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ABSTRACT 
 
Sequence database searches followed by homology-based function transfer form one of the 
oldest and most popular approaches for predicting protein functions, such as Gene 
Ontology (GO) terms. Although sequence search tools are the basis of homology-based 
protein function prediction, previous studies have scarcely explored how to select the 
optimal sequence search tools and configure their parameters to achieve the best function 
prediction. In this paper, we evaluate the effect of using different options from among 
popular search tools, as well as the impacts of search parameters, on protein function 
prediction. When predicting GO terms on a large benchmark dataset, we found that 
BLASTp and MMseqs2 consistently exceed the performance of other tools, including 
DIAMOND - one of the most popular tools for function prediction - under default search 
parameters. However, with the correct parameter settings, DIAMOND can perform 
comparably to BLASTp and MMseqs2 in function prediction. This study emphasizes the 
critical role of search parameter settings in homology-based function transfer. 
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INTRODUCTION 
Homology-based function transfer is a classical and widely used approach for 

predicting protein functions. In this method, the sequence of the query protein is searched 
through a database of template proteins with function annotations. The biological functions 
of the query protein are then derived from the annotations of the top sequence search hits. 
The operation of searching for sequence  homologs  forms the foundation for many 
classical protein function predictors [1-5] and remains a critical component for numerous 
state-of-the-art deep learning-based function prediction algorithms [6-9]. 

Despite the central role of sequence database search tools in homology-based function 
prediction, there is no consensus on the best tool and its optimal search parameters for 
predicting biological functions. While BLASTp [10] was the most commonly used tool by 
traditional function prediction software [4, 5], more recently developed predictors [7-9] 
tend to favor DIAMOND [11], a BLASTp alternative optimized for speed. A smaller 
number of predictors [3, 12] employ PSI-BLAST [10] and MMseqs2 [13]. Interestingly, 
hidden Markov Model (HMM)-based sequence database search tools such as HHblits [14] 
and jackhmmer [15], despite their popularity in protein structure prediction [16, 17], are 
rarely used in function prediction. 

Beyond the choice of sequence database search tool, the scoring function used to derive 
function annotations from a specific set of template proteins also plays a major role in the 
accuracy of homology-based function prediction. For example, several recent studies [1, 
18] consistently indicate that deriving the prediction score from multiple hits tends to 
produce more accurate predictions than simply deriving the function prediction from the 
template with the highest sequence identity. However, whether different sequence search 
tools should employ different scoring functions remains an open question. 

To tackle these questions, we performed a direct comparison of popular sequence 
search tools used for protein structure and function prediction, as well as a set of scoring 
functions for homology-based function prediction. Working in the context of a large-scale 
protein Gene Ontology (GO) prediction task, we observed a profound effect of the choices 
of search tool, tool-specific parameters, and scoring function on the overall performance. 
Our findings provide a workflow for homology-based function prediction that appears 
optimal both in terms of accuracy and speed on the datasets used in our comparisons and 
provide a strong foundation for ongoing efforts in tool development for protein function 
prediction.  
 
METHODS 
Protein sequence database search tools 

We evaluated seven popular protein sequence database search tools: BLASTp [10], 
DIAMOND [11], MMseqs2 [13], PSI-BLAST [10], phmmer [15], jackhmmer [15], and 
HHblits [14]. Among these, BLASTp (version 2.13.0+), DIAMOND (version 2.1.8.162), 
and MMseqs2 (version 390457d87ed7049d918e46bc8b0571ac4034aae4) are based on 
sequence-sequence alignment. PSI-BLAST (version 2.13.0+) by default performs 
sequence-sequence alignment, producing results identical to those from BLASTp. 
However, rather than using the default setting, we utilized the "-num_iterations 3" option 
to perform an iterative profile-sequence search with PSI-BLAST. These four programs can 
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utilize a protein sequence database after a straightforward reformatting process to convert 
the database text into binary formats. 

Jackhmmer (version 3.4) and phmmer (version 3.4) are based on HMM-sequence 
alignment. Both programs can directly search a FASTA format sequence database. 

On the other hand, HHblits (version 2.0.15) is based on iterative HMM-HMM 
alignment and requires a HHblits-format database of HMMs. To construct such a database, 
we follow our previous protocol [16]. Briefly, all template proteins with GO annotations 
are grouped into sequence clusters by kClust [19] using a 30% sequence identity cutoff. 
We then use Clustal Omega [20] to align sequences within each cluster into aligned 
sequence profiles. These profiles are fed into the hhblitsdb.pl script accompanying the 
HHblits software to construct the HHblits-format database. 
 
Scoring functions for function prediction 

We implemented 11 different scoring schemes to derive function predictions from a set 
of template hits identified by sequence database search. In the first scoring function, the 
score for predicting GO term q is: 

𝑆!(𝑞) =
∑ #$%&'()*!(,)
"($)
!&'
∑ #$%&'()*!"
!&'

    (1) 

Here, 𝑏𝑖𝑡𝑠𝑐𝑜𝑟𝑒. is the bit-score for the k-th template; K is the total number of templates 
with GO annotations; 𝑏𝑖𝑡𝑠𝑐𝑜𝑟𝑒.(𝑞) and K(q) are the respective values for the subset of 
templates with GO term q. This scoring function, where each template is weighted by bit-
score, appears to be the most popular scoring function among recently developed machine 
learning-based function predictors [6, 8, 18, 21]. It was called either BLAST-KNN [18] or 
DiamondScore [8] by previous studies. 

The second scoring function is newly introduced by this study, where the template is 
weighted by both the bit-score and sequence identity. 

𝑆/(𝑞) =
∑ #$%&'()*!(,)∙
"($)
!&' 12!(,)
∑ #$%&'()*!"
!&' ∙12!

    (2) 

Here, 𝐼𝐷. is the sequence identity for the k-th template, calculated by the number of 
identical residues divided by the maximum between the query sequence length and 
template sequence length. 𝐼𝐷.(𝑞) is the respective value for the k-th template with GO 
term q. 

The third scoring function was introduced by MetaGO [1], where the template is 
weighted by 𝑞𝐼𝐷., the sequence identity of the k-th template normalized by the length of 
query sequence: 

𝑆3(𝑞) =
∑ ,12!(,)
"($)
!&'
∑ ,12!"
!&'

    (3) 

The fourth, fifth and sixth scoring function are defined similarly, except that the 
sequence identities 𝑡𝐼𝐷., 𝑎𝐼𝐷. and 𝐼𝐷. are normalized by the length of the k-th template, 
the number of aligned residues, and the maximum between query and template, 
respectively: 

𝑆4(𝑞) =
∑ %12!(,)
"($)
!&'
∑ %12!"
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    (4) 

𝑆5(𝑞) =
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    (5) 
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𝑆7(𝑞) =
∑ 12!(,)
"($)
!&'
∑ 12!"
!&'

    (6) 

The seventh scoring function is the frequency of templates with GO term q among all 
templates: 

𝑆8(𝑞) =
9(,)
9

    (7) 
Whereas the previous scoring functions are all calculated from all template hits, the 

remaining four scoring functions only consider the template with the highest sequence 
identity among all templates with GO term q. In the eighth, ninth, tenth and eleventh 
scoring functions, the sequence identities are normalized by the query length, template 
length, number of aligned residues, and the maximum between query length and template 
length, respectively. 

𝑆:(𝑞) = max
.
(	𝑞𝐼𝐷.(𝑞)	)    (8) 

𝑆;(𝑞) = max
.
(	𝑡𝐼𝐷.(𝑞)	)    (9) 

𝑆!<(𝑞) = max
.
(	𝑎𝐼𝐷.(𝑞)	)    (10) 

𝑆!!(𝑞) = max
.
(	𝐼𝐷.(𝑞)	)    (11) 

 
Evaluation of function prediction performance 

The performance of protein function prediction is usually evaluated by the maximum 
F-measure (Fmax) and/or the maximum of information content-weighted F-measure 
(wFmax). Fmax was the main evaluation metric for Critical Assessment of Function 
Annotation (CAFA) challenges round 1, 2 and 3 [22], and is defined as: 

𝐹𝑚𝑎𝑥 = max
%∈(<,!]

8/∙@)(%)∙)*(%)
@)(%)A)*(%)

9    (12) 

Here, pr(t) and re(t) are the precision and recall, respectively, at the prediction score 
threshold t. They are defined as: 

𝑝𝑟(𝑡) = !
B(%)

∑ ∑ 1[,∈D((%)	⋀	,∈G(]$
∑ 1[,∈D((%)]$

B(%)
$H!     (13) 

𝑟𝑒(𝑡) = !
I
∑ ∑ 1[,∈D((%)	⋀	,∈G(]$

∑ 1[,∈G(]$

I
$H!     (14) 

Here, N is the total number of proteins in the dataset; M(t) is the number of proteins 
with at least one predicted GO term with prediction score ≥ t. 𝑇$ is the set of experimentally 
determined (ground truth) GO terms, including their parent terms, for protein i. 𝑃$(𝑡) is the 
set of predicted GO terms for protein i with prediction score ≥ t. I[ ] is the standard indicator 
function (i.e., the Iverson’s bracket). For both 𝑇$  and 𝑃$(𝑡), the root terms of the three GO 
aspects (GO:0003674 “molecular_function”, GO:0008150 “biological_process”, and 
GO:0005575 “cellular_component”) are excluded.  

The other evaluation metric used here is wFmax, which is the main evaluation metric 
for the currently-in-progress CAFA5 experiment. It is defined as:  

𝑤𝐹𝑚𝑎𝑥 = max
%∈(<,!]

8/∙J@)(%)∙J)*(%)
J@)(%)AJ)*(%)

9    (15) 

Here, wpr(t) and wre(t) are the precision and recall, respectively, weighted by the 
information contents [23] of GO terms. They are defined as: 

𝑤𝑝𝑟(𝑡) = !
B(%)

∑ ∑ 1[,∈D((%)	⋀	,∈G(]⋅1L(,)$
∑ 1[,∈D((%)]$ ⋅1L(,)
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𝑤𝑟𝑒(𝑡) = !
I
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I
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The information content, also known as the information accretion, for GO term q is 
defined as: 

𝐼𝐶(𝑞) = −𝑙𝑜𝑔/ 8
!AL(,)

!AL(@6)*M%(,))
9    (18) 

Here, C(q) is the number of proteins with GO terms q in the whole template database; 
C(parent(q)) is the number of database proteins with all parent terms of GO term q. 

The three aspects of GO – Molecular Function (MF), Biological Process (BP), and 
Cellular Component (CC) – are evaluated separately. 

 
RESULTS 
Datasets 

We benchmarked different homology-based function prediction schemes on a time-
elapsed test set of 4,303 proteins. Each of these proteins has been annotated with at least 
one new GO term in any one of the three GO aspects in UniProt Gene Ontology Annotation 
(UniProt-GOA) release 2023-07-12 but has no GO annotation in the same aspect in 
UniProt-GOA release 2022-11-17. The template sequence database used by the evaluated 
search tools consists of 134,862 proteins with GO annotations in UniProt-GOA 2022-11-
17. In line with the protocols used in recent CAFA challenges, only GO annotations with 
experimental or high-throughput evidence (evidence codes: EXP, IDA, IPI, IMP, IGI, IEP, 
HTP, HDA, HMP, HGI, HEP), traceable author statements (evidence code: TAS), or 
inferences made by curators (evidence code: IC), along with all their parent GO terms, are 
considered in curating the template database and test set. Proteins whose only leaf MF GO 
term is GO:0005515 "protein binding" are not included as MF test protein or MF template 
protein. In total, the test set comprises 1,119 proteins for the MF aspect, 1,609 for the BP 
aspect, and 2,468 for the CC aspect. 

 
Scoring functions are critical for function prediction 

Our large-scale benchmarks reveal that even when utilizing the same search database 
tool, varying scoring functions can drastically influence the performance of homology-
based protein function prediction (Figure 1 and Figure S1). For instance, when using 
BLASTp, the top-performing scoring function (S2) exhibits wFmax values higher by 33.3%, 
83.4%, and 15.2% than the worst scoring functions for MF, BP, and CC, respectively.  

Independent of sequence database search tools and GO aspects, the scoring function S2, 
which weighs all templates by both bit-scores and sequence identities, performs the best 
(black bars in Figure 1 and Figure S1). This is followed by functions S1 and S3 to S6, which 
weigh all templates either by bit-scores or sequence identities, but not both. For MF and 
CC, the worst scoring functions are those that solely consider the template with the highest 
sequence identity (S8 to S11). On the other hand, the scoring function that considers the 
frequency of a GO term among all templates (S7) outperforms S8 to S11 but still 
underperforms when compared to S1 to S6. For BP, functions S7 to S11 exhibit poor 
performance at similar levels. 

 
Traditional sequence-sequence alignment outperforms hidden Markov model for 
function prediction  
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Our previous study [16] demonstrated that more sensitive HMM-based sequence 
searches, particularly those by HHblits, markedly enhanced protein structure prediction 
compared to sequence-sequence alignment. However, the opposite holds true for protein 
function prediction (Figure 1). In fact, HMM-based sequence search tools such as 
jackhmmer and HHblits generally perform worse than sequence-sequence alignment-based 
tools like BLASTp and MMseqs2 almost across all scoring functions—with HHblits 
trailing as the least effective sequence search tool in nearly all scenarios. This discrepancy 
might be attributed to the optimization of HHblits for structure prediction tasks, including 
remote structure analog detection [14]. 

We notice that programs employing iterative database search, e.g., PSI-BLAST and 
jackhmmer, tend to have worse GO prediction accuracies compared to similar programs 
using less sensitive non-iterative modes (BLASTp and phmmer, respectively, Figure 1). 
Similarly, for MMseqs2, we observe a minor but consistent decrease in GO prediction 
accuracies with an increase in the number of iterations (Figure S2). This finding contrasts 
with the case in protein structure prediction tasks [16], where iterative searches typically 
enhance structure modeling quality, presumably by providing deeper and more informative 
multiple sequence alignments. 

All of these findings unanimously suggest that function prediction necessitates less 
sensitivity in template detection than structure prediction. This result is not surprising, 
given previous studies which indicated that even though proteins sharing a sequence 
identity as low as 30% [24]  often exhibit similar structures, a sequence identity of at least 
60% [25] must be maintained to ensure similar biological functions. Indeed, more remote 
homologs may contaminate function predictions with low-confidence information, thus 
decreasing performance. 

Overall, the best GO prediction results are produced by MMseqs2 for MF, by both 
BLASTp and MMseqs2 for BP, and by DIAMOND for CC. Consequently, the following 
section will concentrate on these three programs while using the uniformly optimal scoring 
function (S2). 
 
Proper parameter settings improve DIAMOND-based function prediction 

While BLASTp, DIAMOND, and MMseqs2 all perform non-iterative sequence-
sequence searches, their default settings differ greatly. For instance, the default E-value 
cutoffs for BLASTp and DIAMOND are 10 and 0.001, respectively, while the default 
number of top hits are 500 and 25. Moreover, both DIAMOND and MMseqs2 can function 
under different sensitivity modes. Therefore, we examined how varying search parameters, 
such as E-value cutoffs, sensitivity modes, and the maximum number of top hits, impact 
the effectiveness of function prediction. 

After assessing various parameter combinations, we discovered that using non-default 
settings on MMseqs2 only improves function prediction accuracy very slightly (Figure 2 
and Figure S3). Conversely, operating BLASTp at a lower E-value cutoff (-evalue 0.1) 
and reducing the number of hits (-max_target_seqs 100) mildly improves MF, BP, and CC 
prediction wFmax by 1.3%, 1.9%, and 0.1%, respectively (Figure 2 and Figure S4). 
DIAMOND benefits the most from parameter tuning. Higher sensitivity settings (--ultra-
sensitive, --very-sensitive, or –more-sensitive) generally enhance GO prediction accuracies 
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(Figure S5 and Figure S6). Moreover, a lenient E-value cutoff (--evalue 1) also boosts 
prediction accuracies (Figure S7) 

Despite DIAMOND performing less effectively than MMseqs2 and BLASTp for GO 
prediction when all programs operate under their default settings, it performs comparably 
or slightly better than the other two programs when all programs operate with the optimal 
search parameters ("--evalue 1 --ultra-sensitive" for DIAMOND, "-evalue 0.1 -
max_target_seqs 100" for BLASTp, and “-s 7.5 --max-seqs 100” for MMseqs2, Figure 2). 
Specifically, after adjusting search parameters, DIAMOND and BLASTp have comparable 
MF and BP accuracies, which are superior to that of MMseqs2. With parameter tuning, 
DIAMOND's wFmax values for CC shows enhancements of 1.2% over those from 
BLASTp, which, in turn, outperforms MMseqs2. These adjustments position DIAMOND 
as an attractive choice for large-scale function prediction, particularly considering its >7 
times faster speed compared to BLASTp (Figure 2C). 

To provide an additional test of our methods on a data set completely separated from 
our testing to this point, we repeated the same experiment using the CAFA3 dataset (Figure 
S8) and the same set of optimized parameters obtained in Figure 2B. The test result on this 
smaller dataset is largely consistent with the findings above:  the GO prediction 
performance by BLASTp and MMseqs2 are comparable between the default parameters 
and the optimized parameters. On the other hand, the performance of DIAMOND can be 
significantly improved by parameter tuning: DIAMOND run under the default setting lags 
far behind BLASTp and MMseqs2 on all GO aspects but DIAMOND is com-parable to 
the other program when running at a higher sensitivity mode. 

 
Case study: function prediction of Drosophila melanogaster TMTC4 

To delve further into the impact of different sequence search tools on function 
prediction, we use the TMTC4 protein from the fruit fly (UniProt accession: Q9VF81) as 
a case study. This protein is a dolichyl-phosphate-mannose-protein mannosyltransferase 
(GO:0004169) [26] (Figure 3A). While none of the programs can predict this highly 
specific MF GO term (Figure 3B), all of them can predict some parent terms of this GO 
term. DIAMOND and MMseqs2 provide the most specific parent term, GO:0000030 
"mannosyltransferase activity" (Figure 3C). Next in line is BLASTp (Figure 3D), followed 
by HHblits and phmmer (Figure 3E) predicting its parent term, GO:0016758 
"hexosyltransferase activity". The least specific predictions come from PSI-BLAST and 
jackhmmer (Figure 3F), which merely predict an even less specific parent term, 
GO:0016757 "glycosyltransferase activity". 

The inferior performance of the iterative searching tools (PSI-BLAST and jackhmmer) 
relative to their respective non-iterative counterparts (BLASTp and phmmer) primarily 
results from incorporating functionally less relevant templates during the iterations. For 
instance, in jackhmmer's first iteration, 107 out of 344 (31.1%) hits are annotated with the 
correct parent term, GO:0016758. This ratio decreases to 89 out of 1273 (7.0%) and 75 out 
of 1767 (4.2%) hits in the second and final iterations, respectively. Consequently, the 
prediction score of GO:0016758 plunges from 0.777 in the first iteration to 0.460 in the 
final iteration. This phenomenon, known as "profile drift" [27], implies that an increased 
number of iterations progressively change the composition of the query sequence profile, 
leading to the inclusion of very distant sequence relatives in the search results. 
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CONCLUSIONS 

In this study, we evaluated the usefulness of several commonly used sequence search 
tools for protein function prediction. We discovered that, despite DIAMOND being less 
effective than BLASTp and MMseqs2 for GO prediction under default parameter settings, 
it can surpass both programs in terms of GO prediction accuracies merely by adjusting the 
sensitivity and E-value cutoff settings. These three methods demonstrate higher GO 
prediction accuracies compared to more sensitive sequence search protocols, including 
PSI-BLAST, HHblits, jackhmmer, and phmmer, all of which are based on HMMs, iterative 
search, or both.  Alongside evaluating different search tools, this study also reaffirms 
previous findings that GO predictions stemming from multiple templates are more accurate 
than those derived from the template with the highest sequence identity. We also identified 
a new scoring function (S2) that consistently outshines the extensively employed 
DiamondScore (S1) scoring function featured in many function prediction programs [6-8, 
18, 21].  

In this study, we did not evaluate whether the combination of multiple sequence search 
tools could yield further improved function prediction accuracies; this remains a valuable 
topic for future investigation. 
 
ACKNOWLEDGEMENTS 

We thank Quancheng Liu and Dr. Xiaoqiong Wei for insightful discussions. This work 
used the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support 
(ACCESS) program, which is supported by the National Science Foundation (2138259, 
2138286, 2138307, 2137603, and 2138296). This work has been supported by the National 
Institutes of Health (AI134678 to P.L.F.). 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2023. ; https://doi.org/10.1101/2023.11.14.567021doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.14.567021
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

Figures 

 
Figure 1. The wFmax values for GO prediction. Each row represents a different database 
search tool using default parameters, which different bars within each row correspond to 
the 11 scoring functions. The lengths of the error bars are equal to the standard error of 
mean (SEM) of weighted F-measure values per protein. Grey bars indicate the highest 
wFmax value for each method. Black bars indicate the highest wFmax value among all 
methods for a particular GO aspect. 
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Figure 2. Parameter optimization for GO prediction using scoring function S2. (A) 
Heatmap for wFmax values using different E-values/sensitivities and maximum hit number. 
Black solid boxes and red dashed boxes indicate the default and optimized parameters, 
respectively. (B) The wFmax values for the optimal parameters (dark color bars) and 
default parameters (light color bars) for each tool. The error bar lengths reflect the standard 
error of mean (SEM) of weighted F-measure values per protein. (C) Average running time 
of different sequence search tools. Since DIAMOND running at the default sensitivity 
mode and --ultra-sensitive mode have very different speeds, the running times of both are 
shown. 
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Figure 3. MF GO annotation for TMTC4 (UniProt accession: Q9VF81). (A) Ground truth 
annotation. (B) Weighted F-measure and F-measure of MF prediction by different tools. 
(C-F) GO predictions by (C) DIAMOND and MMseqs2, (D) BLASTp, (E) HHblits and 
phmmer, and (F) PSI-BLAST and jackhmmer. Only GO terms predicted above the cutoff 
corresponding to the maximum weighted F-measure are shown.  
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