
Text S1. The mathematics formulas for ESM-MSA transformer  

1. Masking  

For an input multiple sequence alignment (MSA), the masking strategy is performed. 

Specifically, for each individual sequence in MSA, we randomly sample 15% tokens 

(amino acids), each of which is changed as a special “masking” token with 80% 

probability, a randomly-chosen alternate amino acid with 10% probability, and the 

original input token (i.e., no change) with 10% probability.  

 

2. One-hot encoding  

The masked MSA is encoded as three matrices using one-hot encoding from three 

different views. Specifically, for the 𝑗-th position of the 𝑖-th sequence in the masked 

MSA, we encode it as three one-hot vectors, i.e., 𝒙!", 𝒚!", and 𝒛!", from the views of 

token type, row position, and column position, respectively.   

      𝒙!" = '𝑥!"#, 𝑥!"$, … , 𝑥!"%!"#+ ∈ 𝑅
%!"# , 𝑥!"& = .

1, 𝑘 = 𝑐!"
0, 𝑘 ≠ 𝑐!"

 (1) 

      𝒚!" = '𝑦!"#, 𝑦!"$, … , 𝑦!"'!"#+ ∈ 𝑅
'!"# , 𝑦!"& = .1, 𝑘 = 𝑖

0, 𝑘 ≠ 𝑖 (2) 

      𝒛!" = '𝑧!"#, 𝑧!"$, … , 𝑧!"(!"#+ ∈ 𝑅
(!"# , 𝑧!"& = .1, 𝑘 = 𝑗

0, 𝑘 ≠ 𝑗 (3) 

where 𝑐!" is the index of token type for the 𝑗-th position of the 𝑖-th sequence, 𝐶)*+ 

is the number of types of tokens, 𝐿)*+ and 𝑀)*+ are preset maximum values for 

sequence length and alignments, respectively. In this work, 𝐶)*+ = 28 and 𝐿)*+ =
𝑀)*+ = 1024, where 28 types of tokens include 20 common amino acids, 6 non-

common amino acids (B, J, O, U, X and Z), 1 gap token, and 1 “masking” token.   

According to Eqs. 1-3, the masked MSA can be encoded as three matrices, i.e., 𝑿, 

𝒀 and 𝒁, through one-hot encoding from the view of token type, row position, and 

column position, respectively, where 𝑿 ∈ 𝑅'×(×%!"# , 𝒀 ∈ 𝑅'×(×'!"#  and 𝒁 ∈
𝑅'×(×(!"# , 𝑀  is the number of alignments, and 𝐿  is the length of individual 

sequence in the masked MSA.  

 

3. Initial embedding  

Each one-hot coding matrix is multiplied by a weight matrix to generate the 

corresponding embedding matrix: 



     𝑯-.&/0 = 𝑿𝑾-.&/0 = A

𝑿[1]
𝑿[2]
…

𝑿[𝑀]

D𝑾-.&/0 = A

𝑿[1]𝑾-.&/0
𝑿[2]𝑾-.&/0

…
𝑿[𝑀]𝑾-.&/0

D ∈ 𝑅'×(×1 (4) 

𝑿[𝑖] ∈ 𝑅(×%!"# ,𝑾-.&/0 ∈ 𝑅%!"#×1 

     𝑯2.3 = 𝑿𝑾2.3 = A

𝒀[1]
𝒀[2]
…

𝒀[𝑀]

D𝑾2.3 = A

𝒀[1]𝑾2.3
𝒀[2]𝑾2.3

…
𝒀[𝑀]𝑾2.3

D ∈ 𝑅'×(×1 (5) 

𝒀[𝑖] ∈ 𝑅(×'!"# ,𝑾2.3 ∈ 𝑅'!"#×1 

     	𝑯4.5 = 𝒁𝑾4.5 = A

𝒁[1]
𝒁[2]
…

𝒁[𝑀]

D𝑾4.5 = A

𝒁[1]𝑾4.5
𝒁[2]𝑾4.5

…
𝒁[𝑀]𝑾4.5

D ∈ 𝑅'×(×1 (6) 

𝒁[𝑖] ∈ 𝑅(×(!"# ,𝑾4.5 ∈ 𝑅(!"#×1 

where 𝑿[𝑖], 𝒀[𝑖] and 𝒁[𝑖] are the one-hot coding matrices for the 𝑖-th sequence in 

the masked MSA from the view of token type, row position, and column position, 

respectively, 𝑯-.&/0, 𝑯2.3, and 𝑯4.5 are token type-based, row position-based, and 

column position-based embedding matrices for the masked MSA, respectively, and 𝐷 

is the embedding dimension. In this work, 𝐷 = 768.  

Three embedding matrices are added as an initial embedding matrix 𝑯𝑖𝑛𝑖𝑡: 

      𝑯!0!- = 𝑯-.&/0 +𝑯2.3 +𝑯4.5 , 𝑯!0!- ∈ 𝑅'×(×1 (7) 

 

4. Batch normalization and dropout   

The initial embedding matrix 𝑯!0!- is fed to the batch normalization layer to generate 

the corresponding normalized matrix 𝑯#: 

      𝑯# = 𝐵𝑁(𝑯!0!-) = N
𝐵𝑁(𝒉##) ⋯ 𝐵𝑁(𝒉#()

⋮ ⋱ ⋮
𝐵𝑁(𝒉'#) ⋯ 𝐵𝑁(𝒉'()

S (8) 

     𝐵𝑁'𝒉!"+ = 𝛾 ∙ 𝒉$%78$%
9:$%

&;<
+ 𝛽, 𝒉!" ∈ 𝑅1 (9) 

where 𝒉!" is the initial embedding vector for the 𝑗-th position of the 𝑖-th sequence in 

the masked MSA, 𝑢!" and 𝜎!"$  are mean and variance for 𝒉!", respectively, and 𝛾, 𝛽, 

and 𝜖 are normalized factors.  

The normalized matrix 𝑯# is fed to dropout layer: 



      𝑯# ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑯#, 𝑟) (10) 

where 𝑟 is the rate of neurons which are randomly dropped in each training step, 

indicating that the corresponding weight vectors will be not optimized.  

 

5. Self-attention    

The initial embedding matrix 𝑯# is fed to the self-attention network with 𝑁 blocks, 

each of which consists of three sub-blocks. In this work, 𝑁 = 12.   

The first sub-block consists of a batch normalization layer, a row attention layer, 

a dropout layer, and a short connection, as follows.  

      𝑯&
= = 𝐵𝑁(𝑯&) (11) 

      𝑯&
> = 𝑅𝐴(𝑯&

=) (12) 

      𝑯&
> ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑯&

> , 𝑟) (13) 

      𝑭& = 𝑆𝐶(𝑯& , 𝑯&
>) = 𝑯& +𝑯&

> (14) 

where 𝑯& and 𝑭& are the input and output matrices in the first sub-block of the 𝑘-th 

self-attention block, respectively, 𝐵𝑁(∙) is the batch normalization function (see Eqs. 

8-9), 𝑆𝐶(∙) is the short connection, and 𝑅𝐴(∙) is the row attention layer (see Eqs. 23-

30), 𝑯&, 𝑯&
=, 𝑯&

>, 𝑭& ∈ 𝑅'×(×1. 

The second sub-block consists of a batch normalization layer, a column attention 

layer, a dropout layer, and a short connection, as follows.  

      𝑭&= = 𝐵𝑁(𝑭&) (15) 

      𝑭&% = 𝐶𝐴(𝑭&=) (16) 

      𝑭&% ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑭&% , 𝑟) (17) 

      𝑼& = 𝑆𝐶(𝑭& , 𝑭&%) = 𝑭& + 𝑭&%  (18) 

where 𝑭& and 𝑼& are the input and output matrices in the second sub-block of the 𝑘-

th self-attention block, respectively, 𝐶𝐴(∙) is the column attention layer (see Eqs. 31-

39), and 𝑭&=, 𝑭&% , 𝑼& ∈ 𝑅'×(×1. 

The last sub-block consists of a batch normalization layer, a feed-forward network, 

a dropout layer, and a short connection, as follows.  

      𝑼&= = 𝐵𝑁(𝑼&) (19) 

      𝑼&? = 𝐹𝐹𝑁(𝑼&=) (20) 

      𝑼&? ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑼&? , 𝑟) (21) 

      𝑯&;# = 𝑆𝐶(𝑼& , 𝑼&?) = 𝑼& + 𝑼&? (22) 



where 𝑼& and 𝑯&;# are the input and output matrices in the third sub-block of the 

𝑘-th self-attention block, respectively, 𝐹𝐹𝑁(. ) is the feed-forward network (see Eqs. 

40-45), and 𝑼&=, 𝑼&?, 𝑯&;# ∈ 𝑅'×(×1.  

 

(A) Row attention 

Each row attention layer consists of 𝑚 attention heads and a linear unit, where 𝑚 =
12. In each attention head, the input matrix is multiplied by three weight matrices to 

generate the corresponding Query, Key, and Value matrices. 

      𝑸&-> = 𝑯&
=𝑾&-

@> =

⎣
⎢
⎢
⎡𝑯&

=[1]
𝑯&
=[2]
…

𝑯&
=[𝑀]⎦

⎥
⎥
⎤
𝑾&-

@> =

⎣
⎢
⎢
⎢
⎡𝑯&

=[1]𝑾&-
@>

𝑯&
=[2]𝑾&-

@>

…
𝑯&
=[𝑀]𝑾&-

@>⎦
⎥
⎥
⎥
⎤
∈ 𝑅'×(×(

'
!) (23) 

      𝑲&-
> = 𝑯&

=𝑾&-
C> =

⎣
⎢
⎢
⎡𝑯&

=[1]
𝑯&
=[2]
…

𝑯&
=[𝑀]⎦

⎥
⎥
⎤
𝑾&-

C> =

⎣
⎢
⎢
⎡𝑯&

=[1]𝑾&-
C>

𝑯&
=[2]𝑾&-

C>

…
𝑯&
=[𝑀]𝑾&-

C>⎦
⎥
⎥
⎤
∈ 𝑅'×(×(

'
!) (24) 

      𝑽&-> = 𝑯&
=𝑾&-

D> =

⎣
⎢
⎢
⎡𝑯&

=[1]
𝑯&
=[2]
…

𝑯&
=[𝑀]⎦

⎥
⎥
⎤
𝑾&-

D> =

⎣
⎢
⎢
⎡𝑯&

=[1]𝑾&-
D>

𝑯&
=[2]𝑾&-

D>

…
𝑯&
=[𝑀]𝑾&-

D>⎦
⎥
⎥
⎤
∈ 𝑅'×(×(

'
!) (25) 

	𝑯&
=[𝑖] ∈ 𝑅(×1 ,𝑾&-

@> ,𝑾&-
C> ,𝑾&-

D> ∈ 𝑅1×(
1
)) 

where 𝑯&
= is the input matrix of row attention layer in the 𝑘-th self-attention block 

(See Eq. 12), 𝑸&-> , 𝑲&-
> , and 𝑽&->  are Query, Key, and Value matrices in the t-th head 

of the row attention layer in the 𝑘-th block, respectively, 𝑾&-
@>, 𝑾&-

C>, and 𝑾&-
D> are 

corresponding weight metrices.  

Then, the dot-product between 𝑸&->  and 𝑲&-
>  is performed and then normalized 

by SoftMax function to generate a row attention weight matrix: 

     𝑾&-
E> = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(∑ 𝑸()

* [!]∙(𝑲()
* [!])+},

$-.
M'1/)

) ∈ 𝑅(×( , 𝑸&-> [𝑖], 𝑲&-
> [𝑖] 	 ∈ 𝑅(×(1/)) (26) 

      𝑾&-
E> ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑾&-

E> , 𝑟) (27) 

where 𝑾&-
E> is the attention weight matrix in the t-th head of the row attention layer in 

the 𝑘-th block and measures the correlation for each pair of columns in the masked 

MSA.  

Next, the row attention weight matrix 𝑾&-
E> is multiplied by Value matrix 𝑽&->  to 

generate the corresponding row attention matrix: 



𝑨&-> = 𝑾&-
E>𝑽&-> = 𝑾&-

E>

⎣
⎢
⎢
⎡ 𝑽&-

> [1]
𝑽&-> [2]
…

𝑽&-> [𝑀]⎦
⎥
⎥
⎤
=

⎣
⎢
⎢
⎡𝑾&-

E>𝑽&-> [1]
𝑾&-

E>𝑽&-> [2]
…

𝑾&-
E>𝑽&-> [𝑀]⎦

⎥
⎥
⎤
∈ 𝑅'×(×O

'
!P, 𝑽&-> [𝑖] ∈ 𝑅

(×O'!P (28) 

where 𝑨&->  is the attention matrix in the t-th head of the row attention layer in the 𝑘-

th block.  

Finally, the outputs of all attention heads are concatenated as a new matrix, which is 

further fed to a linear unit: 

 𝑨&> = 𝑨&#> 𝑨&$> …𝑨&)> ∈ 𝑅'×(×1 (29) 

 𝑯&
> = 𝑨&>𝑾&

> + 𝒃&> =

⎣
⎢
⎢
⎡ 𝑨&

>[1]
𝑨&>[2]
…

𝑨&>[𝑀]⎦
⎥
⎥
⎤
𝑾&

> + 𝒃&> =

⎣
⎢
⎢
⎡ 𝑨&

>[1]𝑾&
>

𝑨&>[2]𝑾&
>

…
𝑨&>[𝑀]𝑾&

>⎦
⎥
⎥
⎤
+ 𝒃&> ∈ 𝑅'×(×1 (30) 

 𝑾&
> ∈ 𝑅1×1 , 𝑨&>[𝑖] ∈ 𝑅(×1   

where 𝑯&
> in the output matrix of row attention layer in the 𝑘-th attention block (See 

Eq. 12), and 𝑾&
> and 𝒃&> are weight matrix and bias in the linear unit, respectively.  

 

(B) Column attention 

Each column attention layer consists of 𝑚 attention heads and a linear unit. In each 

attention head, the input matrix is multiplied by three weight matrices to generate the 

corresponding Query, Key, and Value matrices. 

 𝑸&-% = 𝑭&=𝑾&-
@% =

⎣
⎢
⎢
⎡ 𝑭&

=[1]
𝑭&=[2]
…

𝑭&=[𝑀]⎦
⎥
⎥
⎤
𝑾&-

@% =

⎣
⎢
⎢
⎢
⎡ 𝑭&

=[1]𝑾&-
@%

𝑭&=[2]𝑾&-
@%

…
𝑭&=[𝑀]𝑾&-

@%⎦
⎥
⎥
⎥
⎤
∈ 𝑅'×(×(

'
!) (31) 

      𝑲&-
% = 𝑭&=𝑾&-

C% =

⎣
⎢
⎢
⎡ 𝑭&

=[1]
𝑭&=[2]
…

𝑭&=[𝑀]⎦
⎥
⎥
⎤
𝑾&-

C% =

⎣
⎢
⎢
⎡ 𝑭&

=[1]𝑾&-
C%

𝑭&=[2]𝑾&-
C%

…
𝑭&=[𝑀]𝑾&-

C%⎦
⎥
⎥
⎤
∈ 𝑅'×(×(

'
!) (32) 

      𝑽&-% = 𝑭&=𝑾&-
D% =

⎣
⎢
⎢
⎡ 𝑭&

=[1]
𝑭&=[2]
…

𝑭&=[𝑀]⎦
⎥
⎥
⎤
𝑾&-

D% =

⎣
⎢
⎢
⎡ 𝑭&

=[1]𝑾&-
D%

𝑭&=[2]𝑾&-
D%

…
𝑭&=[𝑀]𝑾&-

D%⎦
⎥
⎥
⎤
∈ 𝑅'×(×(

'
!) (33) 

𝑭&=[𝑖] ∈ 𝑅(×1 ,𝑾&-
@% ,𝑾&-

C% ,𝑾&-
D% ∈ 𝑅1×(

1
)) 

where 𝑭&= is the input matrix of column attention layer in the 𝑘-th self-attention block 

(see Eq. 16), 𝑸&-% , 𝑲&-
% , and 𝑽&-%  are Query, Key, and Value matrices in the t-th head 

of column attention layer in the 𝑘-th block, respectively, 𝑾&-
@% , 𝑾&-

C% , and 𝑾&-
D%  are 



corresponding weight metrices. 

Then, the dot-product between 𝑸&-%  and 𝑲&-
%  is performed and then normalized 

by SoftMax function to generate an attention weight matrix: 

      𝑾&-
E% = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 t𝑸()

/ (𝑲()
/ )+

M1/)
u ∈ 𝑅'×(×' (34) 

      𝑾&-
E% ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑾&-

E% , 𝑟) (35) 

      𝑸!"# (𝑲!"
# )$ = &𝑸!"# [: , 1, : ]	𝑸!"# [: , 2, ∶] 	…𝑸!"# [: , 𝐿, ∶]1 ∙ &𝑲!"

# [: , 1, : ]	𝑲!"
# [: , 2, ∶]	…𝑲!"

# [: , 𝐿, ∶]1
$
=

3𝑸!"# [: , 1, : ] ∙ 𝑲!"
# [: , 1, : ]$	𝑸!"# [: , 2, : ] ∙ 𝑲!"

# [: , 2, : ]$ …𝑸!"# [: , 𝐿, : ] ∙ 𝑲!"
# [: , 𝐿, : ]$4 ∈ 𝑅𝑀×𝐿×𝑀 (36) 

𝑸&-% [: , 𝑗, : ], 𝑲&-
% [: , 𝑗, : ] ∈ 𝑅'×O

1
)P, 𝑸&-% [: , 𝑗, : ] ∙ 𝑲&-

% [: , 𝑗, : ]S ∈ 𝑅'×' 

where 𝑾&-
E%  is the attention weight matrix in the t-th head of column attention layer in 

the 𝑘-th block, and 𝑾&-
E%[: , 𝑗, : ] measures the correlation for each pair of alignments 

at the 𝑗-th position.  

Next, the column attention weight matrix 𝑾&-
𝐴𝐶 is multiplied by Value matrix 𝑽&-%  

to generate the corresponding column attention matrix: 

𝑨!"# = 𝑾!"
%#𝑽!"# = &𝑾!"

%#[: , 1, : ]	𝑾!"
%#[: , 2, ∶]	…𝑾!"

%#[: , 𝐿, ∶]1 ∙ &𝑽!"# [: , 1, : ]	𝑽!"# [: , 2, ∶]	…𝑽!"# [: , 𝐿, ∶]1=&𝑾!"
%#[: , 1, : ] ∙

𝑽!"# [: , 1, : ]		𝑾!"
%#[: , 2, ∶] ∙ 𝑽!"# [: , 2, ∶] 		…𝑾!"

%#[: , 𝐿, ∶] ∙ 𝑽!"# [: , 𝐿, ∶]1 ∈ 𝑅
𝑀×𝐿×(𝐷𝑚) (37) 

𝑾&-
E%[: , 𝑗, : ] ∈ 𝑅'×' , 𝑽&-% [: , 𝑗, ∶] ∈ 𝑅

'×(1)),𝑾&-
E%[: , 𝑗, ∶] ∙ 𝑽&-% [: , 𝑗, ∶] ∈ 𝑅

'×(1)) 

where 𝑨&-%  is the attention matrix in the t-th head of column attention layer in the 𝑘-

th block.  

Finally, the outputs of all attention heads are concatenated as a new matrix, which is 

further fed to a linear unit: 

 𝑨&% = 𝑨&#% 𝑨&$% …𝑨&)% ∈ 𝑅'×(×1 (38) 

 𝑭&% = 𝑨&%𝑾&
% + 𝒃&% =

⎣
⎢
⎢
⎡ 𝑨&

%[1]
𝑨&%[2]
…

𝑨&%[𝑀]⎦
⎥
⎥
⎤
𝑾&

% =

⎣
⎢
⎢
⎡ 𝑨#

%[1]𝑾&
%

𝑨$%[2]𝑾&
%

…
𝑨&%[𝑀]𝑾&

%⎦
⎥
⎥
⎤
+ 𝒃&% ∈ 𝑅'×(×1 (39) 

 𝑾&
% ∈ 𝑅1×1 , 𝑨&%[𝑖] ∈ 𝑅(×1   

where 𝑭&%  in the output matrix of column attention layer in the 𝑘-th attention block, 

(See Eq. 16), and 𝑾&
%  and 𝒃&%  are weight matrix and bias in the linear unit, 

respectively. 

 



(C) Feed-forward network 

      𝑻&? = 𝑔𝑒𝑙𝑢(𝑼&=𝑾&
# + 𝒃&#) ∈ 𝑅'×(×1. (40) 

      𝑻&? ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑻&? , 𝑟) (41) 

      𝑼&? = 𝑻&?𝑾&
$ + 𝒃&$ ∈ 𝑅'×(×1 (42) 

 𝑔𝑒𝑙𝑢(𝑥) = 𝑥∅(𝑥) (43) 

      𝑼&=𝑾&
# =

⎣
⎢
⎢
⎡ 𝑼&

=[1]
𝑼&=[2]
…

𝑼&=[𝑀]⎦
⎥
⎥
⎤
𝑾&

# =

⎣
⎢
⎢
⎡𝑼&

=[1]𝑾&
#

𝑼&=[2]𝑾&
#

…
𝑼&=[𝑀]𝑾&

#⎦
⎥
⎥
⎤
∈ 𝑅'×(×1. (44) 

      𝑻&?𝑾&
$ =

⎣
⎢
⎢
⎡ 𝑻&

?[1]
𝑻&?[2]
…

𝑻&?[𝑀]⎦
⎥
⎥
⎤
𝑾&

$ =

⎣
⎢
⎢
⎡ 𝑻&

?[1]𝑾&
$

𝑻&?[2]𝑾&
$

…
𝑻&?[𝑀]𝑾&

$⎦
⎥
⎥
⎤
∈ 𝑅'×(×1 (45) 

      𝑼&=[𝑖] ∈ 𝑅(×1 ,𝑾&
# ∈ 𝑅1×1. , 𝑻&?[𝑖] ∈ 𝑅(×1. ,𝑾&

$ ∈ 𝑅1.×1 , 𝐷#=3072  

where 𝑼&= and 𝑼&? are the input and output matrices of feed-forward network in the 

𝑘-th self-attention block, respectively, (see Eq. 20), 𝑾&
#  and 𝑾&

$  are weight matrices, 

𝒃&#  and 𝒃&$  are bias, and ∅(𝑥)	is the integral of Gaussian Distribution for 𝑥. 

 

6. Output layer    

The output of the last attention layer is fed to a fully connected layer with SoftMax 

function to generate a probability matrix: 
 𝑷 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑯T𝑾T + 𝒃T) ∈ 𝑅'×(×%!"#	 (46) 

																				𝑯T𝑾T = A

𝑯T[1]𝑾T
𝑯T[2]𝑾T

…
𝑯T[𝑀]𝑾T

D , 𝑯T[𝑖] ∈ 𝑅(×1	,𝑾T ∈ 𝑅1×%!"#		 (47) 

where 𝑯T is the outputted embedding matrix in the 𝑁-th attention block, 𝑾T and 

𝒃T are weight matrix and bias, respectively, and the 𝑷(𝑖, 𝑗, 𝑐) indicates the probability 

that the 𝑗-th position of the 𝑖-th sequence in the masked MSA is predicted as the 𝑐-th 

type of amino acid. 

 

7. Loss function 

For an individual MSA, the loss function is designed as: 

 𝐿𝑜𝑠𝑠)V* =
#
'
∙ ∑ { #

|)*V&(!)|
∙ ∑ −𝑙𝑜𝑔𝑃!,",4(!,")"∈)*V&(!) }'

!Z#  (48) 



where 𝑀 is the number of alignments, 𝑚𝑎𝑠𝑘(𝑖) is a set of masking position in the 𝑖-
th sequence, |𝑚𝑎𝑠𝑘(𝑖)| is the number of elements in 𝑚𝑎𝑠𝑘(𝑖), 𝑐(𝑖, 𝑗) is the type 

index of amino acid for the	 𝑗-th position in the 𝑖-th sequence before masking, and -

𝑙𝑜𝑔𝑃!,",4(!,") is negative log likelihood of the true amino acid at the	 𝑗-th position in the 

𝑖-th sequence under condition of masking.  

    
 


