com-
pares them to background databases, and detects the domains con-
tained in the sequences, each of which is represented by a unique
entry. Since these domains are functional units responsible for specific
functions, in this module, they serve as a guide to discovering sig-
nificant residues in the sequences with the residue-level features
generated by the first module. Specifically, these domain entries are
fed into an embedding layer to generate domain-level dense repre-
sentations that capture their unique characteristics, and then summed
as protein-level domain information. To assess the importance of dif-
ferent residues, inspired by the transformer architecture, an attention
mechanism is introduced to interweave the protein-level domain fea-
tures and residue-level features, which detects the importance of each
residue. Subsequently, protein-level features can be obtained by
weighted summation of the residue-level features and their corre-
sponding importance scores. Then, the protein function prediction
module combines the protein-level features and initial residue-level
features to annotate functions to proteins through several fully con-
nected layers. Finally, the prediction results are processed by a com-
mon post-processing procedure to ensure consistency with the
structures of GO terms. These modules are integrated as an automatic
function prediction framework. The details of each module can be
found in “Methods".

DPFunc outperforms existing state-of-the-art methods
To evaluate the performance of DPFunc, we first compare our method
to threebaselinemethodsonlybasedon sequences (i.e.,Naive16, Blast6,
and DeepGO15) and two structure-based methods (i.e., DeepFRI37 and
GAT-GO38). Tomake a fair comparison,we use the samedataset used in
previous studies37,38. The dataset contains the PDB structures validated
by experiments and corresponding confirmed functions (see “Meth-
ods" for dataset details). We adopt two commonly used metrics in
CAFA: Fmax and AUPR (see “Methods" for details). Fmax is the max-
imum F-measure, which is the harmonic mean of paired precision and
recall. A higher Fmax indicates better performance. AUPR is the area
under the precision-recall curve with different cut-off thresholds.
Again, a larger AUPR value signifies superior model performance.

The result is illustrated in Table 1. Without the post-processing
procedure, DPFuncw/o post outperforms other methods in MF, CC, and
BP. And the post-processing procedure further enhances the perfor-
mance improvements. Specifically, when compared to GAT-GO,
DPFuncw/o post achieves an increased Fmaxof 8%, 5%, and 8% inMF, CC,
and BP, respectively. With the post-processing procedure, these
improvements become even more significant, reaching 16%, 27%, and
23%, respectively. Similar trends are observedwhen considering AUPR.
DPFuncw/o post consistently achieves the highest performance,
improving AUPR by at least 7%, 23%, and 42% in MF, CC, and BP,
respectively. After considering the post-processing procedure, the
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performance of our model is further improved by even 8%, 26%, and
19%, respectively. We further test the effect of different sequence
identities on the performance of these methods. As illustrated in
Supplementary Fig. 1, DPFunc achieves better performance in all cases
with different sequence identity cut-offs. It is noteworthy that
although GAT-GO also uses protein structures and the same residue-
level features generated from ESM-1b, our model outperforms it. This
finding indicates that domain information contained in protein
sequences provides valuable insights for protein function prediction.

Meanwhile, the post-processing procedure makes the predictions
more logical and facilitates improving the performance of models.

To enable a more comprehensive comparison with other
methods6,14–16,26,29,33, we construct a large-scale dataset. Following the
CAFA challenge, we partition it into training, validation, and test sets
based on distinct time stamps (see “Methods" for details). Unlike the
previously utilized PDB dataset, this large-scale dataset encompasses
more proteins and corresponding additional information, such as PPI
and GO structures, making it possible to compare our methods with
other state-of-the-art (SOTA) methods. Specifically, we compare our
method against two baseline methods (BlastKNN6 and Diamond14),
three sequence-based methods (DeepGOCNN16, TALE33, and ATGO33),
two PPI network-based methods (DeepGO15 and DeepGraphGO26), and
three composite methods that integrate the results of baseline meth-
ods and their original predictions (DeepGOPlus16, TALE+33, ATGO+29).
Moreover, we choose two additional web-servers as competitors,
NetGO3.056 and COFACTOR57,58, where NetGO3.0 is the current state-
of-the-art method in the CAFA24,25 challenge and COFACTOR is an
effective structure-based tool for predicting protein functions as a
component of I-TASSER-MTD59 in the CASP60 challenge.

Table 2 shows the predictive performance of various methods
for five repetitions of the experiment. Notably, to ensure a fair
comparison, the post-processing procedure is applied to all meth-
ods. This standardization potentially benefits those that do not
inherently incorporate such processing. Despite this, DPFunc con-
sistently outperforms all other methods in terms of Fmax and AUPR,
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Fig. 1 | Model architectures of DPFunc. a The overview of DPFunc. It mainly
consists of three aspects, including the domain information via scanning protein
sequences, the residue features generated from the pre-trained protein language
model, and the structure graphs constructed based on the predicted or native
structures. Based on these features, a residue feature learningmodule and aprotein
feature learning module are designed to learn the residue representations and
significance of residues in the structure, which are used to predict functions

subsequently. b The details of the residue feature learning module. It utilizes GCN
layers and residual operation to update residue features based on the pre-trained
features and structure graphs. c The details of the protein feature learningmodule.
Inspired by self-attention, it takes domain information and residue representations
as input, and calculates the importance of different residues in structures to gen-
erate protein features.

Table 1 | Comparison on the PDB dataset in terms of Fmax
and AUPR

Method MF CC BP

Fmax AUPR Fmax AUPR Fmax AUPR

Naïve* 0.156 0.075 0.318 0.158 0.244 0.131

BLAST* 0.498 0.120 0.398 0.163 0.400 0.120

DeepGO* 0.359 0.368 0.420 0.302 0.295 0.210

DeepFRI* 0.542 0.313 0.424 0.193 0.425 0.159

GAT-GO* 0.633 0.660 0.547 0.479 0.492 0.381

DPFuncw/opost 0.681 0.701 0.571 0.593 0.531 0.540

DPFunc 0.731 0.766 0.689 0.738 0.606 0.639
*The performance of these methods are taken from the original paper.
Best performance among all methods for each metric is shown in bold.
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exhibiting particularly significant improvements in AUPR. Specifi-
cally, DPFunc exhibits AUPR improvements of at least 9.6%, 9.3%, and
8.8% for MF, CC, and BP, respectively. Similar conclusions can be
drawn from Supplementary Table 1. DPFunc surpasses the other two
web-servers, NetGO3.0 and COFACTOR, in the vast majority of cases,
except for Fmax in BP. These comparison results further prove the
ability of DPFunc in protein function prediction. To evaluate the
performance of DPFunc more comprehensively, based on the results
in Table 2, we choose four approaches (BlastKNN, ATGO, Deep-
GraphGO, and ATGO+) as the representative methods for baseline
methods, sequence-based methods, PPI network-based methods,
and composite methods, respectively.

DPFunc exhibits the ability to learn protein features and infer the
GO terms more effectively, even for unseen proteins with low
sequence identities to known proteins. To verify this capability, we
construct several protein sets from the test set, each with a distinct
sequence identity threshold relative to training proteins. The results
are shown in Fig. 2a, DPFunc consistently outperforms other methods
in nearly all cases, except for the 50% threshold in BP, where it
demonstrates comparable performance to ATGO+. Notably, the
improvements of DPFunc are still stable as the identity threshold

increases. This advantage is more pronounced in CC, where the
rankings of ATGO+ and DeepGraphGO change with identities. This
result persists when compared to all other SOTA methods (see Sup-
plementary Fig. 2).

Beyond its overall performance, DPFunc excels in predicting
informative GO terms characterized by high IC values. These terms
present a greater challenge due to their few occurrences and limited
training samples. As illustrated in Fig. 2c, DPFunc consistently out-
performs the other methods when predicting GO terms with fewer
samples, and the improvement remains for more specific GO terms
(IC≥3). Notably, somemethods, such as TALE, fail to accurately predict
these informative GO terms (see Supplementary Fig. 3). Additionally,
Fig. 2b,d-e show the performance in terms of IC-weighted AUPR (see
“Methods" for details), which is different fromAUPR and considers the
informative of GO terms. It can be obtained that DPFunc surpasses the
other methods, indicating the great potential of DPFunc in predicting
informative functions. The detailed data can be obtained from Sup-
plementary Table 2.

As functions form a loosely hierarchical structure and are related,
functions with deeper depths are more specific and predicting these
types of functions is more meaningful. Figure 2f shows the

Table 2 | Comparison on the large-scale dataset in terms of Fmax and AUPR

Ontology Methods Fmax p value AUPR p value

MF Diamond 0.592(-) – 0.387(-) –

BlastKNN 0.616(-) – 0.484(-) –

DeepGO 0.301( ± 5.47e-03) 8.40e-04 0.204( ± 8.21e-03) 5.65e-04

DeepGOCNN 0.396( ± 5.73e-04) 3.70e-05 0.326( ± 4.38e-04) 4.90e-06

TALE 0.260( ± 2.44e-05) 1.25e-08 0.158( ± 1.96e-05) 2.57e-09

ATGO 0.454( ± 1.25e-05) 1.55e-07 0.442( ± 4.37e-06) 4.93e-08

DeepGraphGO 0.562( ± 8.00e-05) 6.83e-05 0.533( ± 1.28e-04) 1.37e-05

DeepGOPlus 0.589( ± 2.13e-06) 6.22e-06 0.548( ± 6.26e-05) 1.85e-05

TALE+ 0.602( ± 6.00e-06) 1.74e-05 0.543( ± 6.89e-06) 1.83e-06

ATGO+ 0.622( ± 6.56e-07) 2.80e-04 0.599( ± 3.86e-07) 1.63e-06

DPFunc 0.635( ± 3.24e-06) – 0.658( ± 9.22e-06) –

CC Diamond 0.573(-) – 0.283(-) –

BlastKNN 0.596(-) – 0.384(-) –

DeepGO 0.574( ± 4.78e-05) 5.71e-05 0.580( ± 6.34e-05) 2.01e-05

DeepGOCNN 0.573( ± 2.45e-04) 6.33e-04 0.567( ± 2.26e-04) 1.45e-04

TALE 0.548( ± 1.75e-05) 2.68e-06 0.510( ± 3.23e-04) 3.62e-05

ATGO 0.602( ± 2.76e-06) 3.15e-06 0.596( ± 7.35e-07) 3.46e-07

DeepGraphGO 0.634( ± 4.32e-07) 1.01e-04 0.590( ± 7.60e-06) 1.61e-06

DeepGOPlus 0.626( ± 1.44e-05) 3.06e-04 0.618( ± 3.89e-05) 4.21e-05

TALE+ 0.608( ± 8.61e-07) 4.99e-06 0.591( ± 8.34e-05) 3.68e-05

ATGO+ 0.633( ± 3.06e-06) 1.12e-04 0.636( ± 2.13e-07) 3.79e-06

DPFunc 0.657( ± 7.44e-06) – 0.695( ± 9.18e-06) –

BP Diamond 0.429(-) – 0.197(-) –

BlastKNN 0.445(-) – 0.258(-) –

DeepGO 0.328( ± 9.89e-05) 1.05e-05 0.260( ± 8.05e-05) 1.99e-05

DeepGOCNN 0.323( ± 3.35e-04) 1.09e-04 0.254( ± 3.81e-04) 5.83e-05

TALE 0.253( ± 2.23e-05) 1.56e-07 0.152( ± 4.14e-05) 1.67e-07

ATGO 0.396( ± 8.64e-07) 5.29e-07 0.341( ± 3.32e-07) 2.98e-07

DeepGraphGO 0.432( ± 2.30e-06) 1.38e-05 0.389( ± 6.14e-06) 1.70e-05

DeepGOPlus 0.438( ± 9.94e-06) 1.58e-04 0.365( ± 1.28e-05) 1.65e-05

TALE+ 0.427( ± 4.77e-06) 1.63e-05 0.327( ± 8.03e-06) 1.04e-06

ATGO+ 0.456( ± 4.29e-07) 2.06e-04 0.399( ± 2.76e-07) 9.41e-06

DPFunc 0.466( ± 2.21e-06) – 0.434( ± 7.17e-06) –

The values of Fmax and AUPR in the table are the mean and standard deviation of the results of five times repeated experiments. P values are two-tailed Student’s t-test between DPFunc and the
corresponding compared methods. Best performance among all methods for each metric is shown in bold.
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performance of these methods on GO terms with deeper nodes
(depths > = 8 in MF and BP, depths > = 6 in CC since the maximum is 7
inCC), whichevaluates the performance on each selectedGO termand
means their AUPR values as the final metric. DPFunc still achieves the
best performance, except for being slightly weaker than BlastKNN in
BP. Notably, although ATGO+ achieves comparable scores, it can only
predict parts of known functions (66.3%), as shown in Fig. 2g and
Supplementary Table 3. Above all, DPFunc demonstrates a distinct
advantage over SOTA methods, particularly in its ability to handle
unseen proteins with low sequence identity, informative GO terms
with high IC values, and specific GO terms with deeper nodes.

Domain information improves the performance of DPFunc
To unequivocally demonstrate the pivotal role of domain information
in DPFunc, we replace the domain attention blockwith amean pooling
layer, a commonly used strategy in previous studies, i.e., DeepFRI and
GAT-GO. As illustrated in Fig. 3a, b, after adding the guidance of
domain information, DPFunc exhibits substantial improvements in
both Fmax and AUPR, compared to DPFunc w/o domain in MF, CC,
and BP.

To provide a comprehensive evaluation of the differences
between these two models, we test the prediction results for each
individual GO term, as shown in Fig. 3c, d. Figure 3d shows the number
of perfect predicted GO terms (AUPR=1), it can be observed that
DPFunc with domain annotations achieves better performance. As for
the other GO terms, Fig. 3c shows that DPFunc, armed with domain
insights, achieves a remarkable median AUPR improvement of 12.0%,
14.7%, and 16.3% for MF, CC, and BP, respectively. These results

unequivocally substantiate the unparalleled value of incorporating
domain information for protein function prediction.

Moreover, to ensure model reliability, we focus on evaluating
predictions with high confidence scores. Specifically, we assess the
results with the top k prediction scores of these twomodels, where k is
determined by the average number of GO terms per protein
(approximately ~ 7 for MF, ~ 11 for CC, and ~ 30 for BP). As shown in
Fig. 3e, it can be observed that DPFunc achieves better performance
after incorporating the domain information, demonstrating mean
F-measure improvements exceeding 1.6% ~ 3.1% for MF, 1.9% ~ 3.3% for
CC, and 5.5% ~ 6.7% for BP. Similar conclusions can be drawn from
Fig. 3f, which shows the distribution of predictions over specific k
values (5 for MF, 9 for CC, and 24 for BP). In summary, our model can
predict protein functionsmore accurately when incorporating domain
information. The improvements are more striking in CC and BP.

DPFunc effectively distinguishes structure motifs and sequence
identities
Since protein structures are closely related to their functions, in this
section, we focus on evaluating the ability of DPFunc to discern
structural motifs and their associated functions. To evaluate this abil-
ity, we first select protein pairs with low sequence similarities, and
assess the similarities of their structure features using the widely
adopted TM-score, a metric commonly employed in structure pre-
diction. As illustrated in Fig. 4a, DPFunc, under the guidance of domain
knowledge, demonstrates a remarkable ability to distinguish between
these protein pairs, exhibiting a higher correlation with structure
similarities (TM-score). In contrast, in the absence of domain

Fig. 2 | Detailed analyses ofmodel performance. a The performance comparison
of DPFunc and other representativemethods ondifficult protein setswith different
sequence similarities to training proteins, where the data from five repeated
experiments are presented as mean value +/- standard errors. b, d, e The IC
weighted PR curve of DPFunc and other representativemethods onMF, CC and BP,
respectively. c The performance evaluation of DPFunc and other representative
methods on rare GO terms with different IC values, where GO terms with higher IC
values aremore informative and valuable. The experiment is repeated five times for
each method on the test data, reducing the effects from the random factor. The

data are presented as mean value +/- standard deviation. f The performance of
DPFunc and other representativemethods onGO termswith deeper depths, where
the distances betweenGO terms and root node (MF/CC/BP) are larger than8, 6, and
8, respectively. The experiment is repeated five times for each method on the test
data, reducing the effects from the random factor. The data are presented asmean
value +/- standard deviation. g The coverage of predicted functions from DPFunc
and other representative methods. DPFunc can predict all known functions while
others can only predict parts of functions.
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information, the model struggles to differentiate structure features,
resulting in consistently high structure similarities exceeding 88%, and
failing to capture the nuances of dissimilar structures.

To further illustrate the potential of DPFunc in detecting similar
structural motifs, even in the absence of sequence similarity, we con-
duct two case studies: P0C617 and Q8NGY0, two pivotal plasma
membrane proteins that separate the cell from its external
environment7. Despite their dissimilar sequences, these proteins share
strikingly similar structures and same functions of maintaining plasma
membrane integrity (GO:0005886). The details are shown as Fig. 4d-e.
These two proteins have dissimilar sequences but similar structures to
perform the same functions. DPFunc first extracts the same domain
information via scanning their sequences, and these domain proper-
ties are all related tomembrane functions,which are all validated in the
UniProt database7. Then, Fig. 4b, c shows similar contact maps gen-
erated by their structures, and Fig. 4f, g shows similar attention maps,
indicating that domain-guided insight empowers DPFunc to learn
similar features from similar structures. These findings demonstrate
the ability of DPFunc to capture structural resemblance and accurately
predict functions, even when faced with disparate sequences, under-
scoring its exceptional potential in protein function prediction.

Additionally, there also exist scenarios where proteins with high
sequence identities have different structures and functions. It is
necessary for models to distinct these proteins and corresponding
functions. Consequently, we present three proteins here to evaluate
the capability of DPFunc in this scenario (PDB ID: 5JZV-A [https://www.
rcsb.org/structure/5JZV], 3WG8-A [https://www.rcsb.org/structure/
3WG8], 5Z9R-A [https://www.rcsb.org/structure/5Z9R], see Fig. 4h).
As illustrated in Supplementary Table 6 and Supplementary Table 7,
these proteins have high sequence identities but different functions.
For instance, the sequence identity between 5JZV-A [https://www.rcsb.
org/structure/5JZV] and 3WG8-A [https://www.rcsb.org/structure/
3WG8] is 87.8% but they have only 5 common functions. For these
proteins, DPFunc predicts their functions with 100% accuracy, as
shown in Supplementary Fig. 4, which demonstrates the ability of our

model on proteins with high sequence identities but distinct
structures.

DPFunc holds the potential for annotating bacteria
With more and more protein sequences being detected, many
sequenced organisms have been discovered while their functions are
unknown, especially bacteria and viruses61. Accurately annotating their
functions is critical to understanding the role of corresponding pro-
teins and their association with disease61. In general, these proteins
from the sequenced organisms lack other information, such as
protein-protein interactions and gene expressions, representing chal-
lenges for existing computational approaches that rely on multi-type
biological knowledge18. Consequently, it is meaningful to annotate
these proteins from sequences62,63.

In this study, to further explore the performance of our methods,
we re-divide the dataset, select a specific type of bacteria, Bacillus
subtilis64, as the test data, and remove all associated species data from
the training data (the details can be obtained from the Supplementary
Table 4). Additionally, S2F18 is chosen as a representative method,
which is proposed for annotating the sequenced organisms based on
network propagation. Figure 4i, j illustrate the performance of these
two methods. From Fig. 4i, it can be obtained that DPFunc gets better
performance over the vast majority of proteins, with weaker perfor-
mance than S2F on only 3 out of 47 proteins. It is worth noting that S2F
gets nearly 0 F-measure on the majority of proteins, while DPFunc
achieves significant improvements on the same proteins. Additionally,
Fig. 4j illustrates the PR curve of these two methods, which demon-
strates that DPFunc has a great improvement in terms of AUPR,
proving the potential of DPFunc for annotating bacteria.

DPFunc effectively detects significant active sites for enzyme
functions
DPFunc can also detect significant residues in proteins that are highly
correlated with functions (see “Methods" for details). For instance, in
enzyme reactions, the catalytic process is carried out by specific active

Fig. 3 | The analyses of the role of domain information. a,b The comprehensive
comparison of DPFunc and DPFunc w/o domain in terms of Fmax and AUPR. c The
performance on each function. AUPR values are calculated separately for each GO
term (remove the perfect predicted GO terms which are shown in Fig. 3d). The
median is represented by the centerline of the boxplot, while the first and third
quartiles are indicated by the bounds of the box. The whiskers represent the 0.8
interquartile range (IQR). Specifically, there are 424MFGO terms, 457 CCGO terms
and 3283 BP GO terms for DPFunc. And there are 460 MF GO terms, 472 CC GO

terms and 3343 BP GO terms for DPFunc w/o domain. Two-side paired t-tests are
conducted on the overall performance of these two models and the resulting P
values are annotated at the topof the boxes.dThe number of perfect predictedGO
terms. e The performance of top-k predicted functions of each protein. Since there
are 8, 10, and 30 GO terms per protein on average in MF, BP, and CC, different
rangesof k are selected (4-8 forMF, 7-11 for CC, and21-33 for BP, respectively). fThe
performance of top-k predicted functions of each protein, where k is exactly set as
5, 9, 24 for MF, CC, and BP, respectively.

Article https://doi.org/10.1038/s41467-024-54816-8

Nature Communications |           (2025) 16:70 6

https://www.uniprot.org/uniprotkb/P0C617/entry
https://www.uniprot.org/uniprotkb/Q8NGY0/entry
https://www.rcsb.org/structure/5JZV
https://www.rcsb.org/structure/5JZV
https://www.rcsb.org/structure/3WG8
https://www.rcsb.org/structure/3WG8
https://www.rcsb.org/structure/5Z9R
https://www.rcsb.org/structure/5JZV
https://www.rcsb.org/structure/5JZV
https://www.rcsb.org/structure/3WG8
https://www.rcsb.org/structure/3WG8
www.nature.com/naturecommunications


residues65–67. In this section, we provide several cases to show the
capabilities of DPFunc in active site detection. Specifically, Q9M1Y0
and Q8S929 are two cysteine proteases involved in both proteolytic
activation and delipidation of ATG8 family proteins68. Previous
literature68 indicates that the two proteins both have three active sites:
173-th, 368-th, and 370-th residues for Q9M1Y0, and 170-th, 364-th,
and 366-th residues for Q8S929. Figure 5a shows the details of the
prediction results ofQ9M1Y0andQ8S929. The redpositions represent
the key residues detected by DPFunc (CYS-170, PRO-305 for Q8S929,
and CYS-173, PRO-369 for Q9M1Y0) and the known validated residues
from previous literatures (CYS-170, ASP-364, HIS-366 for Q8S929, and
CYC-173, ASP-368, HIS-370 for Q9M1Y0). Obviously, DPFunc not only
accurately predicts their functions, but also highlights significant sites
that overlap with known active sites. Notably, DPFunc exhibits a
remarkable ability to identify potential functional hotspots for closely
spaced active sites. For example, in the case of Q8S929, where the 364-
th and 366-th residues are active sites, DPFunc identifies the inter-
mediate site (the 365-th residue) as the potential functional hotspot.
This remarkable ability is attributed to the power of graph neural
networks, which can aggregate the information from two neighboring
active sites.

Furthermore, we find four proteins from the same species (Ara-
bidopsis thaliana) with the same functions (Wax ester synthase/dia-
cylglycerol acyltransferase), including Q93ZR6 (WSD1) [https://www.
uniprot.org/uniprotkb/Q93ZR6/entry], Q9M3B1 (WSD6) [https://www.
uniprot.org/uniprotkb/Q9M3B1/entry], Q94CK0 (WSD7) [https://
www.uniprot.org/uniprotkb/Q94CK0/entry] and Q5KS41 (WSD11)

[https://www.uniprot.org/uniprotkb/Q5KS41/entry]. All of these pro-
teins are significant enzymes and involved in cuticular wax
biosynthesis69–72, as shown in Fig. 5(b). It is worth noting that each of
these four proteins has a known active site, where HIS-147 for
WSD169,70, HIS-163 for WSD670, HIS-135 for WSD770, and HIS-144 for
WSD1171,72. Moreover, we use Clustal Omega73 to align these sequences.
As illustrated in Supplementary Fig. 5, the four positions are aligned as
expected, which further support the co-evolutionary conservation of
these residues. As for these proteins, DPFunc detects all of these active
sites accurately.

Additionally, we compare our method with another SOTA
method74 in the field of functional site prediction. As illustrated in
Supplementary Table 8, we test the two approaches on three common
proteins that appear in both our study and ref. 74. The known active
sites can be obtained from M-CSA database75. The results in Supple-
mentary Fig. 6 show that our method achieves comparable perfor-
mance with the method proposed in ref. 74, further supporting the
effect of DPFunc on active site detection. Notably, although DPFunc
detects significant active sites effectively, finding active sites in dis-
ordered regions remains a challenge that may be further explored in
future models (see Supplementary Fig. 7).

Discussion
As existing protein function prediction approaches cannot extract
structure features effectively and ignore the significance of different
residues, in this study, we develop a deep learning-based method,
called DPFunc. It incorporates domain-guided structure information

Fig. 4 | The performance of DeepDugest on structure motifs learning. a The
correlations between the learned structure feature similarities and structure simi-
larities on protein pairs with low sequence similarities. b, c The constructed
structure graphs of two proteins, P0C617 and Q8NGY0, where orange points
represent the edges between residues. d The functions of these two proteins
(P0C617 and Q8NGY0) and corresponding related domains. e The structure
alignment results of P0C617 and Q8NGY0. f, g The views of attention maps of

P0C617 and Q8NGY0, where red points represent the key residues and regions
detected by DPFunc. h The structure alignment results between 5JZV-A, 3WG8-A
and 5Z9R-A. Dark colors in each protein represent residues that are aligned and
light colors represent residues that are not aligned. i The performance of DPFunc
and S2F on 47 proteins from bacteria (Bacillus subtilis, BACSU). The coordinates of
each scatter indicate the F-measure values of these two methods on one protein.
j The PR curve and AUPR values of DPFunc and S2F on BACSU proteins.
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to identify critical regions within protein structures, enabling accurate
prediction of functions based on the latent structure motifs and key
residues. Comprehensive comparisonswithother state-of-the-art deep
learning methods, particularly current structure-based approaches,
demonstrate the advantages of our proposed approach. Notably,
DPFunc also outperforms other methods on rare functions, specific
functions and difficult proteins that have low sequence similarities to
known proteins. Furthermore, the role of domain information in
DPFunc is crucial. Under the guidance of domain information, DPFunc
can predict protein functions more accurately, as further validated by
analyzing the performance of top-k predicted results and individual
GO terms.

Moreover, DPFunc demonstrates an impressive ability to distin-
guish proteins between dissimilar structures. On the other hand,

several cases prove thatDPFunc can learn similar structuremotifs even
when their sequences have low identity. Meanwhile, for those proteins
from the sequenced organisms, DPFunc also shows the improvements
compared to other methods. Additionally, for the functions that are
performed by specific residues, DPFunc can detect key residues or
regions, thus providing interpretability between the key residues and
the corresponding functions, as well as enabling the discovery of
potential key residues for new proteins.

DPFunc only uses protein sequences as input. Specifically, it
generates domain information by scanning sequences, extracts resi-
due features through a pre-trained protein language model, and con-
structs structure graphs based on the predicted structures.
Importantly, all of these inputs can be obtained from the protein
sequences. Consequently, DPFunc can be applied to large-scale

Fig. 5 | Key residues detected by DPFunc. a The details detected by DPFunc on
two important cysteineproteases. The redpositions shown in the structures are the
key residues detected by DPFunc (CYS-170, PRO-305 for Q8S929, and CYS-173,
PRO-369 for Q9M1Y0). The three red residues in the detailed graphs are the active
sites that havebeenvalidated (CYS-170,ASP-364,HIS-366 forQ8S929, andCYC-173,
ASP-368, HIS-370 for Q9M1Y0). These residues play significant roles in autophagy

and perform the functions (mediating both proteolytic activation and delipidation
of ATG8 family proteins). b The red positions shown in the structures are the
validated active sites of four Arabidopsis thaliana proteins (HIS-147 for Q93ZR6/
WSD1, HIS-163 for Q9M3B1/WSD6, HIS-135 for Q94CK0/WSD7 and HIS-144 for
Q5KS41/WSD11), performing the same functions, involving in cuticular wax
biosynthesis.
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proteins that only have sequences. In the future, we will consider
introducing more structure-related biological knowledge to help
models learn the relationships between structuremotifs and functions.
Furthermore, it is essential to consider incorporating the relationships
amongdifferent protein functions. Sinceproteins performfunctions in
cellular context, their functions are dynamically transformed with the
environment. How to accurately predict the dynamic functions is
another challenge to be addressed in the future76.

Methods
Datasets
We use two datasets to evaluate the performance of our method. The
first dataset is collected fromDeepFRI37, named PDBdataset, which is a
non-redundant set by clustering all PDB chains at 95% sequence
identity and has also been used in previous studies such as GAT-GO38.
In this dataset, the structures of proteins are obtained from the Protein
Data Bank (PDB)50, which are all validated by experiment. The statistic
information of proteins is illustrated in Table 3. Specifically, the ori-
ginal PDBdataset is split into training, validation and testing sets by cd-
hit77 with 40% sequence identity, contains 36,408 proteins and 2748
GO terms, including 488 (17.8%) MF GO terms, 320 (11.6%) CC GO
terms, and 1940 (70.6%) BP GO terms.

Another dataset is collected from the UniProt and Gene Ontology
database. Following the CAFA challenge, we collect the protein
sequences and their corresponding functions from the UniProt data-
base, and split them into three subsets based on timestamps, named
the CAFA dataset: training data, validation data, and test data. Speci-
fically, the training data contains the proteins releasedbefore 2020-05,
the validation data encompasses the proteins released between 2020-
05 and 2021-04, and the test data includes the proteins between 2021-
05 and 2022-04 (published in 2022-12). Then, we collect their corre-
sponding predicted structures from the AlphaFold database51,52. For
several proteins whose structures could not be downloaded directly
from the database, we use AlphaFold2 to predict their structures
locally. Finally, as shown in Table 3, there are 59,397 proteins and
28,252GO terms, including 6086 (21.5%)MF GO terms, 2492 (8.8%) CC
GO terms, and 19,674 (69.6%) BP GO terms.

Residue-level feature learning module
To learn residue-level features, DPFunc first constructs graphs based
on protein structures. Specifically, for a target protein pi, its residues
are considered as nodes, and two residues are connected if the dis-
tance of their corresponding Cα atoms is less than 10 Å. Based on this
rule, we can construct the corresponding structure graph A ∈ {0, 1}l∗l,
where l represents the sequence length. Then, DPFunc utilizes the
existing pre-trained protein large language model (ESM-1b) to gen-
erate the residue embeddings as node features, denoted as X 2 Rl�d ,
where d represents the dimension of node features. Subsequently, as
illustrated in Fig. 1(b), DPFunc uses two GCN layers to propagate fea-
turesbetween residues through structure graphs. InspiredbyResNet54,

DPFunc also adds a residual operation to GCN layers as follows:

Xk + 1 =Xk + ReLU ð~D�1=2~A~D
�1=2

XkWkÞ ð1Þ

ReLU ðxÞ= maxðx, 0Þ ð2Þ

where Xk 2 Rl�d represents the residue features as the input of k-th
GCN layer (k = 1, …, n and X1 = X), ~A=A+ I denotes the original graph
with self-loops of each node, ~D 2 Rl�l is the corresponding diagonal
degreematrix of ~A,Wk 2 Rd�d is the learnable parameters of k-th GCN
layer, and ReLU is a rectified linear unit function, as shown in
Equation (2).

After processing several GCN layers, we can obtain the updated
residue features Xn+1 from the last GCN layer, denoted as Xfinal.

Protein-level feature learning module
Traditional structure-based methods typically treat every residue
equally and calculate protein features as follows:

xpool =
1
l

Xl
i = 1

Xf inal ½i� ð3Þ

where Xfinal[i] represents the features of i-th residue. In contrast,
DPFunc uses domain information as guidance to find the important
residues in protein structures. Specifically, DPFunc first scans the
protein sequences and generates corresponding domain properties by
InterProScan. Then, it employs one-hot encoding to represent these
domain properties and feeds them into an embedding layer to obtain
their dense representations:

H = ReLUððReLU ððIPR �WemdÞW 1 +b1ÞÞW 2 +b2Þ ð4Þ

where IPR ∈ {0, 1}1*m indicates the one-hot encoding of m domain
properties,Wemd 2 Rm�d is an embedding layer, ðW 1 2 Rd�d ,b1 2 RdÞ
and ðW 2 2 Rd�d ,b2 2 RdÞ are two linear layers, respectively.

Then, inspired by the architecture of the transformer encoder, we
propose an attention mechanism based on both residue features and
domain information, as illustrated in Fig. 1c. After obtaining domain
embeddings H and residue features X final, DPFunc learns the latent
correlations between domains and residues:

Qi =H �WQ
i ,Ki =X

f inal �WK
i ,Vi =X

f inal �WV
i ð5Þ

Watt�i = Softmax ðKiQi=
ffiffiffi
d

p
Þ ð6Þ

XMultiHead = LayerNormðConcat ðWatt�1V 1, . . . ,Watt�nVnÞWtrans +X
f inalÞ
ð7Þ

Xoutput = LayerNormðFF ðXMultiHeadÞ+XMultiHeadÞ ð8Þ

xpool =
Xl
i = 1

Xoutput ½i� ð9Þ

where ðQi 2 Rd�d ,Ki 2 Rd�d ,Vi 2 Rd�dÞ represents the latent repre-
sentations for attention head i,Watt�i 2 Rl�1 indicates the correspond-
ing importance of residues, and Watt−iVi is the pooling results based on
attention head i. Finally, the results from different attention heads are
concatenated and processed as the final protein features through sev-
eral feed-forward layers, denoted as xpool 2 R1�d . Additionally, the
residual operation is also employed here to prevent the loss of features.

Table 3 | The statistic information of two datasets

Dataset MF CC BP

PDB dataset Train 24837 (80.2%) 11162 (70.4%) 23386 (79.5%)

Valid 2746 (8.9%) 1296 (8.2%) 2624 (8.9%)

Test 3399 (10.9%) 3400 (21.4%) 3400 (11.6%)

All 30982 (100%) 15858 (100%) 29410 (100%)

CAFA dataset Train 31463 (96.7%) 42467 (96.4%) 47333 (96.3%)

Valid 682 (2.1%) 711 (1.6%) 767 (1.6%)

Test 401 (1.2%) 877 (2.0%) 1039 (2.1%)

All 32546 (100%) 44055 (100%) 49139 (100%)
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Function prediction, postprocessing procedure and significant
residues detection
Finally, DPFunc integrates these two modules and predicts protein
functions. Specifically, it utilizes the initial residue features and protein
features to annotate functions:

xintegrate = Concat xpool ,
1
l

Xl
i = 1

X ½i�
 !

ð10Þ

ŷ= SigmoidðMLP ðxintegrateÞÞ ð11Þ

where ŷ 2 R1*c indicates thepredicted scores of cGO terms, andMLP is
themultilayer perceptron, composedof several linear layers andReLU.
It is important to note that GO terms exhibit a loosely hierarchical
structure, such as ’is-a’ and ’part-of’. If a ’child’GO term is annotated, its
’parent’ GO terms must be annotated. To ensure consistency with
these hierarchical relationships, we introduce a common post-
processing procedure:

yposti = maxðŷi, ŷchild�1, . . . , ŷchild�nÞ ð12Þ

where ŷchild�j represents the j-th child GO terms of GO term i. Addi-
tionally, this post-processing procedure is only applied to the final
predicted results, thus avoiding reducing the computational efficiency
during the training process.

Additionally, once our model is trained, it can detect significant
residues from the structures based on the attention mechanism. This
process is illustrated in Supplementary Table 5. Firstly, the attention
scores of residues can be obtained from the trainedmodel, denoted as
Watt−i in Section 4.3. Then, for each head i, these attention scores are
sorted in descending order and the gaps between neighbors are cal-
culated. Furthermore, inspired by CLEAN78, the average value of these
gaps is set as the cut-off and the residues are selected to the candidate
set from a higher score to a lower score until the gap between residues
is larger than the cut-off. Moreover, considering the qualities of pro-
tein structures predicted by AlphaFold2, pLDDT35,36 is further used to
filter the candidate sites, where higher pLDDT represents higher con-
fidence. The residues in the candidate set with pLDDT lower than 50
are removed.

Model training and Parameter setting
As protein function prediction is an imbalanced multi-label classifica-
tion problem, DPFunc utilizes focal loss as the loss function. Focal loss
is specifically designed to address the challenges posed by imbalanced
datasets and has shown improved performance compared to tradi-
tional binary cross-entropy loss (BCELoss):

BCELossi = � ½yi � logðŷiÞ+ ð1� yiÞ � logð1� ŷiÞ� ð13Þ

FocalLossi = � ½ð1� ŷiÞγ � yi � logðŷiÞ+ ŷiγ � ð1� yiÞ � logð1� ŷiÞ� ð14Þ

where ŷiði 2 f1, . . . , cgÞ represents the predicted score ofGO term c and
y = 0, 1 denotes the corresponding true label. γ is a hyper-parameter
that controls the focal scores for positive and negative labels. It can be
obtained that FocalLoss is equal to BCELoss when γ is set as 0.

During the training process, we set all the dimensions of hidden
layers as 1280, which are the same as the dimensions of the features
generated by ESM-1b. The number of attention heads is set as 4, and
the γ of focal loss is 2, which is a common default choice. We use
AdamW as the optimizer with a learning rate lr = 1e − 4 and set the
batch size as 64. To ensure stable performance, the models of the last
three epochs are used to predict results, which are then averaged as
the final results. All experiments of the DPFunc are carried out using

one NVIDIA Tesla V100s GPU cardwith 32 GBofmemory. On the CAFA
dataset, our model took around 12 training epochs for 2 hours in MF,
5 hours in BP, and 2 hours in CC. On the smaller PDB dataset, 8 training
epochs of our model in MF, BP, and CC all took no more than half
an hour.

Evaluation metrics
In this study, five metrics are used to evaluate the performance of
models and the similarity of structures, including Fmax, AUPR, M-
AUPR, IC_AUPR and TM-score. Fmax is the maximum value of the
harmonic average of precision and recall:

PrðtÞ= 1
f ðtÞ

Xf ðtÞ
i= 1

PM
j = 1 I ðŷi, j ≥ tÞ � yi, jPM

j = 1 I ðŷi, j ≥ tÞ
ð15Þ

RcðtÞ= 1
N

XN
i= 1

PM
j = 1 I ðŷi, j ≥ tÞ � yi, jPM

j = 1 yi, j
ð16Þ

Fmax = max
t

2 � PrðtÞ � RcðtÞ
PrðtÞ+RcðtÞ

� �
ð17Þ

where f(t) is the number of proteins that predict at least one function
with confidence ≥t. AUPR is the area under the precision-recall curve,
andM-AUPR is the average of all AUPR values calculated for each label
separately. As illustrated in Equation 17-19, IC_AUPR is different from
AUPR,which considers the information content (IC) of GO terms and is
calculated by the weighted precision (icPR) and recall (icRc).

icPrðtÞ= 1
f ðtÞ

Xf ðtÞ
i= 1

ICðGOjÞ �
PM

j = 1 I ðŷi, j ≥ tÞ � yi, jPM
j = 1 ICðGOjÞ � I ðŷi, j ≥ tÞ

ð18Þ

icRcðtÞ= 1
N

XN
i= 1

ICðGOjÞ �
PM

j = 1 I ðŷi, j ≥ tÞ � yi, jPM
j = 1 ICðGOjÞ � yi, j

ð19Þ

ICðGOjÞ= � logðProbðcjParentðcÞÞÞ ð20Þ

where IC(GOj) reflects the occurrence of GO term j when its ancestors
are annotated. TM-score measures the structure similarity of two
proteins as follows:

TM� score ðPsource, PtargetÞ=
1

Ltarget

XLalignment

i

1

1 + di
d0ðLtarget Þ

� �2 ð21Þ

where Psource and Ptarget are two proteins, and Psource is aligned to Ptarget.
Ltarget is the sequence length of Ptarget. Lalignment is the number of paired
residues and di is the distance between the i-th paired residues.

d0ðLtargetÞ= 1:24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ltarget � 153

q
� 1:8 is a normalized parameter. Overall,

higher values of Fmax, AUPR, and M-AUPR represent better perfor-
mance for protein function prediction. Similarly, a higher TM-score
represents a greater degree of structure similarity between two
proteins.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The protein sequences and their functions used in this study are
available in the Uniprot database [https://www.uniprot.org/
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uniprotkb/]. The gene ontology file can be obtained from the Gene
Ontology knowledgebase [https://geneontology.org/]. The pro-
cessed data for training and testing models are available in https://
github.com/CSUBioGroup/DPFunc. Other data for Figs. 2–4 are
provided as a Source Data file. The proteins mentioned in our cases,
including P0C617, Q8NGY0, Q9M1Y0, Q8S929, Q93ZR6, Q9M3B1,
Q94CK0 and Q5KS41 are available in the Uniprot repository (https://
www.uniprot.org/) under their accession codes. The protein struc-
tures of 5JZV-A [https://www.rcsb.org/structure/5JZV], 3WG8-A
[https://www.rcsb.org/structure/3WG8] and 5Z9R-A [https://www.
rcsb.org/structure/5Z9R] are available in the PDB repository
(https://www.rcsb.org/) under their accession codes. Source data are
provided with this paper.

Code availability
The source codes of DPFunc are available on GitHub at https://
github.com/CSUBioGroup/DPFunc, which has also been deposited in
the Zenodo under accession code https://zenodo.org/records/
13843028. Data are analyzed using Numpy v1.24.(https://github.
com/numpy/numpy), sklearn v1.3.0 (https://scikit-learn.org/stable/),
scipy v1.10.1 (https://www.scipy.org/) and Matplotlib v3.2.2 (https://
matplotlib.org/). Structures are visualized by Pymol v2.5.7 (https://
www.pymol.org/). Blastp v2.12.0+ https://blast.ncbi.nlm.nih.gov/
doc/blast-help/downloadblastdata.htmlis used for calculating
sequence identities. TM-align v2022/04/12 https://zhanggroup.org/
TM-align/is used for protein structure similarity calculation.
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