Text S1. The mathematics formulas for ESM-MSA transformer

1. Masking

For an input multiple sequence alignment (MSA), the masking strategy is performed.
Specifically, for each individual sequence in MSA, we randomly sample 15% tokens
(amino acids), each of which is changed as a special “masking” token with 80%
probability, a randomly-chosen alternate amino acid with 10% probability, and the

original input token (i.e., no change) with 10% probability.

2. One-hot encoding
The masked MSA is encoded as three matrices using one-hot encoding from three
different views. Specifically, for the j-th position of the i-th sequence in the masked

MSA, we encode it as three one-hot vectors, i.e., X;;, ¥;j, and Z;;, from the views of

ijs
token type, row position, and column position, respectively.
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where ¢;; is the index of token type for the j-th position of the i-th sequence, Cpayx
is the number of types of tokens, L., and M,,,, are preset maximum values for
sequence length and alignments, respectively. In this work, C,. = 28 and L4, =
M, = 1024, where 28 types of tokens include 20 common amino acids, 6 non-
common amino acids (B, J, O, U, X and Z), 1 gap token, and 1 “masking” token.
According to Egs. 1-3, the masked MSA can be encoded as three matrices, i.e., X,
Y and Z, through one-hot encoding from the view of token type, row position, and
column position, respectively, where X € RM*LXCmax =y € RM*L*Mmax and Z €
RMXLXLmax

M is the number of alignments, and L is the length of individual

sequence in the masked MSA.

3. Initial embedding
Each one-hot coding matrix is multiplied by a weight matrix to generate the

corresponding embedding matrix:
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where X[i], Y[i] and Z[i] are the one-hot coding matrices for the i-th sequence in
the masked MSA from the view of token type, row position, and column position,
respectively, H;oken,» Hrow, and H.,; are token type-based, row position-based, and
column position-based embedding matrices for the masked MSA, respectively, and D
is the embedding dimension. In this work, D = 768.

Three embedding matrices are added as an initial embedding matrix H,,;,:

Hinit = Htoken + Hrow + Hcoerinit € RMXLXD (7)

4. Batch normalization and dropout
The initial embedding matrix H,;; is fed to the batch normalization layer to generate

the corresponding normalized matrix H;:
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where h;; is the initial embedding vector for the j-th position of the i-th sequence in
the masked MSA, u;; and aizj are mean and variance for h;;, respectively, and y, B,
and € are normalized factors.

The normalized matrix H; is fed to dropout layer:



H, « dropout(H,7) (10)

where 7 is the rate of neurons which are randomly dropped in each training step,

indicating that the corresponding weight vectors will be not optimized.

5. Self-attention
The initial embedding matrix H, is fed to the self-attention network with N blocks,
each of which consists of three sub-blocks. In this work, N = 12.

The first sub-block consists of a batch normalization layer, a row attention layer,

a dropout layer, and a short connection, as follows.

H? = BN(H,) (11)

HE = RA(H%) (12)

HE « dropout(HR,7) (13)

F, = SC(Hy,HY) = H,, + HR (14)

where Hj and Fj are the input and output matrices in the first sub-block of the k-th
self-attention block, respectively, BN(+) is the batch normalization function (see Egs.
8-9), SC(+) is the short connection, and RA(-) is the row attention layer (see Eqs. 23-
30), H,, H?, HE, F, € RM*LxD,

The second sub-block consists of a batch normalization layer, a column attention

layer, a dropout layer, and a short connection, as follows.

F? = BN(F}) (15)

Fj; = CA(F?) (16)

F$ « dropout(F¢,r) (17)
U, = SC(Fy,F$) = Fy + F§ (18)

where F; and U, are the input and output matrices in the second sub-block of the k-
th self-attention block, respectively, CA(*) is the column attention layer (see Egs. 31-
39),and F8, F¢, U, € RM*IXD,

The last sub-block consists of a batch normalization layer, a feed-forward network,

a dropout layer, and a short connection, as follows.

U = BN(U,) (19)
UL = FFN(UY) (20)
UL « dropout(U%, 1) (21)

Hyr = SC(U,, U) = Uy, + U, (22)



where U, and Hj,, are the input and output matrices in the third sub-block of the
k-th self-attention block, respectively, FFN(.) is the feed-forward network (see Egs.
40-45), and UE, UL, H, ., € RMXLXD,

(A) Row attention
Each row attention layer consists of m attention heads and a linear unit, where m =
12. In each attention head, the input matrix is multiplied by three weight matrices to

generate the corresponding Query, Key, and Value matrices.
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where H% is the input matrix of row attention layer in the k-th self-attention block
(See Eq. 12), QF,, K%, and VR, are Query, Key, and Value matrices in the #-th head
of the row attention layer in the k-th block, respectively, ng , WKE, and WYE are
corresponding weight metrices.

Then, the dot-product between Q%, and K%, is performed and then normalized

by SoftMax function to generate a row attention weight matrix:

WAR = SoftMax Z%l@ﬁt[i]'(Kﬁt[i])T} ERLXL, QR i, KR i ERLX(D/TTL) 26
kt \/m kt kt

WER « dropout(W4R r (27)
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where W#R is the attention weight matrix in the z-th head of the row attention layer in
the k-th block and measures the correlation for each pair of columns in the masked
MSA.

Next, the row attention weight matrix W4F is multiplied by Value matrix V¥, to

generate the corresponding row attention matrix:



Vie[1] Wil Vi [1]
A = wipvE, = wi | Vial2l | = | WidVie[2) | e g, v i1 e R2G) 23)
Vie[MIL LWtV [M]
where AR, is the attention matrix in the ¢-th head of the row attention layer in the k-
th block.

Finally, the outputs of all attention heads are concatenated as a new matrix, which is

further fed to a linear unit;:
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Ai[1] AR [1WE
R R R

HE = afwk + b = | Acl2] fwr o pr = | Ac2IWic | 4 pR e guxixo (30
% [M] R IMIWE

Wi € RP*P, Ag[i] € RM*P
where HY in the output matrix of row attention layer in the k-th attention block (See

Eq. 12), and W% and bf are weight matrix and bias in the linear unit, respectively.

(B) Column attention
Each column attention layer consists of m attention heads and a linear unit. In each
attention head, the input matrix is multiplied by three weight matrices to generate the

corresponding Query, Key, and Value matrices.
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where F? is the input matrix of column attention layer in the k-th self-attention block
(see Eq. 16), Q%,, K&, and V¢, are Query, Key, and Value matrices in the #-th head

of column attention layer in the k-th block, respectively, Wgtc , WXE and WS are



corresponding weight metrices.
Then, the dot-product between Q%, and K¢, is performed and then normalized

by SoftMax function to generate an attention weight matrix:
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where WS is the attention weight matrix in the #-th head of column attention layer in
the k-th block, and W#¢[:,j,:] measures the correlation for each pair of alignments
at the j-th position.
Next, the column attention weight matrix W4 is multiplied by Value matrix V§,

to generate the corresponding column attention matrix:
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where A, is the attention matrix in the ¢-th head of column attention layer in the k-
th block.

Finally, the outputs of all attention heads are concatenated as a new matrix, which is
further fed to a linear unit:
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where F¢ in the output matrix of column attention layer in the k-th attention block,
(See Eq. 16), and W¢ and b¢ are weight matrix and bias in the linear unit,

respectively.



(C) Feed-forward network

TF — gelu(U’-’zWi + bjlé) c RMXLXDl (40)

TY « dropout(T%,r) (41)
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where U¥ and U¥% are the input and output matrices of feed-forward network in the
k-th self-attention block, respectively, (see Eq. 20), W} and W% are weight matrices,

b;, and bi are bias, and @(x) is the integral of Gaussian Distribution for x.

6. Output layer
The output of the last attention layer is fed to a fully connected layer with SoftMax

function to generate a probability matrix:

P = SoftMax(HyWy + by) € RM*L*Cmax (46)
Hy[1]Wy

H W, = Hy[2]Wy ,Hy[i] € R™P , W, € RPXCmax (47)
Hy[M]W y

where Hp is the outputted embedding matrix in the N-th attention block, W, and
by are weight matrix and bias, respectively, and the P(i,j,c) indicates the probability
that the j-th position of the i-th sequence in the masked MSA is predicted as the c-th

type of amino acid.

7. Loss function

For an individual MSA, the loss function is designed as:

1 1
LoSSpsq = I ﬁl{m ' ZjEmask(i) _logPi,j,C(i,j)} (48)



where M is the number of alignments, mask(i) is a set of masking position in the i-
th sequence, |mask(i)| is the number of elements in mask(i), c(i,j) is the type
index of amino acid for the j-th position in the i-th sequence before masking, and -
logP; j ) isnegative log likelihood of the true amino acid at the j-th position in the

i-th sequence under condition of masking.



